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cluster_validity Internal Cluster Validity Measures

Description

Implementation of cluster validity indices reviewed in (Gagolewski, Bartoszuk, Cena, 2021). See
Section 2 therein for the respective definitions.

The greater the index value, the more valid (whatever that means) the assessed partition. For con-
sistency, the Ball-Hall and Davies-Bouldin indexes as well as the within-cluster sum of squares
(WCSS) take negative values.

Usage

calinski_harabasz_index(X, y)

dunnowa_index(
X,
y,
M = 25L,
owa_numerator = "SMin:5",
owa_denominator = "Const"

)

generalised_dunn_index(X, y, lowercase_d, uppercase_d)

negated_ball_hall_index(X, y)

https://orcid.org/0000-0003-0637-6028
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negated_davies_bouldin_index(X, y)

negated_wcss_index(X, y)

silhouette_index(X, y)

silhouette_w_index(X, y)

wcnn_index(X, y, M = 25L)

Arguments

X numeric matrix with n rows and d columns, representing n points in a d-dimensional
space

y vector of n integer labels, representing a partition whose quality is to be as-
sessed; y[i] is the cluster ID of the i-th point, X[i, ]; 1 <= y[i] <= K, where K
is the number or clusters

M number of nearest neighbours
owa_numerator, owa_denominator

single string specifying the OWA operators to use in the definition of the DuNN
index; one of: "Mean", "Min", "Max", "Const", "SMin:D", "SMax:D", where D
is an integer defining the degree of smoothness

lowercase_d an integer between 1 and 5, denoting d1, ..., d5 in the definition of the generalised
Dunn (Bezdek-Pal) index (numerator: min, max, and mean pairwise intracluster
distance, distance between cluster centroids, weighted point-centroid distance,
respectively)

uppercase_d an integer between 1 and 3, denoting D1, ..., D3 in the definition of the gener-
alised Dunn (Bezdek-Pal) index (denominator: max and min pairwise intraclus-
ter distance, average point-centroid distance, respectively)

Value

A single numeric value (the more, the better).

Author(s)

Marek Gagolewski and other contributors

References

Ball, G.H., Hall, D.J., ISODATA: A novel method of data analysis and pattern classification, Tech-
nical report No. AD699616, Stanford Research Institute, 1965.

Bezdek, J., Pal, N., Some new indexes of cluster validity, IEEE Transactions on Systems, Man, and
Cybernetics, Part B 28, 1998, 301-315, doi:10.1109/3477.678624.

Calinski, T., Harabasz, J., A dendrite method for cluster analysis, Communications in Statistics
3(1), 1974, 1-27, doi:10.1080/03610927408827101.

https://www.gagolewski.com/
https://doi.org/10.1109/3477.678624
https://doi.org/10.1080/03610927408827101
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Davies, D.L., Bouldin, D.W., A Cluster Separation Measure, IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-1 (2), 1979, 224-227, doi:10.1109/TPAMI.1979.4766909.

Dunn, J.C., A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-
Separated Clusters, Journal of Cybernetics 3(3), 1973, 32-57, doi:10.1080/01969727308546046.

Gagolewski, M., Bartoszuk, M., Cena, A., Are cluster validity measures (in)valid?, Information Sci-
ences 581, 620-636, 2021, doi:10.1016/j.ins.2021.10.004; preprint: https://raw.githubusercontent.
com/gagolews/bibliography/master/preprints/2021cvi.pdf.

Gagolewski, M., A Framework for Benchmarking Clustering Algorithms, SoftwareX 20, 2022,
101270, doi:10.1016/j.softx.2022.101270, https://clustering-benchmarks.gagolewski.com.

Rousseeuw, P.J., Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Anal-
ysis, Computational and Applied Mathematics 20, 1987, 53-65, doi:10.1016/03770427(87)901257.

See Also

The official online manual of genieclust at https://genieclust.gagolewski.com/

Gagolewski, M., genieclust: Fast and robust hierarchical clustering, SoftwareX 15:100722, 2021,
doi:10.1016/j.softx.2021.100722

Examples

X <- as.matrix(iris[,1:4])
X[,] <- jitter(X) # otherwise we get a non-unique solution
y <- as.integer(iris[[5]])
calinski_harabasz_index(X, y) # good
calinski_harabasz_index(X, sample(1:3, nrow(X), replace=TRUE)) # bad

compare_partitions External Cluster Validity Measures and Pairwise Partition Similarity
Scores

Description

The functions described in this section quantify the similarity between two label vectors x and y
which represent two partitions of a set of n elements into, respectively, K and L nonempty and
pairwise disjoint subsets; for a review, refer to the paper by Gagolewski (2025).

For instance, x and y can represent two clusterings of a dataset with n observations specified by two
vectors of labels. The functions described here can be used as external cluster validity measures,
where we assume that x is a reference (ground-truth) partition whilst y is the vector of predicted
cluster memberships.

All indices except normalized_clustering_accuracy() can act as a pairwise partition similarity
score: they are symmetric, i.e., index(x, y) == index(y, x).

Each index except mi_score() (which computes the mutual information score) outputs 1 given two
identical partitions. Note that partitions are always defined up to a permutation (bijection) of the set
of possible labels, e.g., (1, 1, 2, 1) and (4, 4, 2, 4) represent the same 2-partition.

https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1016/j.ins.2021.10.004
https://raw.githubusercontent.com/gagolews/bibliography/master/preprints/2021cvi.pdf
https://raw.githubusercontent.com/gagolews/bibliography/master/preprints/2021cvi.pdf
https://doi.org/10.1016/j.softx.2022.101270
https://clustering-benchmarks.gagolewski.com
https://doi.org/10.1016/0377-0427%2887%2990125-7
https://genieclust.gagolewski.com/
https://doi.org/10.1016/j.softx.2021.100722
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Usage

normalized_clustering_accuracy(x, y = NULL)

normalized_pivoted_accuracy(x, y = NULL)

pair_sets_index(x, y = NULL, simplified = FALSE, clipped = TRUE)

adjusted_rand_score(x, y = NULL, clipped = FALSE)

rand_score(x, y = NULL)

adjusted_fm_score(x, y = NULL, clipped = FALSE)

fm_score(x, y = NULL)

mi_score(x, y = NULL)

normalized_mi_score(x, y = NULL)

adjusted_mi_score(x, y = NULL, clipped = FALSE)

normalized_confusion_matrix(x, y = NULL)

normalizing_permutation(x, y = NULL)

Arguments

x an integer vector of length n (or an object coercible to) representing a K-partition
of an n-set (e.g., a reference partition), or a confusion matrix with K rows and L
columns (see table(x, y))

y an integer vector of length n (or an object coercible to) representing an L-
partition of the same set (e.g., the output of a clustering algorithm we wish to
compare with x), or NULL (if x is an K × L confusion matrix)

simplified whether to assume E=1 in the definition of the pair sets index index, i.e., use Eq.
(20) in (Rezaei, Franti, 2016) instead of Eq. (18)

clipped whether the result should be clipped to the unit interval, i.e., [0, 1]

Details

normalized_clustering_accuracy() is an asymmetric external cluster validity measure pro-
posed by Gagolewski (2025). It assumes that the label vector x (or rows in the confusion matrix)
represents the reference (ground truth) partition. It is the average proportion of correctly classified
points in each cluster above the worst case scenario representing the uniform membership assign-
ment, with the cluster ID matching based on the solution to the maximal linear sum assignment
problem; see normalized_confusion_matrix). The index is given by: maxσ

1
K

∑K
j=1

cσ(j),j−cσ(j),·/K

cσ(j),·−cσ(j),·/K
,

where C is a confusion matrix with K rows and L columns, σ is a permutation of the set {1, . . . ,max(K,L)},
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and ci,· = ci,1 + ... + ci,L is the i-th row sum, under the assumption that ci,j = 0 for i > K or
j > L and 0/0 = 0.

normalized_pivoted_accuracy() is defined as (maxσ
∑max(K,L)

j=1
cσ(j),j/n−1/max(K,L)

1−1/max(K,L) , where
σ is a permutation of the set {1, . . . ,max(K,L)}, and n is the sum of all elements in C. For
non-square matrices, missing rows/columns are assumed to be filled with 0s.

pair_sets_index() (PSI) was introduced by Rezaei and Franti (2016). The simplified PSI as-
sumes E=1 in the definition of the index, i.e., uses Eq. (20) in the said paper instead of Eq. (18).
For non-square matrices, missing rows/columns are assumed to be filled with 0s.

rand_score() gives the Rand score (the "probability" of agreement between the two partitions)
and adjusted_rand_score() is its version corrected for chance (see Hubert, Arabie, 1985): its
expected value is 0 given two independent partitions. Due to the adjustment, the resulting index
may be negative for some inputs.

Similarly, fm_score() gives the Fowlkes-Mallows (FM) score and adjusted_fm_score() is its
adjusted-for-chance version; (see Hubert, Arabie, 1985).

mi_score(), adjusted_mi_score() and normalized_mi_score() are information-theoretic scores,
based on mutual information, see the definition of AMIsum and NMIsum in the paper by Vinh et
al. (2010).

normalized_confusion_matrix() computes the confusion matrix and permutes its rows and columns
so that the sum of the elements of the main diagonal is the largest possible (by solving the maxi-
mal assignment problem). The function only accepts K ≤ L. The reordering of the columns of a
confusion matrix can be determined by calling normalizing_permutation().

Also note that the built-in table() function determines the standard confusion matrix.

Value

Each cluster validity measure is a single numeric value.

normalized_confusion_matrix() returns a numeric matrix.

normalizing_permutation() returns a vector of indexes.

Author(s)

Marek Gagolewski and other contributors

References

Gagolewski, M., A framework for benchmarking clustering algorithms, SoftwareX 20, 2022, 101270,
doi:10.1016/j.softx.2022.101270, https://clustering-benchmarks.gagolewski.com.

Gagolewski, M., Normalised clustering accuracy: An asymmetric external cluster validity measure,
Journal of Classification 42, 2025, 2-30. doi:10.1007/s00357024094822.

Hubert, L., Arabie, P., Comparing partitions, Journal of Classification 2(1), 1985, 193-218, esp.
Eqs. (2) and (4).

Meila, M., Heckerman, D., An experimental comparison of model-based clustering methods, Ma-
chine Learning 42, 2001, pp. 9-29, doi:10.1023/A:1007648401407.

Rezaei, M., Franti, P., Set matching measures for external cluster validity, IEEE Transactions on
Knowledge and Data Mining 28(8), 2016, 2173-2186.

https://www.gagolewski.com/
https://doi.org/10.1016/j.softx.2022.101270
https://clustering-benchmarks.gagolewski.com
https://doi.org/10.1007/s00357-024-09482-2
https://doi.org/10.1023/A%3A1007648401407
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Steinley, D., Properties of the Hubert-Arabie adjusted Rand index, Psychological Methods 9(3),
2004, pp. 386-396, doi:10.1037/1082989X.9.3.386.

Vinh, N.X., Epps, J., Bailey, J., Information theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance, Journal of Machine Learning Research
11, 2010, 2837-2854.

See Also

The official online manual of genieclust at https://genieclust.gagolewski.com/

Gagolewski, M., genieclust: Fast and robust hierarchical clustering, SoftwareX 15:100722, 2021,
doi:10.1016/j.softx.2021.100722

Examples

y_true <- iris[[5]]
y_pred <- kmeans(as.matrix(iris[1:4]), 3)$cluster
normalized_clustering_accuracy(y_true, y_pred)
normalized_pivoted_accuracy(y_true, y_pred)
pair_sets_index(y_true, y_pred)
pair_sets_index(y_true, y_pred, simplified=TRUE)
adjusted_rand_score(y_true, y_pred)
rand_score(table(y_true, y_pred)) # the same
adjusted_fm_score(y_true, y_pred)
fm_score(y_true, y_pred)
mi_score(y_true, y_pred)
normalized_mi_score(y_true, y_pred)
adjusted_mi_score(y_true, y_pred)
normalized_confusion_matrix(y_true, y_pred)
normalizing_permutation(y_true, y_pred)

gclust Hierarchical Clustering Algorithm Genie

Description

A reimplementation of Genie - a robust and outlier resistant clustering algorithm by Gagolewski,
Bartoszuk, and Cena (2016). The Genie algorithm is based on the minimum spanning tree (MST)
of the pairwise distance graph of a given point set. Just like the single linkage, it consumes the
edges of the MST in an increasing order of weights. However, it prevents the formation of clusters
of highly imbalanced sizes; once the Gini index (see gini_index()) of the cluster size distribution
raises above gini_threshold, the merging of a point group of the smallest size is enforced.

The clustering can also be computed with respect to the mutual reachability distances (based,
e.g., on the Euclidean metric), which is used in the definition of the HDBSCAN* algorithm (see
Campello et al., 2013). If M > 1, then the mutual reachability distance m(i, j) with a smoothing
factor M is used instead of the chosen "raw" distance d(i, j). It holds m(i, j) = max(d(i, j), c(i), c(j)),
where the core distance c(i) is the distance to the i-th point’s (M − 1)-th nearest neighbour. This
makes "noise" and "boundary" points being more "pulled away" from each other.

https://doi.org/10.1037/1082-989X.9.3.386
https://genieclust.gagolewski.com/
https://doi.org/10.1016/j.softx.2021.100722
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The Genie correction together with the smoothing factor M > 1 (note that M = 2 corresponds
to the original distance) gives a version of the HDBSCAN* algorithm that is able to detect a pre-
defined number of clusters. Hence it does not dependent on the DBSCAN’s eps parameter or the
HDBSCAN’s min_cluster_size one.

Usage

gclust(d, ...)

## Default S3 method:
gclust(
d,
gini_threshold = 0.3,
distance = c("euclidean", "l2", "manhattan", "cityblock", "l1", "cosine"),
verbose = FALSE,
...

)

## S3 method for class 'dist'
gclust(d, gini_threshold = 0.3, verbose = FALSE, ...)

## S3 method for class 'mst'
gclust(d, gini_threshold = 0.3, verbose = FALSE, ...)

genie(d, ...)

## Default S3 method:
genie(
d,
k,
gini_threshold = 0.3,
distance = c("euclidean", "l2", "manhattan", "cityblock", "l1", "cosine"),
M = 1L,
postprocess = c("boundary", "none", "all"),
detect_noise = M > 1L,
verbose = FALSE,
...

)

## S3 method for class 'dist'
genie(
d,
k,
gini_threshold = 0.3,
M = 1L,
postprocess = c("boundary", "none", "all"),
detect_noise = M > 1L,
verbose = FALSE,
...
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)

## S3 method for class 'mst'
genie(
d,
k,
gini_threshold = 0.3,
postprocess = c("boundary", "none", "all"),
detect_noise = FALSE,
verbose = FALSE,
...

)

Arguments

d a numeric matrix (or an object coercible to one, e.g., a data frame with numeric-
like columns) or an object of class dist (see dist), or an object of class mst
(mst)

... further arguments passed to mst()

gini_threshold threshold for the Genie correction, i.e., the Gini index of the cluster size dis-
tribution; threshold of 1.0 leads to the single linkage algorithm; low thresholds
highly penalise the formation of small clusters

distance metric used to compute the linkage, one of: "euclidean" (synonym: "l2"),
"manhattan" (a.k.a. "l1" and "cityblock"), "cosine"

verbose logical; whether to print diagnostic messages and progress information

k the desired number of clusters to detect, k = 1 with M > 1 acts as a noise point
detector

M smoothing factor; M ≤ 2 gives the selected distance; otherwise, the mutual
reachability distance is used

postprocess one of "boundary" (default), "none" or "all"; in effect only if M > 1. By
default, only "boundary" points are merged with their nearest "core" points (A
point is a boundary point if it is a noise point and it is amongst its adjacent
vertex’s (M − 1)-th nearest neighbours). To force a classical k-partition of a
data set (with no notion of noise), choose "all"

detect_noise whether the minimum spanning tree’s leaves should be marked as noise points,
defaults to TRUE if M > 1 for compatibility with HDBSCAN*

Details

As in the case of all the distance-based methods, the standardisation of the input features is defi-
nitely worth giving a try. Oftentimes, more sophisticated feature engineering (e.g., dimensionality
reduction) will lead to more meaningful results.

If d is a numeric matrix or an object of class dist, mst() will be called to compute an MST,
which generally takes at most O(n2) time. However, by default, a faster algorithm based on K-
d trees is selected automatically for low-dimensional Euclidean spaces; see mst_euclid from the
quitefastmst package.
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Once a minimum spanning tree is determined, the Genie algorithm runs in O(n
√
n) time. If you

want to test different gini_thresholds or ks, it is best to compute the MST first explicitly.

According to the algorithm’s original definition, the resulting partition tree (dendrogram) might
violate the ultrametricity property (merges might occur at levels that are not increasing w.r.t. a
between-cluster distance). gclust() automatically corrects departures from ultrametricity by ap-
plying height = rev(cummin(rev(height))).

Value

gclust() computes the entire clustering hierarchy; it returns a list of class hclust; see hclust.
Use cutree to obtain an arbitrary k-partition.

genie() returns a k-partition - a vector whose i-th element denotes the i-th input point’s cluster
label between 1 and k If detect_noise is TRUE, missing values (NA) denote noise points.

Author(s)

Marek Gagolewski and other contributors

References

Gagolewski, M., Bartoszuk, M., Cena, A., Genie: A new, fast, and outlier-resistant hierarchical
clustering algorithm, Information Sciences 363, 2016, 8-23, doi:10.1016/j.ins.2016.05.003

Campello, R.J.G.B., Moulavi, D., Sander, J., Density-based clustering based on hierarchical density
estimates, Lecture Notes in Computer Science 7819, 2013, 160-172, doi:10.1007/978364237456-
2_14

Gagolewski, M., Cena, A., Bartoszuk, M., Brzozowski, L., Clustering with minimum spanning
trees: How good can it be?, Journal of Classification 42, 2025, 90-112, doi:10.1007/s00357024-
094831

See Also

The official online manual of genieclust at https://genieclust.gagolewski.com/

Gagolewski, M., genieclust: Fast and robust hierarchical clustering, SoftwareX 15:100722, 2021,
doi:10.1016/j.softx.2021.100722

mst() for the minimum spanning tree routines

normalized_clustering_accuracy() (amongst others) for external cluster validity measures

Examples

library("datasets")
data("iris")
X <- jitter(as.matrix(iris[2:3]))
h <- gclust(X)
y_pred <- cutree(h, 3)
y_test <- as.integer(iris[,5])
plot(X, col=y_pred, pch=y_test, asp=1, las=1)
adjusted_rand_score(y_test, y_pred)
normalized_clustering_accuracy(y_test, y_pred)

https://www.gagolewski.com/
https://doi.org/10.1016/j.ins.2016.05.003
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/s00357-024-09483-1
https://doi.org/10.1007/s00357-024-09483-1
https://genieclust.gagolewski.com/
https://doi.org/10.1016/j.softx.2021.100722
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y_pred2 <- genie(X, 3, M=5) # clustering wrt 5-mutual reachability distance
plot(X[,1], X[,2], col=y_pred2, pch=y_test, asp=1, las=1)
noise <- is.na(y_pred2) # noise/boundary points
points(X[noise, ], col="gray", pch=10)
normalized_clustering_accuracy(y_test[!noise], y_pred2[!noise])

inequality Inequality Measures

Description

gini_index() gives the normalised Gini index, bonferroni_index() implements the Bonferroni
index, and devergottini_index() implements the De Vergottini index.

Usage

gini_index(x)

bonferroni_index(x)

devergottini_index(x)

Arguments

x numeric vector of non-negative values

Details

These indices can be used to quantify the "inequality" of a sample. They can be conceived as
normalised measures of data dispersion. For constant vectors (perfect equity), the indices yield
values of 0. Vectors with all elements but one equal to 0 (perfect inequality), are assigned scores of
1. They follow the Pigou-Dalton principle (are Schur-convex): setting xi = xi−h and xj = xj+h
with h > 0 and xi − h ≥ xj + h (taking from the "rich" and giving to the "poor") decreases the
inequality.

These indices have applications in economics, amongst others. The Genie clustering algorithm uses
the Gini index as a measure of the inequality of cluster sizes.

The normalised Gini index is given by:

G(x1, . . . , xn) =

∑n
i=1(n− 2i+ 1)xσ(n−i+1)

(n− 1)
∑n

i=1 xi
.

The normalised Bonferroni index is given by:

B(x1, . . . , xn) =

∑n
i=1(n−

∑i
j=1

n
n−j+1 )xσ(n−i+1)

(n− 1)
∑n

i=1 xi
.
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The normalised De Vergottini index is given by:

V (x1, . . . , xn) =
1∑n
i=2

1
i

∑n
i=1

(∑n
j=i

1
j

)
xσ(n−i+1)∑n

i=1 xi
− 1

 .

Here, σ is an ordering permutation of (x1, . . . , xn).

Value

The value of the inequality index, a number in [0, 1].

Author(s)

Marek Gagolewski and other contributors

References

Bonferroni, C., Elementi di Statistica Generale, Libreria Seber, Firenze, 1930.

Gini, C., Variabilita e Mutabilita, Tipografia di Paolo Cuppini, Bologna, 1912.

See Also

The official online manual of genieclust at https://genieclust.gagolewski.com/

Gagolewski, M., genieclust: Fast and robust hierarchical clustering, SoftwareX 15:100722, 2021,
doi:10.1016/j.softx.2021.100722

Examples

gini_index(c(2, 2, 2, 2, 2)) # no inequality
gini_index(c(0, 0, 10, 0, 0)) # one has it all
gini_index(c(7, 0, 3, 0, 0)) # give to the poor, take away from the rich
gini_index(c(6, 0, 3, 1, 0)) # (a.k.a. the Pigou-Dalton principle)
bonferroni_index(c(2, 2, 2, 2, 2))
bonferroni_index(c(0, 0, 10, 0, 0))
bonferroni_index(c(7, 0, 3, 0, 0))
bonferroni_index(c(6, 0, 3, 1, 0))
devergottini_index(c(2, 2, 2, 2, 2))
devergottini_index(c(0, 0, 10, 0, 0))
devergottini_index(c(7, 0, 3, 0, 0))
devergottini_index(c(6, 0, 3, 1, 0))

https://www.gagolewski.com/
https://genieclust.gagolewski.com/
https://doi.org/10.1016/j.softx.2021.100722
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mst Minimum Spanning Tree of the Pairwise Distance Graph

Description

Determine a(*) minimum spanning tree (MST) of the complete undirected graph representing a set
of n points whose weights correspond to the pairwise distances between the points.

Usage

mst(d, ...)

## Default S3 method:
mst(
d,
distance = c("euclidean", "l2", "manhattan", "cityblock", "l1", "cosine"),
M = 1L,
verbose = FALSE,
...

)

## S3 method for class 'dist'
mst(d, M = 1L, verbose = FALSE, ...)

Arguments

d either a numeric matrix (or an object coercible to one, e.g., a data frame with
numeric-like columns) or an object of class dist; see dist

... further arguments passed to or from other methods, in particular, to mst_euclid
from the quitefastmst package

distance metric used in the case where d is a matrix; one of: "euclidean" (synonym:
"l2"), "manhattan" (a.k.a. "l1" and "cityblock"), "cosine"

M smoothing factor; M = 1 selects the requested distance; otherwise, the corre-
sponding degree-M mutual reachability distance is used; M should be rather small,
say, ≤ 20

verbose logical; whether to print diagnostic messages and progress information

Details

(*) Note that if the distances are non unique, there might be multiple minimum trees spanning a
given graph.

If d is a matrix and the use of Euclidean distance is requested (the default), then mst_euclid is
called to determine the MST. It is quite fast in spaces of low intrinsic dimensionality, even for 10M
points.

Otherwise, a much slower implementation of the Jarník (Prim/Dijkstra)-like method, which requires
O(n2) time, is used. The algorithm is parallelised; the number of threads is determined by the
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OMP_NUM_THREADS environment variable. As a rule of thumb, datasets up to 100k points should be
processed relatively quickly.

If M > 1, then the mutual reachability distance m(i, j) with the smoothing factor M (see Campello
et al. 2013) is used instead of the chosen "raw" distance d(i, j). It holds m(i, j) = max{d(i, j), c(i), c(j)},
where c(i) is the core distance, i.e., the distance between the i-th point and its (M-1)-th nearest neigh-
bour. This makes "noise" and "boundary" points being "pulled away" from each other. The Genie
clustering algorithm (see gclust) with respect to the mutual reachability distance can mark some
observations as noise points.

Value

Returns a numeric matrix of class mst with n−1 rows and three columns: from, to, and dist sorted
nondecreasingly. Its i-th row specifies the i-th edge of the MST which is incident to the vertices
from[i] and to[i] with from[i] < to[i] (in 1,...,n) and dist[i] gives the corresponding weight,
i.e., the distance between the point pair.

The Size attribute specifies the number of points, n. The Labels attribute gives the labels of the
input points, if available. The method attribute provides the name of the distance function used.

If M > 1, the nn.index attribute gives the indices of the M-1 nearest neighbours of each point and
nn.dist provides the corresponding distances, both in the form of an n by M − 1 matrix.

Author(s)

Marek Gagolewski and other contributors
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See Also

The official online manual of genieclust at https://genieclust.gagolewski.com/
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mst_euclid

Examples

library("datasets")
data("iris")
X <- jitter(as.matrix(iris[1:2])) # some data
T <- mst(X)
plot(X, asp=1, las=1)
segments(X[T[, 1], 1], X[T[, 1], 2],

X[T[, 2], 1], X[T[, 2], 2])



Index

adjusted_fm_score (compare_partitions),
4

adjusted_mi_score (compare_partitions),
4

adjusted_rand_score
(compare_partitions), 4

bonferroni_index (inequality), 11

calinski_harabasz_index
(cluster_validity), 2

cluster_validity, 2
compare_partitions, 4
cutree, 10

devergottini_index (inequality), 11
dist, 9, 13
dunnowa_index (cluster_validity), 2

fm_score (compare_partitions), 4

gclust, 7, 14
generalised_dunn_index

(cluster_validity), 2
genie (gclust), 7
gini_index, 7
gini_index (inequality), 11

hclust, 10

inequality, 11

mi_score (compare_partitions), 4
mst, 9, 10, 13
mst_euclid, 9, 13, 15

negated_ball_hall_index
(cluster_validity), 2

negated_davies_bouldin_index
(cluster_validity), 2

negated_wcss_index (cluster_validity), 2

normalized_clustering_accuracy, 10
normalized_clustering_accuracy

(compare_partitions), 4
normalized_confusion_matrix, 5
normalized_confusion_matrix

(compare_partitions), 4
normalized_mi_score

(compare_partitions), 4
normalized_pivoted_accuracy

(compare_partitions), 4
normalizing_permutation

(compare_partitions), 4

pair_sets_index (compare_partitions), 4

rand_score (compare_partitions), 4

silhouette_index (cluster_validity), 2
silhouette_w_index (cluster_validity), 2

table, 5, 6

wcnn_index (cluster_validity), 2

16


	cluster_validity
	compare_partitions
	gclust
	inequality
	mst
	Index

