Description: | Demos for smoothing and gamlss.family distributions. |
Title: | Demos for GAMLSS |
LazyLoad: | yes |
Version: | 4.3-3 |
Date: | 2015-07-16 |
Depends: | R (≥ 2.4.0), rpanel (≥ 1.1-1), gamlss.dist, gamlss.tr, tcltk, graphics, stats, grDevices |
Suggests: | MASS |
Author: | Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk>, Paul Eilers <p.eilers@erasmusmc.nl>, Brian Marx \email{bmarx@LSU.EDU}, Konstantinos Pateras <kostas.pateras@gmail.com> with contributions from Larisa Kosidou. |
Maintainer: | Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> |
License: | GPL-2 | GPL-3 |
URL: | http://www.gamlss.org/ |
NeedsCompilation: | no |
Packaged: | 2015-07-16 16:32:59 UTC; stasinom |
Repository: | CRAN |
Date/Publication: | 2015-07-17 00:23:27 |
Functions to fit local regression
Description
There are four function here to illustrate the fitting of local regressions.
i) Locmean
, which uses local means within a symmetric local window,
ii) Locpoly
, which uses a local polynomial fit within a symmetric local window.
iii) WLocmean
, which uses a Gaussian kernel and
iv) WLocpoly
, which uses local polynomials weighted by a Gaussian kernel
Usage
Locmean(y, x = seq(1, length(y)), w = rep(1, length(y)), span = 0.5)
Locpoly(y, x = seq(1, length(y)), w = rep(1, length(y)), span = 0.5, order = 1)
WLocmean(y, x = seq(1, length(y)), w = rep(1, length(y)), lambda = 0.5)
WLocpoly(y, x = seq(1, length(y)), w = rep(1, length(y)), lambda = 0.5, order = 1)
Arguments
y |
the response variable |
x |
the x-variable |
w |
prior weights |
span |
the side of the local window compare as a proportion to the total number of observations |
lambda |
the smoothing parameter for the Gaussian kernel |
order |
the order of the polynomial |
Details
Those functions can be used for illustration of the basic concepts of smoothing using small data sets. Do not use them with large data because are computationally inefficient.
Value
The functions return a locW
object with values
fitted.values |
the fitted valus |
residuals |
the residuals |
edf |
the effective degrees of freedom |
rss |
the residual sum of squares |
lambda |
the smoothing parameter |
y |
the y variable |
x |
the x variable |
w |
the prior weights |
Author(s)
Mikis Stasinopoulos, d.stasinopoulos@londonmet.ac.uk
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/)
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
Examples
library(MASS)
data(mcycle)
# local means
m0<-Locmean(mcycle$accel, mcycle$times, span=.1)
m1<-Locmean(mcycle$accel, mcycle$times, span=.2)
m2<-Locmean(mcycle$accel, mcycle$times, span=.3)
span <- c("span=0.1", "span=0.2", "span=0.3")
plot(accel~times, data=mcycle,main="local mean")
lines(fitted(m0)~mcycle$times, col=1, lty=1)
lines(fitted(m1)~mcycle$times, col=2, lty=2)
lines(fitted(m2)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = span, col = 1:3,
lty = 1:3, cex = .8, y.intersp = 1)
# kernel estimation
k0<-WLocmean(mcycle$accel, mcycle$times, lambda=1)
k1<-WLocmean(mcycle$accel, mcycle$times, lambda=2)
k2<-WLocmean(mcycle$accel, mcycle$times, lambda=3)
lambda <- c("lambda=1", "lambda=2", "lambda=3")
plot(accel~times, data=mcycle,main="Gaussian kernel fit")
lines(fitted(k0)~mcycle$times, col=1, lty=1)
lines(fitted(k1)~mcycle$times, col=2, lty=2)
lines(fitted(k2)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = lambda, col = 1:3,
lty = 1:3, cex = .8, y.intersp = 1)
# local polymials
l1<-Locpoly(mcycle$accel, mcycle$times, span=.1)
l2<-Locpoly(mcycle$accel, mcycle$times, span=.2)
l3<-Locpoly(mcycle$accel, mcycle$times, span=.3)
span <- c("span=0.1", "span=0.2", "span=0.3")
plot(accel~times, data=mcycle,main="local linear fit")
lines(fitted(l1)~mcycle$times, col=1, lty=1)
lines(fitted(l2)~mcycle$times, col=2, lty=2)
lines(fitted(l2)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = span, col = 1:3,
lty = 1:3, cex = .8, y.intersp = 1)
# weighted local polynomials
lw1<-WLocpoly(mcycle$accel, mcycle$times, lambda=1.5, order=1)
lw2<-WLocpoly(mcycle$accel, mcycle$times, lambda=1.5, order=2)
lw3<-WLocpoly(mcycle$accel, mcycle$times, lambda=1.5, order=3)
span <- c("linear", "quadratic", "cubic")
plot(accel~times, data=mcycle,main="Weighted local linear, quadratic and cubic fits")
lines(fitted(lw1)~mcycle$times, col=1, lty=1)
lines(fitted(lw2)~mcycle$times, col=2, lty=2)
lines(fitted(lw3)~mcycle$times, col=3, lty=3)
legend(1.5,50, legend = span, col = 1:3,
lty = 1:3, cex = .8, y.intersp = 1)
Demos for smoothing techniques
Description
These are demos for teaching smoothing techniques to students
Usage
demo.BSplines()
demo.RandomWalk(y = NULL, ...)
demo.histSmo(y = NULL, ...)
demo.interpolateSmo(y = NULL, w = NULL, ...)
demo.PSplines(y = NULL, x = NULL, ...)
Arguments
y |
for y variable if needed otherwise it is generated |
w |
for weights if needed |
x |
for explanatory variable if needed |
... |
for adding parameters in the plot |
Value
An rpanel plot
Author(s)
Paul Eirers p.eilers@erasmusmc.nl, Brian Marx bmarx@LSU.EDU, and Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk
References
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statist. Sci, 11, 89-121.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Examples
demo.PSplines()
Local Regression Smoothing
Description
This function demonstrate some characteristics of local regression Smoothing
Usage
demo.LocalRegression(y = NULL, x = NULL, span = 0.5,
position = trunc((n - 1)/2),
deg = 1)
LPOL(y, x, span = 0.5, position = trunc((n - 1)/2),
w = rep(1, length(y)), deg = 1)
WLPOL(y, x, sd = 0.5, position = trunc((n - 1)/2),
w = rep(1, length(y)), deg = 1)
Arguments
y |
The response variable |
x |
the explanatory variable |
span |
The smoothing parameters |
sd |
The standard deviation of a normal kernel used as smoothing parameter |
position |
The position of the target values in the x axis |
w |
weights |
deg |
The degree of the local polynomial |
Details
The function demo.LocalRegression
demonstrates some aspects of the Local (unweighed) polynomial regression. The functions LPOL()
and WLPOL()
produce plots related to unweighed and weighted local polynomial regression respectively.
Value
All function produce plots.
Author(s)
Mikis Stasinopoulos
References
R Development Core Team (2010) tcltk package, CRAN.
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
See also demoDist
, gamlss.demo
Examples
demo.LocalRegression()
n <- 100
x <- seq(0, 1, length = n)*1.4
y <- 1.2 + .3*sin(5 * x) + rnorm(n) * 0.2
op <- par(mfrow=c(2,2))
LPOL(y,x, deg=0, position=5)
title("(a) moving average")
LPOL(y,x, deg=1, position=75)
title("(b) linear poly")
WLPOL(y,x, deg=2, position=30)
title("(c) quadratic poly")
WLPOL(y,x, deg=3, position= 50)
title("(b) cubic poly")
par(op)
Demos for local polynomial smoothing
Description
Those are four demos to show weighed and unweighed local mean and polynomial smoothing.
Usage
demo.Locmean(y = NULL, x = NULL, ...)
demo.Locpoly(y = NULL, x = NULL, ...)
demo.WLocpoly(y = NULL, x = NULL, ...)
demo.WLocmean(y = NULL, x = NULL, ...)
Arguments
y |
the response variable. If null it generates its own data |
x |
explanatory variable |
... |
for extra argument in the plot |
Value
It produces an rpanel plot
Author(s)
Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk
References
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with comments and rejoinder). Statist. Sci, 11, 89-121.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
Examples
demo.Locmean()
Demos for different gamlss.family distributions
Description
The demo functions for showning the gamlss.family
distributions. The functions use the package Rpanel
.
Usage
demo.NO()
demo.LO()
demo.NO.LO()
demo.GU()
demo.RG()
demo.exGAUS()
demo.PE()
demo.PE.NO()
demo.TF()
demo.TF.NO()
demo.EGB2()
demo.GT()
demo.JSU()
demo.JSUo()
demo.NET()
demo.SHASH()
demo.SEP1()
demo.SEP2()
demo.SEP3()
demo.SEP4()
demo.ST1()
demo.ST2()
demo.ST3()
demo.ST4()
demo.ST5()
demo.EXP()
demo.GA()
demo.LOGNO()
demo.NO.LOGNO()
demo.IG()
demo.WEI()
demo.WEI2()
demo.WEI3()
demo.BCCG()
demo.GG()
demo.GIG()
demo.ZAGA()
demo.ZAIG()
demo.BCT()
demo.BCPE()
demo.GB2()
demo.EGB2()
demo.BE()
demo.BEo()
demo.GB1()
demo.GT()
demo.BB()
demo.BEINF()
demo.BEINF0()
demo.BEINF1()
demo.BI()
demo.DEL()
demo.LG()
demo.NBI()
demo.NBII()
demo.PO()
demo.SICHEL()
demo.ZABI()
demo.ZAGA()
demo.ZALG()
demo.ZAP()
demo.ZIBI()
demo.ZIP()
demo.ZIP2()
demo.BCCG()
demo.GG()
demo.PIG()
demo.ZABB()
demo.ZIBB()
demo.ZANBI()
demo.ZINBI()
demo.ZIPIG()
demo.NOtr()
demo.GAtr()
demo.YULE()
demo.WARING()
demo.GEOM()
demo.IGAMMA()
demo.PARETO2()
demo.PARETO2o()
demo.SHASHo()
demo.SHASHo2()
demo.LOGITNO()
demo.LOGNO2()
demo.SN1()
demo.SN2()
demo.SST()
demo.TF2()
demo.DPO()
Value
An rpanel plot
Author(s)
Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Bob Rigby r.rigby@londonmet.ac.uk with contribution from Larisa Kosidou.
References
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Examples
demo.NO()
Interface for demonstrating the gamlss.family distributions
Description
The function demoDist
is an tcltk
interface for plotting all the available
gamlss.family
distributions.
Usage
demoDist()
Value
It creates a tcltk
menu
Author(s)
Konstantinos Pateras kostas.pateras@gmail.com
References
R Development Core Team (2010) tcltk package, CRAN.
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Examples
## do not run
demoDist()
Demo for local polynomial fits
Description
It starts the gamlss local plynomial demos demos. It is an tcltk
interface for using the local polynolial demos.
Usage
demoLpolyS()
Value
It creates a tcltk
menu
Author(s)
Konstantinos Pateras kostas.pateras@gmail.com
References
R Development Core Team (2010) tcltk package, CRAN.
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
See also demoDist
, gamlss.demo
,
Examples
demoLpolyS()
Interface for demonstrating the P-splines and other smoothers
Description
The function demoPsplines
is an tcltk
interface for P. Eilers and B. Marx demos for P-splines.
Usage
demoPsplines()
Value
Create an tcltk
menu
Author(s)
Konstantinos Pateras kostas.pateras@gmail.com
References
R Development Core Team (2010) tcltk package, CRAN.
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
See also demoDist
, ~~~
Examples
demoPsplines()
The demo for gamlss distributions and smoothing
Description
It starts the gamlss demos. It is an tcltk
interface for using the gamlss demos.
Usage
gamlss.demo()
Value
It creates a tcltk
menu
Author(s)
Konstantinos Pateras kostas.pateras@gmail.com
References
R Development Core Team (2010) tcltk package, CRAN.
Bowman, Bowman, Gibson and Crawford (2008) rpanel, CRAN
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
See also demoDist
, gamlss.demo
,
Examples
gamlss.demo()