Type: | Package |
Title: | 'Fitbit' Visualizations |
Version: | 1.0.7 |
Date: | 2025-06-21 |
Maintainer: | Lampros Mouselimis <mouselimislampros@gmail.com> |
URL: | https://github.com/mlampros/fitbitViz |
Description: | Connection to the 'Fitbit' Web API https://dev.fitbit.com/build/reference/web-api/ by including 'ggplot2' Visualizations, 'Leaflet' and 3-dimensional 'Rayshader' Maps. The 3-dimensional 'Rayshader' Map requires the installation of the 'CopernicusDEM' R package which includes the 30- and 90-meter elevation data. |
License: | GPL-3 |
Encoding: | UTF-8 |
SystemRequirements: | update: apt-get -y update (deb) |
Depends: | R(≥ 3.5) |
Imports: | glue, httr, jsonlite, ggplot2, lubridate, patchwork, data.table, stats, viridis, scales, ggthemes, varian, paletteer, XML, hms, leaflet, sf, rstudioapi, grDevices, leafgl, raster (≥ 3.6-3), terra, magrittr, rayshader, utils, base64enc, lifecycle, reshape2 |
Suggests: | CopernicusDEM, testthat (≥ 3.0.0), knitr, rmarkdown, DT, rgl, magick |
RoxygenNote: | 7.3.2 |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2025-06-21 14:30:48 UTC; lampros |
Author: | Lampros Mouselimis
|
Repository: | CRAN |
Date/Publication: | 2025-06-21 15:20:02 UTC |
The GPS-TCX data as a formated data.table
Description
The GPS-TCX data as a formated data.table
Usage
GPS_TCX_data(
log_id,
user_id,
token,
time_zone = "Europe/Athens",
verbose = FALSE
)
Arguments
log_id |
the returned log-id of the 'extract_LOG_ID()' function |
user_id |
a character string specifying the encoded ID of the user. For instance '99xxxx' of the following URL 'https://www.fitbit.com/user/99xxxx' of the user's account corresponds to the 'user_id' |
token |
a character string specifying the secret token that a user receives when registers a new application in https://dev.fitbit.com/apps |
time_zone |
a character string specifying the time zone parameter ('tz') as is defined in the 'lubridate::ymd_hms()' function |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Value
either NULL or an object of class data.table
Examples
## Not run:
require(fitbitViz)
#............................
# first extract the log-id(s)
#............................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
str(log_id)
#...................................
# then return the gps-ctx data.table
#...................................
res_tcx = GPS_TCX_data(log_id = log_id,
user_id = USER_ID,
token = token,
time_zone = 'Europe/Athens',
verbose = TRUE)
str(res_tcx)
## End(Not run)
base function to return the data for the specified activity based on the url
Description
base function to return the data for the specified activity based on the url
Usage
base_url_request(
url,
oauth_token,
show_nchar_case_error = 135,
simplifyVector = TRUE
)
Arguments
url |
a character string specifying the input url |
oauth_token |
a character string specifying the authentication token |
show_nchar_case_error |
an integer value specifying the number of characters to show in case of an error |
simplifyVector |
a boolean. Coerce JSON arrays containing only primitives into an atomic vector (see the documentation of the jsonlite::fromJSON() function) |
Value
an object of class list
elapsed time in hours & minutes & seconds
Description
elapsed time in hours & minutes & seconds
Usage
compute_elapsed_time(time_start)
Arguments
time_start |
a numeric value specifying the start time |
Value
It does not return a value but only prints the time in form of a character string in the R session
Function to crop the AOI from the downloaded DEM .tif file
Description
Function to crop the AOI from the downloaded DEM .tif file
Usage
crop_DEM(tif_or_vrt_dem_file, sf_buffer_obj, verbose = FALSE)
Arguments
tif_or_vrt_dem_file |
a valid path to the elevation .tif or .vrt file |
sf_buffer_obj |
a simple features ('sf') object that will be used to crop the input elevation raster file ('tif_or_vrt_dem_file' parameter) |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Value
an object of class SpatRaster
Examples
## Not run:
require(fitbitViz)
#............................
# first extract the log-id(s)
#............................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
str(log_id)
#...................................
# then return the gps-ctx data.table
#...................................
res_tcx = GPS_TCX_data(log_id = log_id,
user_id = USER_ID,
token = token,
time_zone = 'Europe/Athens',
verbose = TRUE)
str(res_tcx)
#....................................................
# then compute the sf-object buffer and raster-extend
#....................................................
sf_rst_ext = extend_AOI_buffer(dat_gps_tcx = res_tcx,
buffer_in_meters = 1000,
CRS = 4326,
verbose = TRUE)
sf_rst_ext
#...............................................................
# Download the Copernicus DEM 30m elevation data because it has
# a better resolution, it takes a bit longer to download because
# the .tif file size is bigger
#...............................................................
dem_dir = tempdir()
# dem_dir
dem30 = CopernicusDEM::aoi_geom_save_tif_matches(sf_or_file = sf_rst_ext$sfc_obj,
dir_save_tifs = dem_dir,
resolution = 30,
crs_value = 4326,
threads = parallel::detectCores(),
verbose = TRUE)
TIF = list.files(dem_dir, pattern = '.tif', full.names = T)
# TIF
if (length(TIF) > 1) {
#....................................................
# create a .VRT file if I have more than 1 .tif files
#....................................................
file_out = file.path(dem_dir, 'VRT_mosaic_FILE.vrt')
vrt_dem30 = create_VRT_from_dir(dir_tifs = dem_dir,
output_path_VRT = file_out,
verbose = TRUE)
}
if (length(TIF) == 1) {
#..................................................
# if I have a single .tif file keep the first index
#..................................................
file_out = TIF[1]
}
raysh_rst = crop_DEM(tif_or_vrt_dem_file = file_out,
sf_buffer_obj = sf_rst_ext$sfc_obj,
verbose = TRUE)
terra::plot(raysh_rst)
## End(Not run)
Extract the sf-object and raster extent based on a buffer (in meters)
Description
Extract the sf-object and raster extent based on a buffer (in meters)
Usage
extend_AOI_buffer(
dat_gps_tcx,
buffer_in_meters = 1000,
CRS = 4326,
verbose = FALSE
)
Arguments
dat_gps_tcx |
this parameter corresponds to the output data.table of the 'GPS_TCX_data()' function |
buffer_in_meters |
an integer value specifying the buffer in meters. The bounding box of the input coordinates (longitudes, latitudes) will be extended by that many meters. The default value is 1000 meters. |
CRS |
an integer specifying the Coordinates Reference System. The recommended value for this data is 4326 (which is also the default value) |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Details
To create the buffer in meters using the 'sf' package I had to transform to another projection - by default I've used 7801 - as suggested in the following stackoverflow thread, https://stackoverflow.com/a/54754935/8302386
Value
an object of class list
Examples
## Not run:
require(fitbitViz)
#............................
# first extract the log-id(s)
#............................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
str(log_id)
#...................................
# then return the gps-ctx data.table
#...................................
res_tcx = GPS_TCX_data(log_id = log_id,
user_id = USER_ID,
token = token,
time_zone = 'Europe/Athens',
verbose = TRUE)
str(res_tcx)
#....................................................
# then compute the sf-object buffer and raster-extend
#....................................................
sf_rst_ext = extend_AOI_buffer(dat_gps_tcx = res_tcx,
buffer_in_meters = 1000,
CRS = 4326,
verbose = TRUE)
sf_rst_ext
## End(Not run)
Extract the log-id (it's possible that I receive more than one id)
Description
Extract the log-id (it's possible that I receive more than one id)
Usage
extract_LOG_ID(
user_id,
token,
after_Date = "2021-03-13",
limit = 10,
sort = "asc",
verbose = FALSE
)
Arguments
user_id |
a character string specifying the encoded ID of the user. For instance '99xxxx' of the following URL 'https://www.fitbit.com/user/99xxxx' of the user's account corresponds to the 'user_id' |
token |
a character string specifying the secret token that a user receives when registers a new application in https://dev.fitbit.com/apps |
after_Date |
a character string specifying the Date after which the log-ids will be returned. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
limit |
an integer specifying the total of log-id's to return. The default value is 10 |
sort |
a character string specifying the order ('asc', 'desc') based on which the output log-id's should be sorted |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Value
an integer specifying the log ID
Examples
## Not run:
require(fitbitViz)
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
log_id
## End(Not run)
Fitbit data retrieval for Blood Oxygen Saturation, Heart Rate Variability, Breathing Rate, Temperature and Cardio Fitness Score (or VO2 Max) by Date
Description
Fitbit data retrieval for Blood Oxygen Saturation, Heart Rate Variability, Breathing Rate, Temperature and Cardio Fitness Score (or VO2 Max) by Date
Usage
fitbit_data_type_by_date(
user_id,
token,
date,
type = "spo2",
plot = FALSE,
show_nchar_case_error = 135
)
Arguments
user_id |
a character string specifying the encoded ID of the user. For instance '99xxxx' of the following URL 'https://www.fitbit.com/user/99xxxx' of the user's account corresponds to the 'user_id' |
token |
a character string specifying the secret token that a user receives when registers a new application in https://dev.fitbit.com/apps |
date |
a character string specifying a Date. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
type |
a character string specifying the fitbit data type. One of 'spo2', 'hrv', 'br', 'temp', 'cardioscore'. See the 'details' and 'references' sections for more information |
plot |
a boolean. If TRUE then the minutes data will be plotted. This parameter is applicable only to the 'spo2' and 'hrv' types because they return minute data (see the details section for more information). The remaining types ('br', 'temp', 'cardioscore') return daily data. |
show_nchar_case_error |
an integer that specifies the number of characters that will be returned in case on an error. The default value is 135 characters. |
Details
- 'spo2' (Blood Oxygen Saturation)
This endpoint returns the SpO2 intraday data for a single date. SpO2 applies specifically to a user's "main sleep", which is the longest single period of time asleep on a given date. Spo2 values are calculated on a 5-minute exponentially-moving average
- 'hrv' (Heart Rate Variability)
This endpoint returns the Heart Rate Variability (HRV) intraday data for a single date. HRV data applies specifically to a user's "main sleep", which is the longest single period of time asleep on a given date. It measures the HRV rate at various times and returns Root Mean Square of Successive Differences (rmssd), Low Frequency (LF), High Frequency (HF), and Coverage data for a given measurement. Rmssd measures short-term variability in your heart rate while asleep. LF and HF capture the power in interbeat interval fluctuations within either high frequency or low frequency bands. Finally, coverage refers to data completeness in terms of the number of interbeat intervals
- 'br' (Breathing Rate)
This endpoint returns intraday breathing rate data for a specified date. It measures the average breathing rate throughout the day and categories your breathing rate by sleep stage. Sleep stages vary between light sleep, deep sleep, REM sleep, and full sleep
- 'temp' (Temperature)
This endpoint returns the Temperature (Skin) data for a single date. It only returns a value for dates on which the Fitbit device was able to record Temperature (skin) data. Temperature (Skin) data applies specifically to a user's "main sleep", which is the longest single period of time asleep on a given date
- 'cardioscore' (Cardio Fitness Score or VO2 Max)
The Cardio Fitness Score (also known as VO2 Max) endpoints are used for querying the maximum or optimum rate at which the user's heart, lungs, and muscles can effectively use oxygen during exercise
If the 'type' parameter is one of 'spo2' or 'hrv' and the 'plot' parameter is set to TRUE then the results will appear as a line plot. In case of 'hrv' a multiplot with the following variables will be displayed:
- 'rmssd'
The Root Mean Square of Successive Differences (RMSSD) between heart beats. It measures short-term variability in the user's heart rate in milliseconds (ms)
- 'coverage'
Data completeness in terms of the number of interbeat intervals
- 'hf'
The power in interbeat interval fluctuations within the high frequency band (0.15 Hz - 0.4 Hz)
- 'lf'
The power in interbeat interval fluctuations within the low frequency band (0.04 Hz - 0.15 Hz)
Value
a data.frame
References
https://dev.fitbit.com/build/reference/web-api/intraday/get-spo2-intraday-by-date/
https://dev.fitbit.com/build/reference/web-api/intraday/get-hrv-intraday-by-date/
https://dev.fitbit.com/build/reference/web-api/intraday/get-br-intraday-by-date/
https://dev.fitbit.com/build/reference/web-api/temperature/get-temperature-skin-summary-by-date
https://dev.fitbit.com/build/reference/web-api/cardio-fitness-score/get-vo2max-summary-by-date/
Examples
## Not run:
require(fitbitViz)
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
res_type = fitbit_data_type_by_date(user_id = USER_ID,
token = token,
date = '2022-10-12',
type = 'spo2',
plot = TRUE,
show_nchar_case_error = 135)
res_type
## End(Not run)
plot function for a single day (heart rate)
Description
plot function for a single day (heart rate)
Usage
ggplot_each_date(date_intraday, date)
Arguments
date_intraday |
a data.table of Intraday Dates of heart rate measurements |
date |
a character string specifying a Date |
Value
a plot object of class ggplot2
Convert the GPS, TCX data to a LINESTRING
Description
Convert the GPS, TCX data to a LINESTRING
Usage
gps_lat_lon_to_LINESTRING(
dat_gps_tcx,
CRS = 4326,
verbose = FALSE,
time_split_asc_desc = NULL
)
Arguments
dat_gps_tcx |
this parameter corresponds to the output data.table of the 'GPS_TCX_data()' function |
CRS |
an integer specifying the Coordinates Reference System. The recommended value for this data is 4326 (which is also the default value) |
verbose |
a boolean. If TRUE then information will be printed out in the console |
time_split_asc_desc |
if NULL then the maximum altitude coordinates point will be used as a split point of the route, otherwise the user can give a lubridate 'hours-minutes-seconds' object such as: lubridate::hms('17:05:00') |
Details
Separate the Ascending and Descending coordinate points into 2 groups and give a different color to the Ascending and Descending routes
Value
an object of class list
Examples
## Not run:
require(fitbitViz)
#............................
# first extract the log-id(s)
#............................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
str(log_id)
#...................................
# then return the gps-ctx data.table
#...................................
res_tcx = GPS_TCX_data(log_id = log_id,
user_id = USER_ID,
token = token,
time_zone = 'Europe/Athens',
verbose = TRUE)
str(res_tcx)
#..................................................................
# By using using the maximum altitude as a split point of the route
#..................................................................
linestring_dat_init = gps_lat_lon_to_LINESTRING(dat_gps_tcx = res_tcx,
CRS = 4326,
time_split_asc_desc = NULL,
verbose = TRUE)
#.................................................................
# By using a customized split of the route (ascending, descending)
#.................................................................
linestring_dat_lubr = gps_lat_lon_to_LINESTRING(dat_gps_tcx = res_tcx,
CRS = 4326,
time_split_asc_desc = lubridate::hms('17:05:00'),
verbose = TRUE)
## End(Not run)
Heart Rate Intraday Heatmap (by extracting the 'min.', 'median' and 'max.' values of the day)
Description
Heart Rate Intraday Heatmap (by extracting the 'min.', 'median' and 'max.' values of the day)
Usage
heart_rate_heatmap(heart_rate_intraday_data, angle_x_axis = 0)
Arguments
heart_rate_intraday_data |
a list object specifying the intraday heart rate data (this is one of the sublists returned from the 'heart_rate_time_series' function) |
angle_x_axis |
an integer specifying the angle of the x-axis labels. The default values is 0 (it can take for instance values such as 45, 90 etc.) |
Value
a plot object of class ggplot2
Examples
## Not run:
require(fitbitViz)
#...........................................
# first compute the heart rate intraday data
#...........................................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
heart_dat = heart_rate_time_series(user_id = USER_ID,
token = token,
date_start = '2021-03-09',
date_end = '2021-03-16',
time_start = '00:00',
time_end = '23:59',
detail_level = '1min',
ggplot_intraday = TRUE,
verbose = TRUE,
show_nchar_case_error = 135)
#..........................................
# use the heart-rate-intraday data as input
# to the 'heart_rate_heatmap' function
#..........................................
hrt_heat = heart_rate_heatmap(heart_rate_intraday_data = heart_dat$heart_rate_intraday,
angle_x_axis = 0)
hrt_heat
## End(Not run)
heart rate activity time series
Description
heart rate activity time series
Usage
heart_rate_time_series(
user_id,
token,
date_start,
date_end,
time_start = "00:00",
time_end = "23:59",
detail_level = "1min",
ggplot_intraday = FALSE,
ggplot_ncol = NULL,
ggplot_nrow = NULL,
verbose = FALSE,
show_nchar_case_error = 135
)
Arguments
user_id |
a character string specifying the encoded ID of the user. For instance '99xxxx' of the following URL 'https://www.fitbit.com/user/99xxxx' of the user's account corresponds to the 'user_id' |
token |
a character string specifying the secret token that a user receives when registers a new application in https://dev.fitbit.com/apps |
date_start |
a character string specifying a start Date. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
date_end |
a character string specifying a end Date. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
time_start |
a character string specifying the start time. For instance, the time '00:00' where the input order is 'hours-minutes' |
time_end |
a character string specifying the end time. For instance, the time '23:59' where the input order is 'hours-minutes' |
detail_level |
a character string specifying the detail level of the heart rate time series. It can be either '1min' or '1sec', for 1-minute and 1-second intervals |
ggplot_intraday |
a boolean. If TRUE then the ggplot of the heart rate time series will be returned too |
ggplot_ncol |
either NULL or an integer specifying the number of columns of the output ggplot |
ggplot_nrow |
either NULL or an integer specifying the number of rows of the output ggplot |
verbose |
a boolean. If TRUE then information will be printed out in the console |
show_nchar_case_error |
an integer that specifies the number of characters that will be returned in case on an error. The default value is 135 characters. |
Value
an object of class list
Examples
## Not run:
require(fitbitViz)
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
heart_dat = heart_rate_time_series(user_id = USER_ID,
token = token,
date_start = '2021-03-09',
date_end = '2021-03-16',
time_start = '00:00',
time_end = '23:59',
detail_level = '1min',
ggplot_intraday = TRUE,
verbose = TRUE,
show_nchar_case_error = 135)
heart_dat$plt
heart_dat$heart_rate
heart_dat$heart_rate_intraday
## End(Not run)
Heart Rate Variability during Sleep Time (the root mean square of successive differences)
Description
'r lifecycle::badge("deprecated")'
This function was deprecated, so please use the 'fitbit_data_type_by_date()' function instead with the 'type' parameter set to 'hrv' (Heart Rate Variability). See the documentation and the example section of the 'fitbit_data_type_by_date()' function for more details.
Usage
heart_rate_variability_sleep_time(
heart_rate_data,
sleep_begin = "00H 40M 0S",
sleep_end = "08H 00M 0S",
ggplot_hr_var = TRUE,
angle_x_axis = 45
)
Arguments
heart_rate_data |
a list object. This is the output of the 'heart_rate_time_series()' function |
sleep_begin |
a character string specifying the begin of the sleep time. For instance, the time "00H 40M 0S" where the input order is 'hours-minutes-seconds' and the format corresponds to the 'lubridate::hms()' function |
sleep_end |
a character string specifying the end of the sleep time. For instance, the time "08H 00M 0S" where the input order is 'hours-minutes-seconds' and the format corresponds to the 'lubridate::hms()' function |
ggplot_hr_var |
a boolean. If TRUE then the ggplot of the heart rate variability will be returned |
angle_x_axis |
an integer specifying the angle of the x-axis labels. The default values is 45 (it can take for instance values such as 0, 90 etc.) |
Details
I use the '1min' rather than the '1sec' interval because it is consistent (it shows the 1-minute differences), whereas in case of '1sec' the difference between observations varies between 1 second and less than 60 seconds
This function calculates the root mean square of successive differences (RMSSD) and a higher heart rate variability is linked with better health
Based on the Fitbit application information weblink and the Wikipedia article (https://en.wikipedia.org/wiki/Heart_rate_variability) the heart rate variability is computed normally in ms (milliseconds)
Value
an object of class list
Examples
## Not run:
require(fitbitViz)
#...........................................
# first compute the heart rate intraday data
#...........................................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
heart_dat = heart_rate_time_series(user_id = USER_ID,
token = token,
date_start = '2021-03-09',
date_end = '2021-03-16',
time_start = '00:00',
time_end = '23:59',
detail_level = '1min',
ggplot_intraday = TRUE,
verbose = TRUE,
show_nchar_case_error = 135)
#.......................
# heart rate variability
#.......................
hrt_rt_var = heart_rate_variability_sleep_time(heart_rate_data = heart_dat,
sleep_begin = "00H 40M 0S",
sleep_end = "08H 00M 0S",
ggplot_hr_var = TRUE,
angle_x_axis = 25)
hrt_rt_var
## End(Not run)
inner function of 'compute_elapsed_time'
Description
inner function of 'compute_elapsed_time'
Usage
inner_elapsed_time(secs, estimated = FALSE)
Arguments
secs |
a numeric value specifying the seconds |
estimated |
a boolean. If TRUE then the output label becomes the 'Estimated time' |
Value
a character string showing the estimated or elapsed time
Create a Leafet map (including information pop-ups)
Description
Create a Leafet map (including information pop-ups)
Usage
leafGL_point_coords(
dat_gps_tcx,
color_points_column = "AltitudeMeters",
provider = leaflet::providers$Esri.WorldImagery,
option_viewer = rstudioapi::viewer,
CRS = 4326
)
Arguments
dat_gps_tcx |
this parameter corresponds to the output data.table of the 'GPS_TCX_data()' function |
color_points_column |
a character string specifying the column of the output data.table ('GPS_TCX_data()' function) that is used in the map-markers. The default value is 'AltitudeMeters' but it can be any column of type numeric |
provider |
either a character string specifying a leaflet provider (such as 'Esri.WorldImagery') or a direct call to the leaflet provider list (such as leaflet::providers$Esri.WorldImagery). The default value is leaflet::providers$Esri.WorldImagery |
option_viewer |
either NULL or rstudioapi::viewer. If NULL then the output map will be shown in the web browser |
CRS |
an integer specifying the Coordinates Reference System. The recommended value for this data is 4326 (which is also the default value) |
Value
a leaflet map of class 'leaflet'
Examples
## Not run:
require(fitbitViz)
#............................
# first extract the log-id(s)
#............................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
str(log_id)
#...................................
# then return the gps-ctx data.table
#...................................
res_tcx = GPS_TCX_data(log_id = log_id,
user_id = USER_ID,
token = token,
time_zone = 'Europe/Athens',
verbose = TRUE)
str(res_tcx)
#........................
# then visualize the data
#........................
res_lft = leafGL_point_coords(dat_gps_tcx = res_tcx,
color_points_column = 'AltitudeMeters',
provider = leaflet::providers$Esri.WorldImagery,
option_viewer = rstudioapi::viewer,
CRS = 4326)
res_lft
## End(Not run)
This plot function is used in the 'fitbit_data_type_by_date' internally to plot the 'spo2' and 'hrv' data types
Description
This plot function is used in the 'fitbit_data_type_by_date' internally to plot the 'spo2' and 'hrv' data types
Usage
plot_data_type(dat_type_min, type)
Rayshader 3-dimensional using the Copernicus DEM elevation data
Description
Rayshader 3-dimensional using the Copernicus DEM elevation data
Usage
rayshader_3d_DEM(
rst_buf,
rst_ext,
linestring_ASC_DESC = NULL,
elevation_sample_points = NULL,
zoom = 0.5,
windowsize = c(1600, 1000),
add_shadow_rescale_original = FALSE,
verbose = FALSE
)
Arguments
rst_buf |
this parameter corresponds to the 'sfc_obj' object of the 'extend_AOI_buffer()' function |
rst_ext |
this parameter corresponds to the 'raster_obj_extent' object of the 'extend_AOI_buffer()' function |
linestring_ASC_DESC |
If NULL then this parameter will be ignored. Otherwise, it can be an 'sf' object or a named list of length 2 (that corresponds to the output of the 'gps_lat_lon_to_LINESTRING()' function) |
elevation_sample_points |
if NULL then this parameter will be ignored. Otherwise, it corresponds to a data.table with column names 'latitude', 'longitude' and 'AltitudeMeters'. For instance, it can consist of 3 or 4 rows that will be displayed as vertical lines in the 3-dimensionsal map to visualize sample locations of the route (the latitudes and longitudes must exist in the output data.table of the 'GPS_TCX_data()' function) |
zoom |
a float number. Lower values increase the 3-dimensional DEM output. The default value is 0.5 |
windowsize |
a numeric vector specifying the window dimensions (x,y) of the output 3-dimensional map. The default vector is c(1600, 1000) |
add_shadow_rescale_original |
a boolean. If TRUE, then 'hillshade' will be scaled to match the dimensions of 'shadowmap'. See also the 'rayshader::add_shadow()' function for more information. |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Value
it doesn't return an object but it displays a 3-dimensional 'rayshader' object
References
https://www.tylermw.com/a-step-by-step-guide-to-making-3d-maps-with-satellite-imagery-in-r/
Examples
## Not run:
require(fitbitViz)
#............................
# first extract the log-id(s)
#............................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
log_id = extract_LOG_ID(user_id = USER_ID,
token = token,
after_Date = '2021-03-13',
limit = 10,
sort = 'asc',
verbose = TRUE)
str(log_id)
#...................................
# then return the gps-ctx data.table
#...................................
res_tcx = GPS_TCX_data(log_id = log_id,
user_id = USER_ID,
token = token,
time_zone = 'Europe/Athens',
verbose = TRUE)
str(res_tcx)
#....................................................
# then compute the sf-object buffer and raster-extend
#....................................................
sf_rst_ext = extend_AOI_buffer(dat_gps_tcx = res_tcx,
buffer_in_meters = 1000,
CRS = 4326,
verbose = TRUE)
sf_rst_ext
#...............................................................
# Download the Copernicus DEM 30m elevation data because it has
# a better resolution, it takes a bit longer to download because
# the .tif file size is bigger
#...............................................................
dem_dir = tempdir()
# dem_dir
dem30 = CopernicusDEM::aoi_geom_save_tif_matches(sf_or_file = sf_rst_ext$sfc_obj,
dir_save_tifs = dem_dir,
resolution = 30,
crs_value = 4326,
threads = parallel::detectCores(),
verbose = TRUE)
TIF = list.files(dem_dir, pattern = '.tif', full.names = T)
# TIF
if (length(TIF) > 1) {
#....................................................
# create a .VRT file if I have more than 1 .tif files
#....................................................
file_out = file.path(dem_dir, 'VRT_mosaic_FILE.vrt')
vrt_dem30 = create_VRT_from_dir(dir_tifs = dem_dir,
output_path_VRT = file_out,
verbose = TRUE)
}
if (length(TIF) == 1) {
#..................................................
# if I have a single .tif file keep the first index
#..................................................
file_out = TIF[1]
}
raysh_rst = crop_DEM(tif_or_vrt_dem_file = file_out,
sf_buffer_obj = sf_rst_ext$sfc_obj,
verbose = TRUE)
# terra::plot(raysh_rst)
#................................................................
# create the 'elevation_sample_points' data.table parameter based
# on the min., middle and max. altitude of the 'res_tcx' data
#................................................................
idx_3m = c(which.min(res_tcx$AltitudeMeters),
as.integer(length(res_tcx$AltitudeMeters) / 2),
which.max(res_tcx$AltitudeMeters))
cols_3m = c('latitude', 'longitude', 'AltitudeMeters')
dat_3m = res_tcx[idx_3m, ..cols_3m]
# dat_3m
#...............................................................
# Split the route in 2 parts based on the maximum altitude value
#...............................................................
linestring_dat = gps_lat_lon_to_LINESTRING(dat_gps_tcx = res_tcx,
CRS = 4326,
time_split_asc_desc = NULL,
verbose = TRUE)
#.....................................................
# Conversion of the 'SpatRaster' to a raster object
# because the 'rayshader' package accepts only rasters
#.....................................................
rst_obj = raster::raster(raysh_rst)
raster::projection(rst_obj) <- terra::crs(raysh_rst, proj = TRUE)
#.....................................
# open the 3-dimensional rayshader map
#.....................................
ray_out = rayshader_3d_DEM(rst_buf = rst_obj,
rst_ext = sf_rst_ext$raster_obj_extent,
linestring_ASC_DESC = linestring_dat,
elevation_sample_points = dat_3m,
zoom = 0.5,
windowsize = c(1600, 1000),
add_shadow_rescale_original = FALSE,
verbose = TRUE)
## End(Not run)
Refresh Token of an existing application
Description
Refresh Token of an existing application
Usage
refresh_token_app(client_id, client_secret, refresh_token)
Arguments
client_id |
a character string specifying the 'client_id' of the registered (existing) Fitbit application |
client_secret |
a character string specifying the 'client_secret' of the registered (existing) Fitbit application |
refresh_token |
a character string specifying the 'refresh_token' of the registered (existing) Fitbit application |
Details
A registered Fitbit application has a time limit of 8 hours. Therefore, the user has to refresh the token after the expiration using the 'client_id', 'client_secret' and 'refresh_token' that it's available for the registered application. Based on the Fitbit API Documentation "After the Access Token expiration time has passed your requests will receive a 401 HTTP error. When this happens, your app should use the Refresh Token to get a new pair of tokens"
Value
a named list that includes access_token, expires_in, refresh_token, scope, token_type, user_id
Examples
## Not run:
require(fitbitViz)
# client id, client secret and refresh token of
# the existing Fitbit Application
Client_ID = 'xxxxxx'
Client_SECRET = 'xxxxxxxxxxxxxxxxxx'
Refresh_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxx'
# refresh the token
res_token = refresh_token_app(client_id = Client_ID,
client_secret = Client_SECRET,
refresh_token = Refresh_TOKEN)
res_token
# use the updated token to a function
USER_ID = '99xxxx'
new_TOKEN = res_token$access_token,
res_type = fitbit_data_type_by_date(user_id = USER_ID,
token = new_TOKEN,
date = '2022-10-12',
type = 'spo2',
show_nchar_case_error = 135)
## End(Not run)
sleep data heatmap
Description
sleep data heatmap
Usage
sleep_heatmap(level_data, angle_x_axis = 0)
Arguments
level_data |
a data.table specifying the input level data |
angle_x_axis |
a float number specifying the angle of the x-axis text of the output ggplot |
Value
a plot object of class ggplot2
Sleep Data of single day
Description
Sleep Data of single day
Usage
sleep_single_day(
user_id,
token,
date = "2021-03-09",
ggplot_color_palette = "ggsci::blue_material",
show_nchar_case_error = 135,
verbose = FALSE
)
Arguments
user_id |
a character string specifying the encoded ID of the user. For instance '99xxxx' of the following URL 'https://www.fitbit.com/user/99xxxx' of the user's account corresponds to the 'user_id' |
token |
a character string specifying the secret token that a user receives when registers a new application in https://dev.fitbit.com/apps |
date |
a character string specifying the Date for which the sleep data should be returned. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
ggplot_color_palette |
a character string specifying the color palette to be used. For a full list of palettes used in the ggplot see: https://pmassicotte.github.io/paletteer_gallery/ The following color-palettes were tested and work well: "rcartocolor::Purp", "rcartocolor::Teal" |
show_nchar_case_error |
an integer that specifies the number of characters that will be returned in case on an error. The default value is 135 characters. |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Value
an object of class list
Examples
## Not run:
require(fitbitViz)
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
lst_out = sleep_single_day(user_id = USER_ID,
token = token,
date = '2021-03-09',
ggplot_color_palette = 'ggsci::blue_material',
show_nchar_case_error = 135,
verbose = TRUE)
str(lst_out)
## End(Not run)
Sleep Data Time Series
Description
Sleep Data Time Series
Usage
sleep_time_series(
user_id,
token,
date_start,
date_end,
ggplot_color_palette = "ggsci::blue_material",
ggplot_ncol = NULL,
ggplot_nrow = NULL,
show_nchar_case_error = 135,
verbose = FALSE
)
Arguments
user_id |
a character string specifying the encoded ID of the user. For instance '99xxxx' of the following URL 'https://www.fitbit.com/user/99xxxx' of the user's account corresponds to the 'user_id' |
token |
a character string specifying the secret token that a user receives when registers a new application in https://dev.fitbit.com/apps |
date_start |
a character string specifying the start Date for which the sleep data should be returned. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
date_end |
a character string specifying the end Date for which the sleep data should be returned. For instance, the date '2021-12-31' where the input order is 'year-month-day' |
ggplot_color_palette |
a character string specifying the color palette to be used. For a full list of palettes used in the ggplot see: https://pmassicotte.github.io/paletteer_gallery/ The following color-palettes were tested and work well: "rcartocolor::Purp", "rcartocolor::Teal" |
ggplot_ncol |
either NULL or an integer specifying the number of columns of the output ggplot |
ggplot_nrow |
either NULL or an integer specifying the number of rows of the output ggplot |
show_nchar_case_error |
an integer that specifies the number of characters that will be returned in case on an error. The default value is 135 characters. |
verbose |
a boolean. If TRUE then information will be printed out in the console |
Value
an object of class list
Examples
## Not run:
require(fitbitViz)
#.........................................
# first compute the sleep time time series
#.........................................
USER_ID = '99xxxx'
token = 'my_long_web_api_token'
sleep_ts = sleep_time_series(user_id = USER_ID,
token = token,
date_start = '2021-03-09',
date_end = '2021-03-16',
ggplot_color_palette = 'ggsci::blue_material',
show_nchar_case_error = 135,
verbose = TRUE)
sleep_ts$plt_lev_segments
sleep_ts$plt_lev_heatmap
sleep_ts$heatmap_data
#...........................................
# (option to) save the ggplot to a .png file
#...........................................
png_file = tempfile(fileext = '.png')
ggplot2::ggsave(filename = png_file,
plot = sleep_ts$plt_lev_segments,
device = 'png',
scale = 1,
width = 35,
height = 25,
limitsize = TRUE)
## End(Not run)
function for the weeks (including the date-from and date-to)
Description
function for the weeks (including the date-from and date-to)
Usage
split_year_in_weeks(year)
Arguments
year |
an integer value specifying the year |
Value
a sequence of Dates of class 'Date'
References
https://statistics.berkeley.edu/computing/faqs/dates-and-times-r