
Package ‘ffscrapr’
July 22, 2025

Type Package

Title API Client for Fantasy Football League Platforms

Version 1.4.8

Description Helps access various Fantasy Football APIs by handling
authentication and rate-limiting, forming appropriate calls, and
returning tidy dataframes which can be easily connected to other data
sources.

License MIT + file LICENSE

URL https://ffscrapr.ffverse.com, https://github.com/ffverse/ffscrapr,

https://api.myfantasyleague.com/2020/api_info,

https://docs.sleeper.com,

https://www.fleaflicker.com/api-docs/index.html,

https://www.espn.com/fantasy/,

https://www.nflfastr.com/reference/load_player_stats.html

BugReports https://github.com/ffverse/ffscrapr/issues

Depends R (>= 3.6.0)

Imports cachem (>= 1.0.0), checkmate (>= 2.0.0), cli, dplyr (>=
1.0.0), glue (>= 1.3.0), httr (>= 1.4.0), jsonlite (>= 1.6.0),
lifecycle, magrittr (>= 1.5.0), nflreadr (>= 1.2.0), memoise
(>= 2.0.0), purrr (>= 0.3.0), rappdirs (>= 0.3.0), ratelimitr
(>= 0.4.0), rlang (>= 0.4.0), stringr (>= 1.4.0), tibble (>=
3.0.0), tidyr (>= 1.0.0)

Suggests covr (>= 3.0.0), curl (>= 4.0.0), httptest (>= 3.0.0), knitr
(>= 1.0), rmarkdown (>= 2.6), testthat (>= 2.1.0), withr (>=
2.4.0)

LazyData true

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

1

https://ffscrapr.ffverse.com
https://github.com/ffverse/ffscrapr
https://api.myfantasyleague.com/2020/api_info
https://docs.sleeper.com
https://www.fleaflicker.com/api-docs/index.html
https://www.espn.com/fantasy/
https://www.nflfastr.com/reference/load_player_stats.html
https://github.com/ffverse/ffscrapr/issues

2 Contents

Author Tan Ho [aut, cre],
Tony ElHabr [ctb],
Joe Sydlowski [ctb]

Maintainer Tan Ho <tan@tanho.ca>

Repository CRAN

Date/Publication 2023-02-12 13:42:10 UTC

Contents
.ff_clear_cache . 3
dp_cleannames . 3
dp_clean_html . 4
dp_name_mapping . 5
dp_playerids . 5
dp_values . 6
espn_connect . 7
espn_getendpoint . 8
espn_getendpoint_raw . 9
espn_players . 9
espn_potentialpoints . 10
ffverse_sitrep . 10
ff_connect . 11
ff_draft . 11
ff_draftpicks . 13
ff_franchises . 15
ff_league . 16
ff_playerscores . 18
ff_rosters . 19
ff_schedule . 21
ff_scoring . 22
ff_scoringhistory . 24
ff_standings . 26
ff_starters . 27
ff_starter_positions . 29
ff_template . 31
ff_transactions . 32
ff_userleagues . 34
fleaflicker_connect . 35
fleaflicker_getendpoint . 36
fleaflicker_players . 36
fleaflicker_userleagues . 37
mfl_connect . 38
mfl_getendpoint . 39
mfl_players . 40
nflfastr_rosters . 40
nflfastr_stat_mapping . 41
nflfastr_weekly . 42

.ff_clear_cache 3

sleeper_connect . 43
sleeper_getendpoint . 44
sleeper_players . 44
sleeper_userleagues . 45
%>% . 45

Index 46

.ff_clear_cache Empty Function Cache

Description

This function will reset the cache for any and all ffscrapr cached functions.

Usage

.ff_clear_cache()

dp_cleannames Clean Names

Description

Applies some name-cleaning heuristics to facilitate joins. These heuristics may include:

• removing periods and apostrophes

• removing common suffixes, such as Jr, Sr, II, III, IV

• converting to lowercase

• using dp_name_mapping to do common name substitutions, such as Mitch Trubisky to Mitchell
Trubisky

Usage

dp_cleannames(
player_name,
lowercase = FALSE,
convert_lastfirst = TRUE,
use_name_database = TRUE

)

dp_clean_names(
player_name,
lowercase = FALSE,
convert_lastfirst = TRUE,
use_name_database = TRUE

)

4 dp_clean_html

Arguments

player_name a character (or character vector)

lowercase defaults to FALSE - if TRUE, converts to lowercase
convert_lastfirst

converts names from "Last, First" to "First Last" (i.e. MFL style)
use_name_database

uses internal name database to do common substitutions (Mitchell Trubisky to
Mitch Trubisky etc)

Value

a character vector of cleaned names

See Also

dp_name_mapping

Examples

dp_cleannames(c("A.J. Green", "Odell Beckham Jr.", "Le'Veon Bell Sr."))

dp_cleannames(c("Trubisky, Mitch", "Atwell, Chatarius", "Elliott, Zeke", "Elijah Moore"),
convert_lastfirst = TRUE,
use_name_database = TRUE

)

dp_clean_html Remove HTML from string

Description

Applies some regex to clean html tags from strings. This is useful for platforms such as MFL that
interpret HTML in their franchise name fields.

Usage

dp_clean_html(names)

Arguments

names a character (or character vector)

Value

a character vector of cleaned strings

dp_name_mapping 5

Examples

c(
"Kevin OBrien (@kevinobrienff) ",
" Other fun names"

) %>% dp_clean_html()

dp_name_mapping Alternate name mappings

Description

A named character vector mapping common alternate names

Usage

dp_name_mapping

Format

A named character vector

name attribute The "alternate" name.

value attribute The "correct" name.

Examples

dp_name_mapping[c("Chatarius Atwell", "Robert Kelley")]

dp_playerids Import latest DynastyProcess player IDs

Description

Fetches a copy of the latest DynastyProcess player IDs csv

Usage

dp_playerids()

Value

a tibble of player IDs

6 dp_values

See Also

https://github.com/DynastyProcess/data

Examples

try(# try only shown here because sometimes CRAN checks are weird
dp_playerids()

)

dp_values Import latest DynastyProcess values

Description

Fetches a copy of the latest DynastyProcess dynasty trade values sheets

Usage

dp_values(file = c("values.csv", "values-players.csv", "values-picks.csv"))

Arguments

file one of c("values.csv","values-players.csv","values-picks.csv")

Value

a tibble of trade values from DynastyProcess

See Also

https://github.com/DynastyProcess/data

Examples

try(# try only shown here because sometimes CRAN checks are weird
dp_values()

)

https://github.com/DynastyProcess/data
https://github.com/DynastyProcess/data

espn_connect 7

espn_connect Connect to ESPN League

Description

This function creates a connection object which stores parameters and a user ID if available.

Usage

espn_connect(
season = NULL,
league_id = NULL,
swid = NULL,
espn_s2 = NULL,
user_agent = NULL,
rate_limit = TRUE,
rate_limit_number = NULL,
rate_limit_seconds = NULL,
...

)

Arguments

season Season to access on Fleaflicker - if missing, will guess based on system date
(current year if March or later, otherwise previous year)

league_id League ID

swid SWID parameter for accessing private leagues - see vignette for details

espn_s2 ESPN_S2 parameter for accessing private leagues - see vignette for details

user_agent User agent to self-identify (optional)

rate_limit TRUE by default - turn off rate limiting with FALSE

rate_limit_number

number of calls per rate_limit_seconds, suggested is under 1000 calls per 60
seconds

rate_limit_seconds

number of seconds as denominator for rate_limit

... other arguments (for other methods, for R compat)

Value

a list that stores ESPN connection objects

8 espn_getendpoint

Examples

conn <- espn_connect(
season = 2018,
league_id = 1178049,
espn_s2 = Sys.getenv("TAN_ESPN_S2"),
swid = Sys.getenv("TAN_SWID")

)

espn_getendpoint GET ESPN fantasy league endpoint

Description

This function is used to call the ESPN Fantasy API for league-based endpoints.

Usage

espn_getendpoint(conn, ..., x_fantasy_filter = NULL)

Arguments

conn a connection object created by espn_connect or ff_connect()
... Arguments which will be passed as "argumentname = argument" in an HTTP

query parameter
x_fantasy_filter

a JSON-encoded character string that specifies a filter for the data

Details

The ESPN Fantasy API is undocumented and this should be used by advanced users familiar with
the API.

It chooses the correct league endpoint based on the year (eg leagueHistory for <2018), checks the
x_fantasy_filter for valid JSON input, builds a url with any optional query parameters, and executes
the request with authentication and rate limiting.

HTTP query parameters (i.e. arguments to ...) are Case Sensitive.

Please see the vignette for more on usage.

Value

A list object containing the query, response, and parsed content.

See Also

vignette("espn_getendpoint")

espn_getendpoint_raw

espn_getendpoint_raw 9

espn_getendpoint_raw GET ESPN endpoint (raw)

Description

This function is the lower-level function that powers the API call: it takes a URL and headers and
executes the http request with rate-limiting and authentication. It checks for JSON return and any
warnings/errors, parses the json, and returns an espn_api object with the parsed content, the raw
response, and the actual query.

Usage

espn_getendpoint_raw(conn, url_query, ...)

Arguments

conn a connection object created by ff_connect or equivalent - used for authentication

url_query a fully-formed URL to call

... any headers or other httr request objects to pass along

Value

object of class espn_api with parsed content, request, and response

See Also

espn_getendpoint() - a higher level wrapper that checks JSON and prepares the url query

vignette("espn_getendpoint")

espn_players ESPN players library

Description

A cached table of ESPN NFL players. Will store in memory for each session! (via memoise in
zzz.R)

Usage

espn_players(conn = NULL, season = NULL)

Arguments

conn a connection object created by espn_connect or ff_connect()

season a season to fetch

10 ffverse_sitrep

Value

a dataframe containing all ~2000+ active players in the ESPN database

Examples

try({ # try only shown here because sometimes CRAN checks are weird

conn <- espn_connect(season = 2020, league_id = 1178049)

espn_players(conn, season = 2020)
}) # end try

espn_potentialpoints ESPN Potential Points

Description

This function calculates the optimal starters for a given week, using some lineup heuristics.

Usage

espn_potentialpoints(conn, weeks = 1:17)

Arguments

conn the list object created by ff_connect()

weeks a numeric vector for determining which weeks to calculate

Value

a tibble with the best lineup for each team and whether they were started or not

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2021, league_id = 950665)
espn_potentialpoints(conn, weeks = 1)

}) # end try

ffverse_sitrep ffverse sitrep

Description

See nflreadr::ffverse_sitrep for details.

https://nflreadr.nflverse.com/reference/sitrep.html

ff_connect 11

ff_connect Connect to a League

Description

This function creates a connection object which stores parameters and gets a login-cookie if avail-
able - it does so by passing arguments to the appropriate league-based handler.

Usage

ff_connect(platform = "mfl", league_id = NULL, ...)

Arguments

platform one of MFL or Sleeper (Fleaflicker, ESPN, Yahoo in approximate priority order
going forward)

league_id league_id (currently assuming one league at a time)

... other parameters passed to the connect function for each specific platform.

Value

a connection object to be used with ff_* functions

See Also

mfl_connect(), sleeper_connect(), fleaflicker_connect(), espn_connect()

Examples

ff_connect(platform = "mfl", season = 2019, league_id = 54040, rate_limit = FALSE)

ff_draft Get Draft Results

Description

This function gets a tidy dataframe of draft results for the current year. Can handle MFL devy drafts
or startup drafts by specifying the custom_players argument

12 ff_draft

Usage

ff_draft(conn, ...)

S3 method for class 'espn_conn'
ff_draft(conn, ...)

S3 method for class 'flea_conn'
ff_draft(conn, ...)

S3 method for class 'mfl_conn'
ff_draft(conn, custom_players = deprecated(), ...)

S3 method for class 'sleeper_conn'
ff_draft(conn, ...)

Arguments

conn a conn object created by ff_connect()

... args for other methods

custom_players [Deprecated] - now returns custom players by default

Value

A tidy dataframe of draft results

Methods (by class)

• ff_draft(espn_conn): ESPN: returns the current year’s draft/auction, including details on
keepers

• ff_draft(flea_conn): Fleaflicker: returns a table of drafts for the current year

• ff_draft(mfl_conn): MFL: returns a table of drafts for the current year - can handle devy/startup-
rookie-picks by specifying custom_players (slower!)

• ff_draft(sleeper_conn): Sleeper: returns a dataframe of all drafts and draft selections, if
available.

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2020, league_id = 899513)
ff_draft(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2020, league_id = 206154)
ff_draft(conn)

}) # end try

ff_draftpicks 13

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)
ff_draft(ssb_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_draft(jml_conn)

}) # end try

ff_draftpicks Get Draft Picks

Description

Returns all draft picks (current and future) that belong to a specific franchise and have not yet been
converted into players (i.e. selected.)

Usage

ff_draftpicks(conn, ...)

S3 method for class 'espn_conn'
ff_draftpicks(conn, ...)

S3 method for class 'flea_conn'
ff_draftpicks(conn, franchise_id = NULL, ...)

S3 method for class 'mfl_conn'
ff_draftpicks(conn, ...)

S3 method for class 'sleeper_conn'
ff_draftpicks(conn, ...)

Arguments

conn the list object created by ff_connect()

... other arguments (currently unused)

franchise_id A list of franchise IDs to pull, if NULL will return all franchise IDs

14 ff_draftpicks

Value

Returns a dataframe with current and future draft picks for each franchise

Methods (by class)

• ff_draftpicks(espn_conn): ESPN: does not support future/draft pick trades - for draft
results, please use ff_draft.

• ff_draftpicks(flea_conn): Fleaflicker: retrieves current and future draft picks, potentially
for a specified team.

• ff_draftpicks(mfl_conn): MFL: returns current and future picks

• ff_draftpicks(sleeper_conn): Sleeper: retrieves current and future draft picks

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(
season = 2018,
league_id = 1178049,
espn_s2 = Sys.getenv("TAN_ESPN_S2"),
swid = Sys.getenv("TAN_SWID")

)

ff_draftpicks(conn)
}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(2020, 206154)
ff_draftpicks(conn, franchise_id = 1373475)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
dlf_conn <- mfl_connect(2020, league_id = 37920)
ff_draftpicks(conn = dlf_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_draftpicks(jml_conn)

}) # end try

ff_franchises 15

ff_franchises Get League Franchises

Description

Return franchise-level data (including divisions, usernames, etc) - available data may vary slightly
based on platform.

Usage

ff_franchises(conn)

S3 method for class 'espn_conn'
ff_franchises(conn)

S3 method for class 'flea_conn'
ff_franchises(conn)

S3 method for class 'mfl_conn'
ff_franchises(conn)

S3 method for class 'sleeper_conn'
ff_franchises(conn)

Arguments

conn a conn object created by ff_connect()

Value

A tidy dataframe of franchises, complete with IDs

Methods (by class)

• ff_franchises(espn_conn): ESPN: returns franchise and division information.

• ff_franchises(flea_conn): Fleaflicker: returns franchise and division information.

• ff_franchises(mfl_conn): MFL: returns franchise and division information.

• ff_franchises(sleeper_conn): Sleeper: retrieves a list of franchise information, including
user IDs and co-owner IDs.

Examples

try({ # try only shown here because sometimes CRAN checks are weird

conn <- espn_connect(season = 2020, league_id = 1178049)

ff_franchises(conn)

16 ff_league

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2020, league_id = 206154)
ff_franchises(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)
ff_franchises(ssb_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_franchises(jml_conn)

}) # end try

ff_league Get League Summary

Description

This function returns a tidy dataframe of common league settings, including details like "1QB" or
"2QB/SF", scoring, best ball, team count, IDP etc. This is potentially useful in summarising the
features of multiple leagues.

Usage

ff_league(conn)

S3 method for class 'espn_conn'
ff_league(conn)

S3 method for class 'flea_conn'
ff_league(conn)

S3 method for class 'mfl_conn'
ff_league(conn)

S3 method for class 'sleeper_conn'
ff_league(conn)

ff_league 17

Arguments

conn the connection object created by ff_connect()

Value

A one-row summary of each league’s main features.

Methods (by class)

• ff_league(espn_conn): ESPN: returns a summary of league features.

• ff_league(flea_conn): Flea: returns a summary of league features.

• ff_league(mfl_conn): MFL: returns a summary of league features.

• ff_league(sleeper_conn): Sleeper: returns a summary of league features.

Examples

try({ # try only shown here because sometimes CRAN checks are weird

conn <- espn_connect(season = 2020, league_id = 899513)

ff_league(conn)
}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(2020, 206154)
ff_league(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 22627, season = 2021)
ff_league(ssb_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_league(jml_conn)

}) # end try

18 ff_playerscores

ff_playerscores Get Player Scoring History

Description

This function returns a tidy dataframe of player scores based on league rules.

Unfortunately, Sleeper has deprecated their player stats endpoint from their supported/open API.
Please see ff_scoringhistory() for an alternative reconstruction.

Usage

ff_playerscores(conn, ...)

S3 method for class 'espn_conn'
ff_playerscores(conn, limit = 1000, ...)

S3 method for class 'flea_conn'
ff_playerscores(conn, page_limit = NULL, ...)

S3 method for class 'mfl_conn'
ff_playerscores(conn, season, week, ...)

S3 method for class 'sleeper_conn'
ff_playerscores(conn, ...)

Arguments

conn the list object created by ff_connect()

... other arguments (currently unused)

limit A numeric describing the number of players to return - default 1000

page_limit A numeric describing the number of pages to return - default NULL returns all
available

season the season of interest - generally only the most recent 2-3 seasons are available

week a numeric vector (ie 1:17) or one of YTD (year-to-date) or AVG (average to
date)

Value

A tibble of historical player scoring

Methods (by class)

• ff_playerscores(espn_conn): ESPN: returns total points for season and average per game,
for both current and previous season.

ff_rosters 19

• ff_playerscores(flea_conn): Fleaflicker: returns the season, season average, and standard
deviation

• ff_playerscores(mfl_conn): MFL: returns the player fantasy scores for each week (not
the actual stats)

• ff_playerscores(sleeper_conn): Sleeper: Deprecated their open API endpoint for player
scores

See Also

ff_scoringhistory

Examples

try({ # try only shown here because sometimes CRAN checks are weird

conn <- espn_connect(season = 2020, league_id = 899513)

ff_playerscores(conn, limit = 5)
}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(2020, 312861)
ff_playerscores(conn, page_limit = 2)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
sfb_conn <- mfl_connect(2020, league_id = 65443)
ff_playerscores(conn = sfb_conn, season = 2019, week = "YTD")

}) # end try

ff_rosters Get League Rosters

Description

This function returns a tidy dataframe of team rosters

Usage

ff_rosters(conn, ...)

S3 method for class 'espn_conn'
ff_rosters(conn, week = NULL, ...)

S3 method for class 'flea_conn'

20 ff_rosters

ff_rosters(conn, ...)

S3 method for class 'mfl_conn'
ff_rosters(conn, custom_players = deprecated(), week = NULL, ...)

S3 method for class 'sleeper_conn'
ff_rosters(conn, ...)

Arguments

conn a conn object created by ff_connect()

... arguments passed to other methods (currently none)

week a numeric that specifies which week to return

custom_players "[Deprecated]" - now returns custom players by default

Value

A tidy dataframe of rosters, joined to basic player information and basic franchise information

Methods (by class)

• ff_rosters(espn_conn): ESPN: Returns all roster data.

• ff_rosters(flea_conn): Fleaflicker: Returns roster data (minus age as of right now)

• ff_rosters(mfl_conn): MFL: returns roster data

• ff_rosters(sleeper_conn): Sleeper: Returns all roster data.

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2020, league_id = 899513)
ff_league(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
joe_conn <- ff_connect(platform = "fleaflicker", league_id = 312861, season = 2020)

ff_rosters(joe_conn)
}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)
ff_rosters(ssb_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird

ff_schedule 21

jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_rosters(jml_conn)

}) # end try

ff_schedule Get Schedule

Description

This function returns a tidy dataframe with one row for every team for every weekly matchup

Usage

ff_schedule(conn, ...)

S3 method for class 'espn_conn'
ff_schedule(conn, ...)

S3 method for class 'flea_conn'
ff_schedule(conn, week = 1:17, ...)

S3 method for class 'mfl_conn'
ff_schedule(conn, ...)

S3 method for class 'sleeper_conn'
ff_schedule(conn, ...)

Arguments

conn a conn object created by ff_connect()

... for other platforms

week a numeric or numeric vector specifying which weeks to pull

Value

A tidy dataframe with one row per game per franchise per week

Methods (by class)

• ff_schedule(espn_conn): ESPN: returns schedule data, one row for every franchise for
every week. Completed games have result data.

• ff_schedule(flea_conn): Flea: returns schedule data, one row for every franchise for every
week. Completed games have result data.

• ff_schedule(mfl_conn): MFL: returns schedule data, one row for every franchise for every
week. Completed games have result data.

• ff_schedule(sleeper_conn): Sleeper: returns all schedule data

22 ff_scoring

Examples

try({ # try only shown here because sometimes CRAN checks are weird
espn_conn <- espn_connect(season = 2020, league_id = 899513)
ff_schedule(espn_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2019, league_id = 206154)
ff_schedule(conn, week = 2:4)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)
ff_schedule(ssb_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_schedule(jml_conn)

}) # end try

ff_scoring Get League Scoring Settings

Description

This function returns a dataframe with detailed scoring settings for each league - broken down by
event, points, and (if available) position.

Usage

ff_scoring(conn)

S3 method for class 'espn_conn'
ff_scoring(conn)

S3 method for class 'flea_conn'
ff_scoring(conn)

S3 method for class 'mfl_conn'
ff_scoring(conn)

ff_scoring 23

S3 method for class 'sleeper_conn'
ff_scoring(conn)

S3 method for class 'template_conn'
ff_scoring(conn)

Arguments

conn a conn object created by ff_connect()

Value

A tibble of league scoring rules for each position defined.

Methods (by class)

• ff_scoring(espn_conn): ESPN: returns scoring settings in a flat table, override positions
have their own scoring.

• ff_scoring(flea_conn): Fleaflicker: returns scoring settings in a flat table, one row per
position per rule.

• ff_scoring(mfl_conn): MFL: returns scoring settings in a flat table, one row per position
per rule.

• ff_scoring(sleeper_conn): Sleeper: returns scoring settings in a flat table, one row per
position per rule.

• ff_scoring(template_conn): Template: returns MFL style scoring settings in a flat table,
one row per position per rule.

See Also

http://www03.myfantasyleague.com/2020/scoring_rules#rules

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2020, league_id = 899513)
ff_scoring(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
joe_conn <- ff_connect(platform = "fleaflicker", league_id = 312861, season = 2020)
ff_scoring(joe_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)

http://www03.myfantasyleague.com/2020/scoring_rules#rules

24 ff_scoringhistory

ff_scoring(ssb_conn)
}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_scoring(jml_conn)

}) # end try

template_ppr <- ff_template(scoring_type = "ppr")
ff_scoring(template_ppr)

ff_scoringhistory Get League-Specific Scoring History

Description

(Experimental!) This function reads your league’s ff_scoring rules and maps them to nflfastr week-
level data. Not all of the scoring rules from your league may have nflfastr equivalents, but most of
the common ones are available!

Usage

ff_scoringhistory(conn, season, ...)

S3 method for class 'espn_conn'
ff_scoringhistory(conn, season = 1999:nflreadr::most_recent_season(), ...)

S3 method for class 'flea_conn'
ff_scoringhistory(conn, season = 1999:nflreadr::most_recent_season(), ...)

S3 method for class 'mfl_conn'
ff_scoringhistory(conn, season = 1999:nflreadr::most_recent_season(), ...)

S3 method for class 'sleeper_conn'
ff_scoringhistory(conn, season = 1999:nflreadr::most_recent_season(), ...)

S3 method for class 'template_conn'
ff_scoringhistory(conn, season = 1999:nflreadr::most_recent_season(), ...)

Arguments

conn a conn object created by ff_connect()

ff_scoringhistory 25

season season a numeric vector of seasons (earliest available year is 1999)

... other arguments

Value

A tidy dataframe of weekly fantasy scoring data, one row per player per week

Methods (by class)

• ff_scoringhistory(espn_conn): ESPN: returns scoring history in a flat table, one row per
player per week.

• ff_scoringhistory(flea_conn): Fleaflicker: returns scoring history in a flat table, one row
per player per week.

• ff_scoringhistory(mfl_conn): MFL: returns scoring history in a flat table, one row per
player per week.

• ff_scoringhistory(sleeper_conn): Sleeper: returns scoring history in a flat table, one
row per player per week.

• ff_scoringhistory(template_conn): template: returns scoring history in a flat table, one
row per player per week.

See Also

https://www.nflfastr.com/reference/load_player_stats.html

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2020, league_id = 899513)
ff_scoringhistory(conn, season = 2020)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(2020, 312861)
ff_scoringhistory(conn, season = 2020)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)
ff_scoringhistory(ssb_conn, season = 2020)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_scoringhistory(conn, season = 2020)

https://www.nflfastr.com/reference/load_player_stats.html

26 ff_standings

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
template_conn <- ff_template(scoring_type = "sfb11", roster_type = "sfb11")
ff_scoringhistory(template_conn, season = 2020)

}) # end try

ff_standings Get Standings

Description

This function returns a tidy dataframe of season-long fantasy team stats, including H2H wins as
well as points, potential points, and all-play.

Usage

ff_standings(conn, ...)

S3 method for class 'espn_conn'
ff_standings(conn, ...)

S3 method for class 'flea_conn'
ff_standings(conn, include_allplay = TRUE, include_potentialpoints = TRUE, ...)

S3 method for class 'mfl_conn'
ff_standings(conn, ...)

S3 method for class 'sleeper_conn'
ff_standings(conn, ...)

Arguments

conn a conn object created by ff_connect()

... arguments passed to other methods (currently none)
include_allplay

TRUE/FALSE - return all-play win pct calculation? defaults to TRUE
include_potentialpoints

TRUE/FALSE - return potential points calculation? defaults to TRUE.

Value

A tidy dataframe of standings data

ff_starters 27

Methods (by class)

• ff_standings(espn_conn): ESPN: returns standings and points data.

• ff_standings(flea_conn): Fleaflicker: returns H2H/points/all-play/best-ball data in a ta-
ble.

• ff_standings(mfl_conn): MFL: returns H2H/points/all-play/best-ball data in a table.

• ff_standings(sleeper_conn): Sleeper: returns all standings and points data and manually
calculates allplay results.

Examples

try({ # try only shown here because sometimes CRAN checks are weird
espn_conn <- espn_connect(season = 2020, league_id = 899513)
ff_standings(espn_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2020, league_id = 206154)
x <- ff_standings(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
ssb_conn <- ff_connect(platform = "mfl", league_id = 54040, season = 2020)
ff_standings(ssb_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_standings(jml_conn)

}) # end try

ff_starters Get Starting Lineups

Description

This function returns a tidy dataframe with one row for every starter (and bench) for every week
and their scoring, if available.

28 ff_starters

Usage

ff_starters(conn, ...)

S3 method for class 'espn_conn'
ff_starters(conn, weeks = 1:17, ...)

S3 method for class 'flea_conn'
ff_starters(conn, week = 1:17, ...)

S3 method for class 'mfl_conn'
ff_starters(conn, week = 1:17, season = NULL, ...)

S3 method for class 'sleeper_conn'
ff_starters(conn, week = 1:17, ...)

Arguments

conn the list object created by ff_connect()

... other arguments (currently unused)

weeks which weeks to calculate, a number or numeric vector

week a numeric or one of YTD (year-to-date) or AVG (average to date)

season the season of interest - generally only the most recent 2-3 seasons are available

Value

A tidy dataframe with every player for every week, including a flag for whether they were started
or not

Methods (by class)

• ff_starters(espn_conn): ESPN: returns who was started as well as what they scored.

• ff_starters(flea_conn): Fleaflicker: returns who was started as well as what they scored.

• ff_starters(mfl_conn): MFL: returns the player fantasy scores for each week (not the
actual stats)

• ff_starters(sleeper_conn): Sleeper: returns only "who" was started, without any scor-
ing/stats data. Only returns season specified in initial connection object.

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2020, league_id = 1178049)
ff_starters(conn, weeks = 1:3)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird

ff_starter_positions 29

conn <- fleaflicker_connect(season = 2020, league_id = 206154)
ff_starters(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
dlf_conn <- mfl_connect(2020, league_id = 37920)
ff_starters(conn = dlf_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- sleeper_connect(league_id = "522458773317046272", season = 2020)
ff_starters(jml_conn, week = 3)

}) # end try

ff_starter_positions Get Starting Lineup Settings

Description

This function returns a tidy dataframe with positional lineup rules.

Usage

ff_starter_positions(conn, ...)

S3 method for class 'espn_conn'
ff_starter_positions(conn, ...)

S3 method for class 'flea_conn'
ff_starter_positions(conn, ...)

S3 method for class 'mfl_conn'
ff_starter_positions(conn, ...)

S3 method for class 'sleeper_conn'
ff_starter_positions(conn, ...)

S3 method for class 'template_conn'
ff_starter_positions(conn, ...)

Arguments

conn the list object created by ff_connect()

... other arguments (currently unused)

30 ff_starter_positions

Value

A tidy dataframe of positional lineup rules, one row per position with minimum and maximum
starters as well as total starter calculations.

Methods (by class)

• ff_starter_positions(espn_conn): ESPN: returns min/max starters for each main player
position

• ff_starter_positions(flea_conn): Fleaflicker: returns minimum and maximum starters
for each player position.

• ff_starter_positions(mfl_conn): MFL: returns minimum and maximum starters for each
player position.

• ff_starter_positions(sleeper_conn): Sleeper: returns minimum and maximum starters
for each player position.

• ff_starter_positions(template_conn): Template: returns minimum and maximum starters
for each player position.

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- espn_connect(season = 2020, league_id = 1178049)
ff_starter_positions(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2020, league_id = 206154)
ff_starter_positions(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
dlfidp_conn <- mfl_connect(2020, league_id = 33158)
ff_starter_positions(conn = dlfidp_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- sleeper_connect(league_id = "652718526494253056", season = 2021)
ff_starter_positions(jml_conn)

}) # end try

template_conn <- ff_template(roster_type = "idp")
ff_starter_positions(template_conn)

ff_template 31

ff_template Default conn objects

Description

This function creates a connection to a few league templates, and can be used instead of a real conn
object in the following functions: ff_scoring(), ff_scoringhistory(), ff_starterpositions().

Usage

ff_template(
scoring_type = c("ppr", "half_ppr", "zero_ppr", "sfb11"),
roster_type = c("1qb", "superflex", "sfb11", "idp")

)

Arguments

scoring_type One of c("default", "ppr", "half_ppr", "zero_ppr", "te_prem", "sfb11")

roster_type One of c("1qb", "superflex","sfb11", "idp")

Details

Scoring types defined here are:

• ppr: 6 pt passing/rushing/receiving touchdowns, 0.1 for rushing/receiving yards, 1 point per
reception, -2 for fumbles/interceptions

• half_ppr: same as ppr but with 0.5 points per reception

• zero_ppr: same as ppr but with 0 points per reception

• te_prem: same as ppr but TEs get 1.5 points per reception

• sfb11: SFB11 scoring as defined by https://scottfishbowl.com

Roster settings defined here are:

• 1qb: Starts 1 QB, 2 RB, 3 WR, 1 TE, 2 FLEX

• superflex: Starts 1 QB, 2 RB, 3 WR, 1 TE, 2 FLEX, 1 SUPERFLEX

• sfb11: Starts 1 QB, 2 RB, 3 WR, 1 TE, 3 FLEX, 1 SUPERFLEX (flex positions can also start
a kicker)

• idp: Starts same as 1QB but also starts 3 DL, 3 LB, 3 DB, and two IDP FLEX

Value

a connection object that can be used with ff_scoring(), ff_scoringhistory(), and ff_starterpositions()

https://scottfishbowl.com

32 ff_transactions

ff_transactions Get League Transactions

Description

This function returns a tidy dataframe of transactions - generally one row per player per transaction
per team. Each trade is represented twice, once per each team.

Usage

ff_transactions(conn, ...)

S3 method for class 'espn_conn'
ff_transactions(conn, limit = 1000, ...)

S3 method for class 'flea_conn'
ff_transactions(conn, franchise_id = NULL, ...)

S3 method for class 'mfl_conn'
ff_transactions(conn, transaction_type = "*", ...)

S3 method for class 'sleeper_conn'
ff_transactions(conn, week = 1:17, ...)

Arguments

conn the list object created by ff_connect()

... additional args for other methods

limit number of most recent transactions to return

franchise_id fleaflicker returns transactions grouped by franchise id, pass a list here to filter

transaction_type

parameter to return transactions of the specified type. Types are: WAIVER, BBID_WAIVER,
FREE_AGENT, TRADE, IR, TAXI, AUCTION_INIT, AUCTION_BID, AUCTION_WON, or
* for all. Can also pass a comma-separated string. Defaults to *. Note that only
the types listed above are actually cleaned and processed by ffscrapr - you will
need to make a custom api request with mfl_getendpoint() to receive other
things.

week A week filter for transactions - 1 returns all offseason transactions. Default 1:17
returns all transactions.

Value

A tidy dataframe of transaction data

ff_transactions 33

Methods (by class)

• ff_transactions(espn_conn): ESPN: returns adds, drops, and trades. Requires private/auth-
cookie.

• ff_transactions(flea_conn): Fleaflicker: returns all transactions, including free agents,
waivers, and trades.

• ff_transactions(mfl_conn): MFL: returns all transactions, including auction, free agents,
IR, TS, waivers, and trades.

• ff_transactions(sleeper_conn): Sleeper: returns all transactions, including free agents,
waivers, and trades.

Examples

Not run:
Marked as don't run because this endpoint requires private authentication

conn <- espn_connect(
season = 2020,
league_id = 1178049,
swid = Sys.getenv("TAN_SWID"),
espn_s2 = Sys.getenv("TAN_ESPN_S2")

)
ff_transactions(conn)

End(Not run)

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(season = 2020, league_id = 312861)
ff_transactions(conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
dlf_conn <- mfl_connect(2019, league_id = 37920)
ff_transactions(dlf_conn)

}) # end try

try({ # try only shown here because sometimes CRAN checks are weird
jml_conn <- ff_connect(platform = "sleeper", league_id = "522458773317046272", season = 2020)
ff_transactions(jml_conn, week = 1:2)

}) # end try

34 ff_userleagues

ff_userleagues Get User Leagues

Description

This function returns a tidy dataframe with one row for every league a user is in. This requries
authentication cookies for MFL usage.

Usage

ff_userleagues(conn, ...)

S3 method for class 'espn_conn'
ff_userleagues(conn = NULL, ...)

S3 method for class 'flea_conn'
ff_userleagues(conn = NULL, user_email = NULL, season = NULL, ...)

S3 method for class 'mfl_conn'
ff_userleagues(conn, season = NULL, ...)

S3 method for class 'sleeper_conn'
ff_userleagues(conn = NULL, user_name = NULL, season = NULL, ...)

Arguments

conn a connection object created by ff_connect()

... arguments that may be passed to other methods (for method consistency)

user_email the username to look up - defaults to user created in conn if available

season the season to look up leagues for

user_name the username to look up - defaults to user created in conn if available

Value

A tidy dataframe with one row for every league a user is in

Methods (by class)

• ff_userleagues(espn_conn): ESPN: does not support a lookup of user leagues by email or
user ID at this time.

• ff_userleagues(flea_conn): flea: returns a listing of leagues for a given user_email

• ff_userleagues(mfl_conn): MFL: With username/password, it will return a list of user
leagues.

• ff_userleagues(sleeper_conn): Sleeper: returns a listing of leagues for a given user_id or
user_name

fleaflicker_connect 35

See Also

fleaflicker_userleagues() to call this function for flea leagues without first creating a connec-
tion object.

sleeper_userleagues() to call this function for Sleeper leagues without first creating a connec-
tion object.

fleaflicker_connect Connect to Fleaflicker League

Description

This function creates a connection object which stores parameters and a user ID if available.

Usage

fleaflicker_connect(
season = NULL,
league_id = NULL,
user_email = NULL,
user_agent = NULL,
rate_limit = TRUE,
rate_limit_number = NULL,
rate_limit_seconds = NULL,
...

)

Arguments

season Season to access on Fleaflicker - if missing, will guess based on system date
(current year if March or later, otherwise previous year)

league_id League ID

user_email Optional - attempts to get user’s user ID by email

user_agent User agent to self-identify (optional)

rate_limit TRUE by default - turn off rate limiting with FALSE
rate_limit_number

number of calls per rate_limit_seconds, suggested is under 1000 calls per 60
seconds

rate_limit_seconds

number of seconds as denominator for rate_limit

... other arguments (for other methods, for R compat)

Value

a list that stores Fleaflicker connection objects

36 fleaflicker_players

fleaflicker_getendpoint

GET any Fleaflicker endpoint

Description

The endpoint names and HTTP parameters (i.e. argument names) are CASE SENSITIVE and
should be passed in exactly as displayed on the Fleaflicker API reference page.

Usage

fleaflicker_getendpoint(endpoint, ...)

Arguments

endpoint a string defining which endpoint to return from the API

... Arguments which will be passed as "argumentname = argument" in an HTTP
query parameter

Details

Check out the vignette for more details and example usage.

Value

A list object containing the query, response, and parsed content.

See Also

https://www.fleaflicker.com/api-docs/index.html

vignette("fleaflicker_getendpoint")

fleaflicker_players Fleaflicker players library

Description

A cached table of Fleaflicker NFL players. Will store in memory for each session! (via memoise in
zzz.R)

Usage

fleaflicker_players(conn, page_limit = NULL)

https://www.fleaflicker.com/api-docs/index.html

fleaflicker_userleagues 37

Arguments

conn a conn object created by ff_connect()

page_limit A number limiting the number of players to return, or NULL (default) returns
all

Value

a dataframe containing all ~7000+ players in the Fleaflicker database

Examples

try({ # try only shown here because sometimes CRAN checks are weird
conn <- fleaflicker_connect(2020, 312861)
player_list <- fleaflicker_players(conn, page_limit = 2)

}) # end try

fleaflicker_userleagues

Fleaflicker - Get User Leagues

Description

This function returns the leagues that a specific user is in. This variant can be used without first
creating a connection object.

Usage

fleaflicker_userleagues(user_email, season = NULL)

Arguments

user_email the username to look up

season the season to return leagues from - defaults to current year based on heuristics

Value

a dataframe of leagues for the specified user

See Also

ff_userleagues()

38 mfl_connect

mfl_connect Connect to MFL League

Description

This function creates a connection object which stores parameters and gets a login-cookie if avail-
able

Usage

mfl_connect(
season = NULL,
league_id = NULL,
APIKEY = NULL,
user_name = NULL,
password = NULL,
user_agent = NULL,
rate_limit = TRUE,
rate_limit_number = NULL,
rate_limit_seconds = NULL,
...

)

Arguments

season Season to access on MFL - if missing, will guess based on system date (current
year if March or later, otherwise previous year)

league_id league_id Numeric ID parameter for each league, typically found in the URL

APIKEY APIKEY - optional - allows access to private leagues. Key is unique for each
league and accessible from Developer’s API page (currently assuming one league
at a time)

user_name MFL user_name - optional - when supplied in conjunction with a password, will
attempt to retrieve authentication token

password MFL password - optional - when supplied in conjunction with user_name, will
attempt to retrieve authentication token

user_agent A string representing the user agent to be used to identify calls - may find im-
proved rate_limits if verified token

rate_limit TRUE by default, pass FALSE to turn off rate limiting
rate_limit_number

number of calls per rate_limit_seconds, suggested is 60 calls per 60 seconds
rate_limit_seconds

number of seconds as denominator for rate_limit

... silently swallows up unused arguments

mfl_getendpoint 39

Value

a connection object to be used with ff_* functions

Examples

mfl_connect(season = 2020, league_id = 54040)
mfl_connect(season = 2019, league_id = 54040, rate_limit = FALSE)

mfl_getendpoint GET any MFL endpoint

Description

Create a GET request to any MFL export endpoint.

Usage

mfl_getendpoint(conn, endpoint, ...)

Arguments

conn the list object created by mfl_connect()

endpoint a string defining which endpoint to return from the API

... Arguments which will be passed as "argumentname = argument" in an HTTP
query parameter

Details

This function will read the connection object and automatically pass in the rate-limiting, league ID
(L), authentication cookie, and/or API key (APIKEY) if configured in the connection object.

The endpoint names and HTTP parameters (i.e. argument names) are CASE SENSITIVE and
should be passed in exactly as displayed on the MFL API reference page.

Check out the vignette for more details and example usage.

Value

A list object containing the query, response, and parsed content.

See Also

https://api.myfantasyleague.com/2020/api_info?STATE=details

vignette("mfl_getendpoint")

https://api.myfantasyleague.com/2020/api_info?STATE=details

40 nflfastr_rosters

mfl_players MFL players library

Description

A cached table of MFL players. Will store in memory for each session! (via memoise in zzz.R)

Usage

mfl_players(conn = NULL)

Arguments

conn optionally, pass in a conn object generated by ff_connect to receive league-
specific custom players

Value

a dataframe containing all ~2000+ players in the MFL database

Examples

try({ # try only shown here because sometimes CRAN checks are weird
player_list <- mfl_players()
dplyr::sample_n(player_list, 5)

}) # end try

nflfastr_rosters Import nflfastr roster data

Description

Fetches a copy of roster data from nflfastr’s data repository. The same input/output as nflfastr’s
fast_scraper_roster function.

Usage

nflfastr_rosters(seasons)

Arguments

seasons A numeric vector of seasons, earliest of which is 1999. TRUE returns all sea-
sons, NULL returns latest season.

nflfastr_stat_mapping 41

Details

If you have any issues with the output of this data, please open an issue in the nflfastr repository.

Value

Data frame where each individual row represents a player in the roster of the given team and season

See Also

https://nflreadr.nflverse.com

Examples

try(# try only shown here because sometimes CRAN checks are weird
nflfastr_rosters(seasons = 2019:2020)

)

nflfastr_stat_mapping Mappings for nflfastr to fantasy platform scoring

Description

A small helper dataframe for connecting nflfastr to specific fantasy platform rules.

Usage

nflfastr_stat_mapping

Format

A data frame with ~85 rows and 3 variables:

nflfastr_event the column name of the statistic in the nflfastr_weekly dataset

platform specific platform that this mapping applies to

ff_event name of the statistic for that platform

https://nflreadr.nflverse.com

42 nflfastr_weekly

nflfastr_weekly Import latest nflfastr weekly stats

Description

Fetches a copy of the latest week-level stats from nflfastr’s data repository, via the nflreadr package.

Usage

nflfastr_weekly(seasons = TRUE, type = c("offense", "kicking"))

Arguments

seasons The seasons to return, TRUE returns all data available.

type One of "offense" or "kicking"

Details

The goal of this data is to replicate the NFL’s official weekly stats, which can diverge a bit from
what fantasy data feeds display.

If you have any issues with the output of this data, please open an issue in the nflfastr repository.

Value

Weekly stats for all passers, rushers and receivers in the nflverse play-by-play data from the 1999
season to the most recent season

See Also

https://nflreadr.nflverse.com

Examples

try(# try only shown here because sometimes CRAN checks are weird
nflfastr_weekly()

)

https://nflreadr.nflverse.com
https://nflreadr.nflverse.com

sleeper_connect 43

sleeper_connect Connect to Sleeper League

Description

This function creates a connection object which stores parameters and a user ID if available.

Usage

sleeper_connect(
season = NULL,
league_id = NULL,
user_name = NULL,
user_agent = NULL,
rate_limit = TRUE,
rate_limit_number = NULL,
rate_limit_seconds = NULL,
...

)

Arguments

season Season to access on Sleeper - if missing, will guess based on system date (cur-
rent year if March or later, otherwise previous year)

league_id League ID (currently assuming one league at a time)

user_name Sleeper user_name - optional - attempts to get user’s user ID

user_agent User agent to self-identify (optional)

rate_limit TRUE by default - turn off rate limiting with FALSE

rate_limit_number

number of calls per rate_limit_seconds, suggested is under 1000 calls per 60
seconds

rate_limit_seconds

number of seconds as denominator for rate_limit

... other arguments (for other methods)

Value

a list that stores Sleeper connection objects

44 sleeper_players

sleeper_getendpoint GET any Sleeper endpoint

Description

The endpoint names and HTTP parameters (i.e. argument names) are CASE SENSITIVE and
should be passed in exactly as displayed on the Sleeper API reference page.

Usage

sleeper_getendpoint(endpoint, ...)

Arguments

endpoint a string defining which endpoint to return from the API

... Arguments which will be passed as "argumentname = argument" in an HTTP
query parameter

Details

Check out the vignette for more details and example usage.

Value

A list object containing the query, response, and parsed content.

See Also

https://docs.sleeper.com

vignette("sleeper_getendpoint")

sleeper_players Sleeper players library

Description

A cached table of Sleeper NFL players. Will store in memory for each session! (via memoise in
zzz.R)

Usage

sleeper_players()

Value

a dataframe containing all ~7000+ players in the Sleeper database

https://docs.sleeper.com

sleeper_userleagues 45

Examples

try({ # try only shown here because sometimes CRAN checks are weird
x <- sleeper_players()
dplyr::sample_n(x, 5)

}) # end try

sleeper_userleagues Sleeper - Get User Leagues

Description

This function returns the leagues that a specific user is in. This variant can be used without first
creating a connection object.

Usage

sleeper_userleagues(user_name, season = NULL)

Arguments

user_name the username to look up

season the season to return leagues from - defaults to current year based on heuristics

Value

a dataframe of leagues for the specified user

See Also

ff_userleagues()

%>% Pipe operator

Description

See magrittr::%>% for details.

https://magrittr.tidyverse.org/reference/pipe.html

Index

∗ datasets
dp_name_mapping, 5
nflfastr_stat_mapping, 41

.ff_clear_cache, 3
%>%, 45

dp_clean_html, 4
dp_clean_names (dp_cleannames), 3
dp_cleannames, 3
dp_name_mapping, 5
dp_playerids, 5
dp_values, 6

espn_connect, 7
espn_connect(), 11
espn_getendpoint, 8
espn_getendpoint_raw, 9
espn_players, 9
espn_potentialpoints, 10

ff_connect, 11
ff_draft, 11
ff_draftpicks, 13
ff_franchises, 15
ff_league, 16
ff_playerscores, 18
ff_rosters, 19
ff_schedule, 21
ff_scoring, 22
ff_scoringhistory, 24
ff_standings, 26
ff_starter_positions, 29
ff_starters, 27
ff_template, 31
ff_transactions, 32
ff_userleagues, 34
ff_userleagues(), 37, 45
ffverse_sitrep, 10
fleaflicker_connect, 35
fleaflicker_connect(), 11

fleaflicker_getendpoint, 36
fleaflicker_players, 36
fleaflicker_userleagues, 37
fleaflicker_userleagues(), 35

mfl_connect, 38
mfl_connect(), 11
mfl_getendpoint, 39
mfl_players, 40

nflfastr_rosters, 40
nflfastr_stat_mapping, 41
nflfastr_weekly, 42

sleeper_connect, 43
sleeper_connect(), 11
sleeper_getendpoint, 44
sleeper_players, 44
sleeper_userleagues, 45
sleeper_userleagues(), 35

46

	.ff_clear_cache
	dp_cleannames
	dp_clean_html
	dp_name_mapping
	dp_playerids
	dp_values
	espn_connect
	espn_getendpoint
	espn_getendpoint_raw
	espn_players
	espn_potentialpoints
	ffverse_sitrep
	ff_connect
	ff_draft
	ff_draftpicks
	ff_franchises
	ff_league
	ff_playerscores
	ff_rosters
	ff_schedule
	ff_scoring
	ff_scoringhistory
	ff_standings
	ff_starters
	ff_starter_positions
	ff_template
	ff_transactions
	ff_userleagues
	fleaflicker_connect
	fleaflicker_getendpoint
	fleaflicker_players
	fleaflicker_userleagues
	mfl_connect
	mfl_getendpoint
	mfl_players
	nflfastr_rosters
	nflfastr_stat_mapping
	nflfastr_weekly
	sleeper_connect
	sleeper_getendpoint
	sleeper_players
	sleeper_userleagues
	>
	Index

