Type: | Package |
Title: | Concurrent Regression and History Index Models for Functional Data |
URL: | https://github.com/functionaldata/tFDAconcur |
BugReports: | https://github.com/functionaldata/tFDAconcur/issues |
Version: | 0.1.3 |
Encoding: | UTF-8 |
Date: | 2024-07-16 |
Maintainer: | Su I Iao <siao@ucdavis.edu> |
Description: | Provides an implementation of concurrent or varying coefficient regression methods for functional data. The implementations are done for both dense and sparsely observed functional data. Pointwise confidence bands can be constructed for each case. Further, the influence of past predictor values are modeled by a smooth history index function, while the effects on the response are described by smooth varying coefficient functions, which are very useful in analyzing real data such as COVID data. References: Yao, F., Müller, H.G., Wang, J.L. (2005) <doi:10.1214/009053605000000660>. Sentürk, D., Müller, H.G. (2010) <doi:10.1198/jasa.2010.tm09228>. |
License: | BSD_3_clause + file LICENSE |
Imports: | Rcpp (≥ 0.11.5), fdapace (≥ 0.6.0), stats |
LinkingTo: | Rcpp, RcppEigen |
Suggests: | MASS, Matrix, pracma, numDeriv, testthat |
RoxygenNote: | 7.3.1 |
NeedsCompilation: | yes |
Packaged: | 2024-07-19 21:32:01 UTC; suiiao |
Author: | Su I Iao [aut, cre], Satarupa Bhattacharjee [aut], Yaqing Chen [aut], Changbo Zhu [aut], Han Chen [aut], Yidong Zhou [aut], Álvaro Gajardo [aut], Poorbita Kundu [aut], Hang Zhou [aut], Hans-Georg Müller [cph, ths, aut] |
Repository: | CRAN |
Date/Publication: | 2024-07-20 06:30:02 UTC |
fdaconcur: Concurrent Regression and History Index Models for Functional Data
Description
This package provides tools for functional concurrent regression and history index models.
Details
fdaconcur for Functional Concurrent Regression and History Index Models
Provides an implementation of concurrent or varying coefficient regression methods for functional data. The implementations are done for both dense and sparsely observed functional data. Pointwise confidence bands can be constructed for each case. Further, the influence of past predictor values are modeled by a smooth history index function, while the effects on the response are described by smooth varying coefficient functions, which are very useful in analyzing real data such as COVID data.
References: Yao, F., Müller, H.G., Wang, J.L. (2005) <doi: 10.1214/009053605000000660>. Sentürk, D., Müller, H.G. (2010) <doi: 10.1198/jasa.2010.tm09228>.
PACE is based on the idea that observed functional data are generated by a sample of underlying (but usually not fully observed) random trajectories that are realizations of a stochastic process. It does not rely on pre-smoothing of trajectories, which is problematic if functional data are sparsely sampled.
Maintainer: Su I Iao siao@ucdavis.edu
Author(s)
Satarupa Bhattacharjee Yaqing Chen Changbo Zhu Han Chen Yidong Zhou Álvaro Gajardo Poorbita Kundu Hang Zhou
Hans-Georg Müller hgmueller@ucdavis.edu
See Also
Useful links:
Report bugs at https://github.com/functionaldata/tFDAconcur/issues
Functional Concurrent Regression with Lag Model
Description
Functional concurrent regression model with lag for dense functional responses and dense functional predictors.
Usage
ConcReg_Lag(Y, X, Lag = NULL, optnsY = NULL, optnsX = NULL)
Arguments
Y |
a list which contains functional responses in the form of a list LY and the time points LT at which they are observed (i.e., list(Ly = LY,Lt = LT)). |
X |
a list of lists which contains the observed functional predictors list Lxj and the time points list Ltj at which they are observed. It needs to be of the form |
Lag |
a length |
optnsY |
a list of options control parameters for the response specified by |
optnsX |
a list of options control parameters for the predictors specified by |
Details
The functional concurrent regression model with lag is defined as
E[Y(t)|X_1(t), \cdots, X_p(t)] = \beta_0(t) + \sum_{j=1}^p\beta_j(t)X_j(t-Lag[j])
For more details we refer to Şentürk, D. and Müller, H.G., (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105(491), pp.1256-1264.
Value
A list of the following:
beta0 |
a vector of |
beta |
A matrix for the concurrent regression effects, where rows correspond to different predictors and columns to different time points. |
workGridY |
a vetor representing the working grid for the response. |
Lag |
a vector representing the lags for all predictors |
References
Şentürk, D. and Müller, H.G., (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105(491), pp.1256-1264. Yao, F., Müller, H.G., Wang, J.L. (2005). Functional linear regression analysis for longitudinal data. Annals of Statistics 33, 2873–2903. Hall, P., Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35(1), 70–91.
Examples
phi1 <- function(t) sin(pi*t / 5) / sqrt(5)
phi2 <- function(t) cos(pi*t / 5) / sqrt(5)
lambdaX <- c(10, 5)
n <- 50
N <- 101
Xi <- matrix(rnorm(2*n), nrow = n, ncol = 2)
denseLt <- list()
denseLy <- list()
t0 <- seq(0, 15, length.out = N)
for (i in 1:n) {
denseLt[[i]] <- t0
denseLy[[i]] <- lambdaX[1]*Xi[i, 1]*phi1(t0) + lambdaX[2]*Xi[i, 2]*phi2(t0)
}
denseX0 <- list(Ly = denseLy,Lt = denseLt)
Lag <- c(3)
t0_out <- t0[t0>=max(Lag)]
beta_1 <- function(t) 5*sin(pi*t/10)
beta_0 <- function(t) t^2/2
### functional response Y(t), t in t0_out ###
denseLt <- list()
denseLy <- list()
for (i in 1:n) {
denseLt[[i]] <- t0_out
denseLy[[i]] <- beta_0(t0_out) +
denseX0$Ly[[i]][1:length(t0_out)]* beta_1(t0_out) +
rnorm(length(t0_out), 0, 0.1)
}
denseY <- list(Ly = denseLy, Lt = denseLt)
model = ConcReg_Lag(Y=denseY, X=list(X1 = denseX0), Lag=Lag)
print(model$workGridY) # workGrid for Y between 6 to 15
plot(beta_1(model$workGridY)) # workGrid for X1 between 3 to 12
plot(beta_0(model$workGridY))
plot(model$beta[1,])
plot(model$beta0)
Functional Concurrent Regression using 2D smoothing
Description
Functional concurrent regression with dense or sparse functional data for scalar or functional dependent variables. Note: function-to-scalar regression can also be handled using the VCAM function in fdapace.
Usage
ConcurReg(
vars,
outGrid,
userBwMu = NULL,
userBwCov = NULL,
kern = "gauss",
measurementError = FALSE,
diag1D = "all",
useGAM = FALSE,
returnCov = TRUE
)
Arguments
vars |
A list of input functional/scalar covariates. Each field corresponds to a functional (a list) or scalar (a vector) covariate. The last entry is assumed to be the response if no entry is named 'Y'. If a field corresponds to a functional covariate, it should have two fields: 'Lt', a list of time points, and 'Ly', a list of functional values. |
outGrid |
A vector of output time points. |
userBwMu |
A scalar/vector bandwidth used for smoothing the mean function. Each entry in the vector represents the bandwidth used for the corresponding covariate in vars. For the scalar covariates, you can input 0 as a placeholder. If you only input a scalar, the function will use the same bandwidth to smooth all mean functions. — a scalar/vector of positive numeric - default: NULL — if no scalar/vector value is provided, the bandwidth value for the smoothed mean function is chosen using 'GCV'; |
userBwCov |
A scalar/vector bandwidth used for smoothing the auto or cross-covariances. If you use 1D smoothing for the diagonal line of the covariance (diag1D="all"), only one scalar input is needed. If you use 2D smoothing for the covariance (diag1D="none"), a vector of bandwidth is required. Each entry in the vector represents the bandwidth used for the corresponding covariate in vars. For the scalar covariates, you can input 0 as a placeholder. — a scalar/vector of positive numeric - default: NULL — if no scalar/vector is provided, the bandwidth value for the smoothed cross-covariance function is chosen using 'GCV'; |
kern |
Smoothing kernel choice, common for mu and covariance; "rect", "gauss", "epan", "gausvar", "quar" - default: "gauss". |
measurementError |
Assume measurement error in the data; logical - default: FALSE. If TRUE the diagonal raw covariance will be removed when smoothing. |
diag1D |
A string specifying whether to use 1D smoothing for the diagonal line of the covariance. 'none': don't use 1D smoothing; 'all': use 1D for both auto- and cross-covariances. (default : 'all') |
useGAM |
Use GAM smoothing instead of local linear smoothing (semi-parametric option); logical - default: FALSE. |
returnCov |
Return the covariance surfaces, which is a four dimensional array. The first two dimensions correspond to outGrid and the last two correspond to the covariates and the response, i.e. (i, j, k, l) entry being Cov(X_k(t_i), X_l(t_j)); logical - default: FALSE. |
Details
If measurement error is assumed, the diagonal elements of the raw covariance will be removed. This could result in highly unstable estimate if the design is very sparse, or strong seasonality presents. WARNING! For very sparse functional data, setting measurementError = TRUE is not recommended.
Value
A list containing the following fields:
beta |
A matrix for the concurrent regression effects, where rows correspond to different predictors and columns to different time points. |
beta0 |
A vector containing the time-varying intercept. |
outGrid |
A vector of the output time points. |
cov |
A 4-dimensional array for the (cross-)covariance surfaces, with the (i, j, k, l) entry being Cov(X_k(t_i), X_l(t_j)) |
R2 |
A vector of the time-varying R2. |
n |
The sample size. |
References
-
Yao, F., Müller, H.G., Wang, J.L. "Functional Linear Regression Analysis for Longitudinal Data." Annals of Statistics 33, (2005): 2873-2903.(Dense data)
-
Sentürk, D., Müller, H.G. "Functional varying coefficient models for longitudinal data." J. American Statistical Association, 10, (2010): 1256–1264.
-
Sentürk, D., Nguyen, D.V. "Varying Coefficient Models for Sparse Noise-contaminated Longitudinal Data", Statistica Sinica 21(4), (2011): 1831-1856. (Sparse data)
Examples
# Y(t) = beta_0(t) + beta_1(t) X_1(t) + beta_2(t) Z_2 + epsilon
#
# Settings
set.seed(1)
n <- 30
nGridIn <- 50
sparsity <- 5:10 # Sparse data sparsity
T <- round(seq(0, 1, length.out=nGridIn), 4) # Functional data support
bw <- 0.1
outGrid <- round(seq(min(T), 1, by=0.05), 2)
outGrid <- seq(min(T), max(T), by=0.05)
# Simulate functional data
mu <- T * 2 # mean function for X_1
sigma <- 1
beta_0 <- 0
beta <- rbind(cos(T), 1.5 + sin(T))
beta_2 <- 1
Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(mu, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- matrix(NA, n, nGridIn)
for (i in seq_len(n)) {
Y[i, ] <- beta_0 + beta[1,]*X_1[i, ] + beta[2,]*Z[i, 2] + epsilon[i]
}
# Sparsify functional data
set.seed(1)
X_1sp <- fdapace::Sparsify(X_1, T, sparsity)
set.seed(1)
Ysp <- fdapace::Sparsify(Y, T, sparsity)
vars <- list(X_1=X_1sp, Z_2=Z[, 2], Y=Ysp)
res2 <- ConcurReg(vars, outGrid, userBwMu=c(.5,0,.5), userBwCov=c(.5,0,.5), kern='gauss',
measurementError=TRUE, diag1D='none', useGAM = FALSE, returnCov=TRUE)
Bootstrap pointwise confidence intervals for the coefficient functions in functional concurrent regression for densely observed data.
Description
Bootstrap pointwise confidence intervals for the coefficient functions in functional concurrent regression for densely observed data.
Usage
GetCI_Dense(dat, tGrid, level = 0.95, R = 10, bw, kernel_type)
Arguments
dat |
A list of input functional/scalar covariates.
Each field corresponds to a functional (a matrix) or scalar (a vector) variable.
The last entry is assumed to be the functional response if no entry is names |
tGrid |
A vector of length |
level |
A number taking values in [0,1] determing the confidence level. Default: 0.95. |
R |
An integer holding the number of bootstrap replicates. Default: 999. |
bw |
Scalar holding the bandwidth. |
kernel_type |
Character holding the kernel type (see |
Value
A list containing the following fields:
- CI_beta0
CI for the intercept function — A data frame holding three variables:
CIgrid
— the time grid where the CIs are evaluated;CI_beta0.lower
andCI_beta0.upper
— the lower and upper bounds of the CIs for the intercept function onCIgrid
.- CI_beta
A list containing CIs for the slope functions — the length of the list is same as the number of covariates. Each list contains the following fields: A data frame holding three variables:
CIgrid
— the time grid where the CIs are evaluated,CI_beta_j.lower
andCI_beta_j.upper
— the lower and upper bounds of the CIs for the intercept function onCIgrid
forj = 1,2,\dots
.- CI_R2
CI the time-varying
R^2(t)
— A data frame holding three variables:CIgrid
— the time grid where the CIs are evaluated,CI_R2.lower
andCI_R2.upper
— the lower and upper bounds of the CIs for the time-varyingR^2(t)
onCIgrid
.- level
The confidence level of the CIs.
Examples
set.seed(1)
n <- 50
nGridIn <- 101
tGrid <- seq(0, 1, length.out=nGridIn) # Functional data support
muX1 <- tGrid * 2 # mean function for X_1
sigma <- 1
beta0 <- 0
beta <- rbind(cos(tGrid), 1.5 + sin(tGrid))
Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(muX1, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- t(sapply(seq_len(n), function(i) {
beta0 + beta[1,] * X_1[i, ] + beta[2,] * Z[i, 2] + epsilon[i]
}))
dat <- list(X1=X_1, Z1=Z[, 2], Y=Y)
res <- ptFCReg(tGrid = tGrid, dat = dat)
smres <- smPtFCRegCoef(res, bw = 2.5 / (nGridIn-1), kernel_type = 'epan')
res_CI = GetCI_Dense(dat, tGrid, level = 0.95, R = 10, bw = 2.5 / (nGridIn-1), kernel_type = 'epan')
beta1 = res_CI$CI_beta[[1]] ##extracting CI for beta1
beta1a = beta1$CI_beta1.lower
beta1b = beta1$CI_beta1.upper
true_beta = beta[1,] ##extracting true coef beta1 in the simulation setting
est_beta = smres$beta[1,] ## ##extracting estimated coef beta1 from
###fitting the concurrent regression model
plot(beta1$CIgrid, beta1a, type= 'l', ylim = c(0,2)) ##plot of lower CI for beta1
lines(beta1$CIgrid, beta1b) ##plot of lower CI for beta1
lines(beta1$CIgrid, true_beta, col ='red')
##plot of true coef beta1 in the simulation setting
lines(beta1$CIgrid, est_beta, col ='blue')
##plot of estimated coef beta1 from fitting the concurrent regression model
Bootstrap pointwise confidence intervals for the coefficient functions in functional concurrent regression for sparsely observed data.
Description
Bootstrap pointwise confidence intervals for the coefficient functions in functional concurrent regression for sparsely observed data.
Usage
GetCI_Sparse(
vars,
outGrid = NULL,
level = 0.95,
R = 999,
userBwMu = NULL,
userBwCov = NULL,
kern = "gauss",
measurementError = FALSE,
diag1D = "all",
useGAM = FALSE
)
Arguments
vars |
A list of input functional/scalar covariates. Each field corresponds to a functional (a list) or scalar (a vector) covariate. The last entry is assumed to be the response if no entry is named 'Y'. If a field corresponds to a functional covariate, it should have two fields: 'Lt', a list of time points, and 'Ly', a list of functional values. |
outGrid |
A vector with the output time points, which need to be within 5% and 95% of the range of functional covariates. If NULL, outGrid will be generated from 5% to 95% of the range of functional covariates with 51 grids for fitting. Default: NULL |
level |
A number taking values in [0,1] determining the confidence level. Default: 0.95. |
R |
An integer holding the number of bootstrap replicates. Default: 999. |
userBwMu |
A scalar/vector bandwidth used for smoothing the mean function. Each entry in the vector represents the bandwidth used for the corresponding covariate in vars. For the scalar covariates, you can input 0 as a placeholder. If you only input a scalar, the function will use the same bandwidth to smooth all mean functions. — a scalar/vector of positive numeric - default: NULL — if no scalar/vector value is provided, the bandwidth value for the smoothed mean function is chosen using 'GCV'; |
userBwCov |
A scalar/vector bandwidth used for smoothing the auto or cross-covariances. If you use 1D smoothing for the diagonal line of the covariance (diag1D="all"), only one scalar input is needed. If you use 2D smoothing for the covariance (diag1D="none"), a vector of bandwidth is required. Each entry in the vector represents the bandwidth used for the corresponding covariate in vars. For the scalar covariates, you can input 0 as a placeholder. — a scalar/vector of positive numeric - default: NULL — if no scalar/vector is provided, the bandwidth value for the smoothed cross-covariance function is chosen using 'GCV'; |
kern |
Smoothing kernel choice, common for mu and covariance; "rect", "gauss", "epan", "gausvar", "quar" (default: "gauss") |
measurementError |
Assume measurement error in the data; logical - default: FALSE. If TRUE the diagonal raw covariance will be removed when smoothing. |
diag1D |
A string specifying whether to use 1D smoothing for the diagonal line of the covariance. 'none': don't use 1D smoothing; 'all': use 1D for both auto- and cross-covariances. (default : 'all') |
useGAM |
Use GAM smoothing instead of local linear smoothing (semi-parametric option); logical - default: FALSE. |
Details
If measurement error is assumed, the diagonal elements of the raw covariance will be removed. This could result in highly unstable estimate if the design is very sparse, or strong seasonality presents. WARNING! For very sparse functional data, setting measurementError = TRUE is not recommended.
Value
A list containing the following fields:
- CI_beta0
CI for the intercept function — A data frame holding three variables:
CIgrid
— the time grid where the CIs are evaluated,CI_beta0.lower
andCI_beta0.upper
— the lower and upper bounds of the CIs for the intercept function onCIgrid
.- CI_beta
A list containing CIs for the slope functions — the length of the list is same as the number of covariates. Each list contains the following fields: A data frame holding three variables:
CIgrid
— the time grid where the CIs are evaluated,CI_beta_j.lower
andCI_beta_j.upper
— the lower and upper bounds of the CIs for the coefficient functions onCIgrid
forj = 1,2,\dots
.- CI_R2
CI the time-varying
R^2(t)
— A data frame holding three variables:CIgrid
— the time grid where the CIs are evaluated,CI_R2.lower
andCI_R2.upper
— the lower and upper bounds of the CIs for the time-varyingR^2(t)
onCIgrid
.- level
The confidence level of the CIs.
Examples
set.seed(1)
n <- 30
nGridIn <- 100
sparsity <- 5:10 # Sparse data sparsity
T <- round(seq(0, 1, length.out=nGridIn), 4) # Functional data support
bw <- 0.1
outGrid <- round(seq(min(T), 1, by=0.05), 2)
# Simulate functional data
mu <- T * 2 # mean function for X_1
sigma <- 1
beta_0 <- 0
beta <- rbind(cos(T), 1.5 + sin(T))
beta_2 <- 1
Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(mu, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- matrix(NA, n, nGridIn)
for (i in seq_len(n)) {
Y[i, ] <- beta_0 + beta[1,] * X_1[i, ] + beta[2,] * Z[i, 2] + epsilon[i]
}
# Sparsify functional data
set.seed(1)
X_1sp <- fdapace::Sparsify(X_1, T, sparsity)
Ysp <- fdapace::Sparsify(Y, T, sparsity)
vars <- list(X_1=X_1sp, Z_2=Z[, 2], Y=Ysp)
res <- GetCI_Sparse(vars, outGrid[-c(1,21)], level = 0.95, R = 2,
userBwMu = c(.1,.1,.1), userBwCov = c(.1,.1,.1),
kern='gauss', measurementError=TRUE, diag1D='none',
useGAM = FALSE)
Fitted functional responses from a ptFCReg
object.
Description
Fitted functional responses from a ptFCReg
object.
Usage
fitted_ptFCReg(object)
Arguments
object |
An object of class |
Value
An n
-by-m
matrix, where each row corresponds to one subject,
and each column corresponds to a time point in object$tGrid
.
Examples
set.seed(1)
n <- 50
nGridIn <- 101
tGrid <- seq(0, 1, length.out=nGridIn) # Functional data support
muX1 <- tGrid * 2 # mean function for X_1
sigma <- 1
beta0 <- 0
beta <- rbind(cos(tGrid), 1.5 + sin(tGrid))
Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(muX1, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- t(sapply(seq_len(n), function(i) {
beta0 + beta[1,] * X_1[i, ] + beta[2,] * Z[i, 2] + epsilon[i]
}))
dat <- list(X1=X_1, Z1=Z[, 2], Y=Y)
res <- ptFCReg(tGrid = tGrid, dat = dat)
smres <- smPtFCRegCoef(res, bw = 2.5 / (nGridIn-1), kernel_type = 'epan')
fit_res <- stats::fitted(res)
fit_smres <- stats::fitted(smres)
Functional History Index Model
Description
Functional history index model for dense functional responses and dense functional predictors.
Usage
historyIndexDense(Y, X, Lag = NULL, optnsY = NULL, optnsX = NULL)
Arguments
Y |
a list which contains functional responses in the form of a list LY and the time points LT at which they are observed (i.e., list(Ly = LY,Lt = LT)). |
X |
a list of lists which contains the observed functional predictors list Lxj and the time points list Ltj at which they are observed. It needs to be of the form |
Lag |
a length |
optnsY |
a list of options control parameters for the response specified by |
optnsX |
a list of options control parameters for the predictors specified by |
Details
The functional history index model is defined as
E[Y(t)|X_1(t), \cdots, X_p(t)] = \beta_0(t) + \sum_{i=1}^p\beta_i(t)\int_0^{\Delta_i}\gamma_i(s)X_i(t-s)ds
for t\in[\max_i\{\Delta_i\}, T]
with a suitable T>0
.
Write \alpha_i(t, s)=\beta_i(t)\gamma_i(s)
. It becomes
E[Y(t)|X_1(t), \cdots, X_p(t)] = \beta_0(t) + \sum_{i=1}^p\int_0^{\Delta_i}\alpha_i(t, s)X_i(t-s)ds
.
For more details we refer to
Şentürk, D. and Müller, H.G., (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105(491), pp.1256-1264.
Value
A list of the following:
beta0 |
a vector of |
alpha |
a list of matrices with the |
yHat |
an n by |
workGridY |
a vetor representing the working grid for the response. |
workGridLag |
a list of vectors with the |
References
Şentürk, D. and Müller, H.G., (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105(491), pp.1256-1264. Yao, F., Müller, H.G., Wang, J.L. (2005). Functional linear regression analysis for longitudinal data. Annals of Statistics 33, 2873–2903. Hall, P., Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35(1), 70–91.
Examples
set.seed(1)
### functional covariate X(t) ###
phi1 <- function(t) sin(pi*t / 5) / sqrt(5)
phi2 <- function(t) cos(pi*t / 5) / sqrt(5)
lambdaX <- c(10, 5)
n <- 150
N <- 101
Xi <- matrix(rnorm(2*n), nrow = n, ncol = 2)
denseLt <- list()
denseLy <- list()
t0 <- seq(0, 15, length.out = N)
for (i in 1:n) {
denseLt[[i]] <- t0
denseLy[[i]] <- lambdaX[1]*Xi[i, 1]*phi1(t0) + lambdaX[2]*Xi[i, 2]*phi2(t0)
}
denseX0 <- list(Ly = denseLy, Lt = denseLt)
### generate coefficient function gamma(u), beta(u) ###
Lag <- 5
u0 <- t0[t0<=Lag]
t0_out <- t0[t0>=Lag]
gamma_u <- function(u) sqrt(2/5) * cos(pi * u /5)
beta_1 <- function(t) 5*sin(pi*t/10)
beta_0 <- function(t) t^2/2
### functional response Y(t), t in t0_out ###
denseLt <- list()
denseLy <- list()
for (i in 1:n) {
denseLt[[i]] <- t0_out
Xt <- denseX0$Ly[[i]]
Xtu <- t(sapply((1:N)[t0>=Lag], function(j){
rev(Xt[(j-length(u0)+1):j]) #history index for X[t-u:t]
}))
IntGammaXtu <- apply(Xtu, 1, function(v){
fdapace::trapzRcpp(u0, gamma_u(u0) * v)
})
#append 0 in the first length(u0)-1 element(useless info. in our modeling)
denseLy[[i]] <- beta_0(t0_out) + IntGammaXtu * beta_1(t0_out) + rnorm(length(t0_out), 0, 0.1)
}
denseY <- list(Ly = denseLy, Lt = denseLt)
### functional predictor X(t) (adjust for t0_out) ###
denseLt <- list()
denseLy <- list()
for (i in 1:n){
denseLt[[i]] <- t0_out
denseLy[[i]] <- denseX0$Ly[[i]][t0>=Lag]
}
denseX <- list(Ly = denseLy,
Lt = denseLt)
fit <- historyIndexDense(Y = denseY, X = list(X = denseX), Lag = Lag)
fit$beta0
fit$alpha[[1]]
Functional History Index Model
Description
Functional history index model for functional responses and functional predictors.
Usage
historyIndexSparse(Y, X, Lag = NULL, optnsY = NULL, optnsX = NULL)
Arguments
Y |
A list which contains functional responses in the form of a list LY and the time points LT at which they are observed (i.e., list(Ly = LY,Lt = LT)). |
X |
A list of lists which contains the observed functional predictors list Lxj and the time points list Ltj at which they are observed. It needs to be of the form |
Lag |
A length |
optnsY |
A list of options control parameters for the response specified by |
optnsX |
A list of options control parameters for the predictors specified by |
Details
The functional history index model is defined as
E[Y(t)|X_1(t), \cdots, X_p(t)] = \beta_0(t) + \sum_{j=1}^p\beta_j(t)\int_0^{\Delta_j}\gamma_j(s)X_j(t-s)ds
for t\in[\max_j\{\Delta_j\}, T]
with a suitable T>0
.
Write \alpha_j(t, s)=\beta_j(t)\gamma_j(s)
. It becomes
E[Y(t)|X_1(t), \cdots, X_p(t)] = \beta_0(t) + \sum_{j=1}^p\int_0^{\Delta_j}\alpha_j(t, s)X_j(t-s)ds
.
For more details we refer to
Şentürk, D. and Müller, H.G., (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105(491), pp.1256-1264.
Value
A list of the following:
beta0 |
a vector of |
beta1 |
a list of vectors with the |
gamma |
a list of vectors with the |
workGridY |
a vetor representing the working grid for the response. |
workGridLag |
a list of vectors with the |
References
Şentürk, D. and Müller, H.G., (2010). Functional varying coefficient models for longitudinal data. Journal of the American Statistical Association, 105(491), pp.1256-1264. Yao, F., Müller, H.G., Wang, J.L. (2005). Functional linear regression analysis for longitudinal data. Annals of Statistics 33, 2873–2903. Hall, P., Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35(1), 70–91.
Examples
set.seed(1)
### functional covariate X(t) ###
phi1 <- function(t) sin(pi*t / 5) / sqrt(5)
phi2 <- function(t) cos(pi*t / 5) / sqrt(5)
lambdaX <- c(10, 5)
n <- 150
N <- 101
Xi <- matrix(rnorm(2*n), nrow = n, ncol = 2)
denseLt <- list()
denseLy <- list()
t0 <- seq(0, 15, length.out = N)
for (i in 1:n) {
denseLt[[i]] <- t0
denseLy[[i]] <- lambdaX[1]*Xi[i, 1]*phi1(t0) + lambdaX[2]*Xi[i, 2]*phi2(t0)
}
denseX0 <- list(Ly = denseLy,Lt = denseLt)
### generate coefficient function gamma(u), beta(u) ###
Lag <- 5
u0 <- t0[t0<=Lag]
t0_out <- t0[t0>=Lag]
gamma_u <- function(u) sqrt(2/5) * cos(pi * u /5)
beta_1 <- function(t) 5*sin(pi*t/10)
beta_0 <- function(t) t^2/2
### functional response Y(t), t in t0_out ###
denseLt <- list()
denseLy <- list()
for (i in 1:n) {
denseLt[[i]] <- t0_out
Xt <- denseX0$Ly[[i]]
Xtu <- t(sapply((1:N)[t0>=Lag], function(j){
rev(Xt[(j-length(u0)+1):j]) #history index for X[t-u:t]
}))
IntGammaXtu <- apply(Xtu, 1, function(v){
fdapace::trapzRcpp(u0, gamma_u(u0) * v)
})
#append 0 in the first length(u0)-1 element(useless info. in our modeling)
denseLy[[i]] <- beta_0(t0_out) + IntGammaXtu * beta_1(t0_out) + rnorm(length(t0_out), 0, 0.1)
}
denseY <- list(Ly = denseLy, Lt = denseLt)
### functional predictor X(t) (adjust for t0_out) ###
denseLt <- list()
denseLy <- list()
for (i in 1:n){
denseLt[[i]] <- t0_out
denseLy[[i]] <- denseX0$Ly[[i]][t0>=Lag]
}
denseX <- list(Ly = denseLy,
Lt = denseLt)
### sparify the dense data ###
SparseY <- fdapace::Sparsify(samp = t(sapply(denseY$Ly, function(v) v)),
pts = t0_out,
sparsity = sample(10:20, n, replace = TRUE)
)
SparseX <- fdapace::Sparsify(samp = t(sapply(denseX$Ly, function(v) v)),
pts = t0_out,
sparsity = sample(10:20, n, replace = TRUE))
### model fitting for sparse case ###
Fit_result <- historyIndexSparse(Y = SparseY, X = list(X = SparseX), Lag = Lag)
Fit_result$beta0
Fit_result$beta1
Fit_result$gamma
Functional concurrent regression using pointwise multiple linear regression.
Description
Functional concurrent regression using pointwise multiple linear regression.
Usage
ptFCReg(tGrid, dat)
Arguments
tGrid |
A vector of length |
dat |
A list of input functional/scalar covariates.
Each field corresponds to a functional (a matrix) or scalar (a vector) variable.
The last entry is assumed to be the functional response if no entry is names |
Value
A list containing the following fields:
- beta0
A vector containing the time-varying intercept evaluated on
tGrid
.- beta
A matrix for the concurrent regression effects, where rows correspond to different predictors and columns to different time points in
tGrid
.- tGrid
The input
tGrid
.- R2
A vector of the time-varying
R^2(t)
, evaluated att
intGrid
.- Ldf
A list holding the input data, each element of which is a data frame holding the data observed at one element of
tGrid
.
Examples
set.seed(1)
n <- 50
nGridIn <- 101
tGrid <- seq(0, 1, length.out=nGridIn) # Functional data support
muX1 <- tGrid * 2 # mean function for X_1
sigma <- 1
beta0 <- 0
beta <- rbind(cos(tGrid), 1.5 + sin(tGrid))
Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(muX1, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- t(sapply(seq_len(n), function(i) {
beta0 + beta[1,] * X_1[i, ] + beta[2,] * Z[i, 2] + epsilon[i]
}))
dat <- list(X1=X_1, Z1=Z[, 2], Y=Y)
res <- ptFCReg(tGrid = tGrid, dat = dat)
Smooth the concurrent effects functions in a ptFCReg
object using local linear regression.
The local linear regression is implemented using the function Lwls1D
.
Description
Smooth the concurrent effects functions in a ptFCReg
object using local linear regression.
The local linear regression is implemented using the function Lwls1D
.
Usage
smPtFCRegCoef(object, bw, kernel_type)
Arguments
object |
An object of class |
bw |
Scalar holding the bandwidth. |
kernel_type |
Character holding the kernel type (see |
Value
An object of class ptFCReg
, where the fields beta0
and beta
hold the smoothed intercept functions and concurrent effects functions, respectively.
See ptFCReg
for a complete list of the fields.
Examples
set.seed(1)
n <- 50
nGridIn <- 101
tGrid <- seq(0, 1, length.out=nGridIn) # Functional data support
muX1 <- tGrid * 2 # mean function for X_1
sigma <- 1
beta0 <- 0
beta <- rbind(cos(tGrid), 1.5 + sin(tGrid))
Z <- MASS::mvrnorm(n, rep(0, 2), diag(2))
X_1 <- Z[, 1, drop=FALSE] %*% matrix(1, 1, nGridIn) + matrix(muX1, n, nGridIn, byrow=TRUE)
epsilon <- rnorm(n, sd=sigma)
Y <- t(sapply(seq_len(n), function(i) {
beta0 + beta[1,] * X_1[i, ] + beta[2,] * Z[i, 2] + epsilon[i]
}))
dat <- list(X1=X_1, Z1=Z[, 2], Y=Y)
res <- ptFCReg(tGrid = tGrid, dat = dat)
smres <- smPtFCRegCoef(res, bw = 2.5 / (nGridIn-1), kernel_type = 'epan')