
Package ‘eiCircles’
July 22, 2025

Type Package

Title Ecological Inference of RxC Tables by Overdispersed-Multinomial
Models

Version 0.0.1-12

Description Estimates RxC (R by C) vote transfer matrices (ecological contingency tables) from ag-
gregate data using the model described in Forcina et al. (2012), as extension of the model pro-
posed in Brown and Payne (1986). Allows incorporation of covariates.
References:
Brown, P. and Payne, C. (1986). ''Aggregate data, ecological regression and voting transi-
tions''. Journal of the American Statistical Associa-
tion, 81, 453–460. <DOI:10.1080/01621459.1986.10478290>.
Forcina, A., Gnaldi, M. and Bracalente, B. (2012). ''A revised Brown and Payne model of vot-
ing behaviour applied to the 2009 elections in Italy''. Statistical Methods & Applica-
tions, 21, 109–119. <DOI:10.1007/s10260-011-0184-x>.

License GPL (>= 2)

Encoding UTF-8

Imports stats, NlcOptim (>= 0.6)

Suggests ggplot2, scales

RoxygenNote 7.3.2

NeedsCompilation no

Author Antonio Forcina [aut] (ORCID: <https://orcid.org/0000-0001-5239-5495>),
Jose M. Pavía [aut, cre] (ORCID:

<https://orcid.org/0000-0002-0129-726X>)

Maintainer Jose M. Pavía <jose.m.pavia@uv.es>

Repository CRAN

Date/Publication 2025-04-11 11:20:01 UTC

Contents
BPF . 2
plot.BPF . 9

1

https://doi.org/10.1080/01621459.1986.10478290
https://doi.org/10.1007/s10260-011-0184-x
https://orcid.org/0000-0001-5239-5495
https://orcid.org/0000-0002-0129-726X

2 BPF

print.BPF . 11
print.summary.BPF . 12
simula_BPF . 12
simula_BPF_with_deviations . 15
summary.BPF . 18

Index 20

BPF Ecological Inference of RxC Tables by Overdispersed-Multinomial
Models

Description

Implements the model proposed in Forcina et al. (2012), as extension of Brown and Payne (1986),
to estimate RxC vote transfer matrices (ecological contingency tables). Allows incorporation of
covariates.

Usage

BPF(
X,
Y,
local = "IPF",
covariates = NULL,
census.changes = "adjust1",
stable.units = TRUE,
stability.par = 0.12,
confidence = 0.95,
cs = 50,
null.cells = NULL,
row.cells.relationships = NULL,
row.cells.relationships.C = NULL,
pair.cells.relationships = NULL,
cells.fixed.logit = NULL,
dispersion.rows = data.frame(row1 = rep(1L, ncol(X) - 1L), row2 = 2:ncol(X)),
start.values = NULL,
seed = NULL,
max.iter = 100,
max.iter.hyper = 1000,
tol = 1e-04,
verbose = FALSE,
save.beta = FALSE,
...

)

BPF 3

Arguments

X matrix (or data.frame) of order KxR with either the electoral results recorded
in election 1 or the sum across columns (the margins of row options) of the K
ecological tables.

Y matrix (or data.frame) of order KxC with either the electoral results recorded
in election 2 or the sum across rows (the margins of column options) of the K
ecological tables.

local A character string indicating the algorithm to be used for adjusting the esti-
mates of the transition probabilities obtained for the whole area (electoral space)
with the actual observations available in each local unit. Only "IPF" (itera-
tive proportional fitting, also known as raking), "lik" (an algorithm based on
the assumed likelihood), "hyper" (an algorithm based on assuming a multi-
hypergeometric distribution for the inner values of the unit table given the ob-
served row and column margins, which should be integers; even after census ad-
justments, if this is necessary) and "none" are allowed. When local = "none",
no local estimates are obtained. Default, "IPF"

covariates A list with two components, covar and meta. covar is a matrix (or data.frame),
of order KxNC (where K is the number of (polling) units and NC the number
of covariates), with the values of the covariate(s) in each unit. meta is a matrix
(or data.frame) with three columns. The data in these columns inform about the
cell(s) (row and column) and covariate(s) that should be employed for modelling
probabilities in each cell. Cell(s) and covariate(s) could be identified by position
or names. For instance, (2, 3, “income”) means that the covariate identified as
“income” in the object covar should be used as covariate to model the proba-
bility corresponding to cell (2, 3) of the transfer (transition probability) matrix.
Equally, (“party1”, “party2”, 4) means that the covariate located in the fourth
column of meta should be used to model the transfer probability from “party1”
to “party2”, where “party1” (in X) and “party2” (in Y) are names used to iden-
tified columns in the election data objects. Default, NULL: no covariates are
used.

census.changes A string character indicating how census changes between elections must be
handled. At the moment, it only admits two values "adjust1" and "adjust2",
where the distributions of votes in election 1 or 2 are, respectively, adjusted to
match the outcomes of the other election: "adjust1" adjusts the census of the
first election to match that of the second one; "adjust2" adjusts the census of
the second election to match that of the first one. Default, "adjust1".

stable.units A TRUE/FALSE character indicating whether only stable units (those whose num-
ber of total number of voters have experienced a small change) are selected.
Default, TRUE.

stability.par A non-negative number that controls the maximum proportion of relative change
in the total census for a unit to be considered stable. Default, 0.12. The relative
change is measured as the absolute value of the difference of the logarithms of
the sizes (censuses) in the two elections. Measuring the relative change this way
avoids dependence on which election is used as reference.

confidence A number between 0 and 1 to be used as level of confidence for the confidence
intervals of the transition probabilities (TP estimates). Default, 0.95.

4 BPF

cs A positive number indicating the average number of cluster size. Default, 50.

null.cells A matrix (or data.frame) with two columns (row, column) informing about the
cells whose probabilities should be constrained to be zero. Cells could be iden-
tified by position or names. For instance, (2, 3) means that the probability cor-
responding to cell (2, 3) of the transfer matrix should be constrained to be zero.
Equally, (“party1”, “party2”) means that the transfer probability from “party1”
(in X) to “party2” (in Y) will be zero, where “party1” and “party2” are names
used to identified columns in the election data objects. Because the model takes
the last option of Y as reference, constraints of this kind cannot be defined in-
volving a cell of the reference category. See Note and Details for more infor-
mation about constraints and how properly define them. Default, NULL: no null
constraints.

row.cells.relationships

A matrix (or data.frame) with four columns (row, column1, column2, constant)
may be used to assign a pre-specified value to the ratio between the transition
probabilities of two cells within the same row. Because the model takes the
value in column2 as reference to define this constraint, column1 and column2
must be different from the last column which has already been used to define
the logits. Rows and columns could be identified by position or names. For
instance, (2, 3, 5, 0.5) means that the probability corresponding to cell (2, 3) of
the transfer matrix is constrained to be equal to 0.5 times the probability cor-
responding to cell (2, 5) of the transfer matrix. Because each cell defined by
(row, column2) is used as reference relative to the corresponding cell (row, col-
umn1), it is removed and thus that cell cannot be reference within two different
constraints. So, constraints involving the same cell should be defined with care.
To be specific, the cells defined by (row, columns2) should not appear in other
constraints. For instance, if in the i-th row you want constrain (cell 3) = (cell 1)
x 0.6 and (cell 3) = (cell 2) x 0.3 you need to specify it as (cell 3) = (cell 1) x
0.6 and as (cell 2) = (cell 1) x 2. See Note and Details for more information
about constraints and how properly define them.. Default, NULL: no row-cell
constraints.

row.cells.relationships.C

A matrix (or data.frame) with three columns (row, column, constant) informing
about the analog to the constraints described in row.cells.relationships
when ’column2’ refers to the reference category (C-th column in Y). This is
needed because logits are already computed with reference to column C, con-
straining these ratios is equivalent to assign a specified value to the logit in the
corresponding cell. Rows and columns could be identified by position or names.
For instance, (2, 3, 0.5) means that the probability corresponding to cell (2, 3)
of the transfer matrix is constrained to be equal to 0.5 times the probability cor-
responding to cell (2, ncol(Y)) of the transfer matrix. See Note and Details
for more information about constraints and how properly define them. Default,
NULL: no row-proportional constraints.

pair.cells.relationships

This is a kind of less stringent version of the argument row.cells.relationships.
Both may be used to increase or decrease a transition which is expected to be
too different from informed expectations. This argument is declared via a ma-
trix (or data.frame) with seven columns (row1, column1.1, column1.2, row2,

BPF 5

column2.1, column2.2, constant) which imposes proportional relationships be-
tween ratios of probabilities corresponding to row1 and and row2. Let r1 be the
ratio between the probabilities in columns 1.1 and 1.2 in row 1, ’r1 = cell(row1,
column1.1)/cell(row1, column1.2)’, and r2 the equivalent ration between prob-
abilities in columns 2.1 and 2.2 in row2, ’r2 = cell(row2, column2.1)/cell(row2,
column2.2)’, then this argument is used to assign the specified value ’constant’
to ’r2/r1’. Rows and columns could be identified by position or names. For in-
stance, (2, 3, 5, 3, 4, 2, 0.5) means that the ratio of probabilities corresponding
to cells (2, 3) and (2, 5) of the transfer matrix is constrained to be equal to 0.5
times the ratio of probabilities corresponding to cells (3, 4) and (3, 2) of the
transfer matrix. See Note and Details for more information about constraints
and how properly define them. Default, NULL: no ratio-proportional constraints.

cells.fixed.logit

A matrix (or data.frame) with three columns (row, column, number) informing
about the cells with fixed values for the logit of the probability corresponding
to the cell; this does not set the actual transition but its ratio with respect to the
reference category. For instance, (2, 3, -5) means that the logit of the probability
corresponding to cell (2, 3) of the transfer matrix is constrained to be -5. See
Note and Details for more information about constraints and how properly
define them. Default, NULL: no logit constraints.

dispersion.rows

A matrix (or data.frame) with two columns (row1, row2) indicating what pair
of two rows should have equal overdispersions. Default, over-dispersions are
assumed to be the same in all rows: data.frame("row1" = rep(1L, ncol(X) -
1L), "row2" = 2:ncol(X)). See Note and Details for more information about
constraints and how properly define them. Use dispersion.rows = NULL to
specify that overdispersion is unconstrained, i.e., that each row has a different
parameter.

start.values A vector of length ncol(X)*ncol(Y) + nrow(meta) - NR, where nrow(meta)
accounts for the number of regression coefficients and NR is the number of re-
strictions imposed to either cell probabilities of the transition matrix or overdis-
persions through the arguments cells.fixed.logit, row.cells.relationships,
null.cells, row.cells.relationships.C, pair.cells.relationships and
dispersion.rows, with the initial estimates for (i) the logits of the transition
matrix probabilities, taking the last column of Y as reference, (ii) the overdisper-
sions (in the logit scale) and (iii) the coefficients in the regression models de-
fined via covariates. Typically, this is a beta vector obtained from a previous
run of BPF with the same specified model, but which abruptly stopped because
of a break in the converging process (see the save.beta argument). Default,
NULL. When start = NULL random initial values for the transition probabilities
are generated assuming independence between origin and destination options
(i.e., implying that transition probabilities are constant across rows), sound val-
ues for the over-dispersion parameters are generated and zero coefficients are
assumed for the predictors of the regression models.

seed A number indicating the random seed to be used. Default, NULL: no seed is used.

max.iter Integer positive number. Maximum number of iterations to be performed for the
Fisher scoring algorithm during the MLE estimation. Default, 100.

6 BPF

max.iter.hyper Integer positive number. Maximum number of iterations without change to
be performed for search of the MLE estimate in each unit table when local
= "hyper". Default, 1000.

tol Maximum value allowed for the numerical estimates of the partial derivatives of
the likelihood in the point of convergence. Default, 0.0001.

verbose A TRUE/FALSE character indicating whether intermediate results should be printed
in the screen during the convergence process. Default FALSE.

save.beta A TRUE/FALSE character indicating whether, while convergence is performed,
the vector of temporary logits, over-dispersion (in logit scale) parameters and (if
required) regression coefficients should be saved in the working directory in the
file "beta.Rdata" file. This data could be used to restart the process in case of a
premature failure of convergence process. Default FALSE.

... Other arguments to be passed to the function. Not currently used.

Details

Description about how defining constraints in more detail.

To define constraints properly is a little tricky. Clearly, in the first place, it is the responsibility of
the user to define constraints that are mutually compatible among themselves. The function does
not check them to be jointly congruent. It is important to be aware that each linear constraint,
when implemented, requires an element of the vector of internal parameters to be set to a known
value and the corresponding element of the (underlying) design matrix to be removed. In addition,
certain constraints are implemented by replacing one or more columns of the design matrix by
suitable linear combinations of the columns that correspond to the cells involved in the constraint.
A warning will be issued when two or more constraints require to remove the same column of the
design matrix. To avoid conflicting constraints, a safe rule is that each constraint should be acting
on disjoint sets of cells.

For each type of constraint, below we specify which column of the design matrix is removed and
when a linear combination is needed how it is defined. Note that, in the unconstrained model, the
design matrix has a column for each cell of the transition probabilities listed by row except for the
last column which is used as reference:

• null.cells: The column of the design matrix corresponding to the cell defined by ’row’ and
column’ declared when defining the constraint is removed.

• row.cells.relationships: The column of the design matrix corresponding to the cell (row,
column2) is removed while the one corresponding to the cell (row, column2) is adjusted.

• row.cells.relationships.C: The column of the design matrix corresponding to the cell
determined by each pair ’row’, ’column’ is removed.

• pair.cells.relationships: This constraint is defined by 4 pairs of “row, column”; the
column of the design matrix corresponding to the last pair (row2, column2.2) will be removed
and the others adjusted.

Value

A list with the following components

BPF 7

TM The estimated RxC table (matrix) of transition probabilities/rates. This coin-
cides with TP when local = "none" and is equal to TR when local = "IPF",
local = "hyper" or local = "lik".

TM.votes The estimated RxC table (matrix) of votes corresponding to TM.

TP The estimated RxC table (matrix) of underlying transition probabilities obtained
after applying the approach in Forcina et al. (2012) with the specified model.

TP.units.cov With covariates an array of order RxCxK with the estimates tables/matrices of
transition probabilities corresponding to each unit taking into account the values
of the covariates in the unit. Without covariates this object is NULL.

TR When local = "IPF", local = "hyper" or local = "lik", the estimated RxC
table/matrix of transition rates obtained as composition of the estimated unit
tables/matrices attained after adjusting TP in each polling unit to the unit margins
using the iterative proportional fitting algorithm. When local = "none", this
object is NULL.

TR.units When local = "IPF", local = "hyper" or local = "lik", an array of order
RxCxK with the tables/matrices of transition rates attained in each unit attained
after adjusting TP using the iterative proportional fitting algorithm to the unit
margins. When local = "none", this object is NULL.

TR.votes.units When local = "IPF", local = "hyper" or local = "lik", the array of order
RxCxK with the tables/matrices of votes linked to the TR.units array. When
local = "none", this object is NULL.

TP.lower A matrix of order RxC with the estimated lower limits of the confidence inter-
vals, based on a normal approximation, of the underlying transition probabilities
(TP) of the row-standardized vote transitions from election 1 to election 2.

TP.upper A matrix of order RxC with the estimated upper limits of the confidence inter-
vals, based on a normal approximation, of the underlying transition probabilities
(TP) of the row-standardized vote transitions from election 1 to election 2.

beta The estimated vector of internal parameters (logits) at convergence. The first
R(C-1) - NR elements (where NR is the number of restrictions imposed in cell
probabilities) are logits of transitions and the last nrow(meta) elements are the
regression coefficients in case covariates are present. The over dispersion(s) pa-
rameter(s) is (are) in between. Default, just one over-dispersion parameter. In
case of non-convergence, if the function is used with save.beta = TRUE, the
components of beta from the file "beta.Rdata" may be used to restart the algo-
rithm from where it stopped by introducing them via the start.values argu-
ment.

overdispersion The estimated vector at convergence of internal overdispersion parameters in the
scale from 0 to 1.

sd.TP Estimated standard deviations of the estimated transition probabilities.

sd.beta The estimated standard errors of the elements of beta.

cov.beta The estimated covariance matrix of beta. It may be used to compute approx-
imate variances of transformations of the beta parameters, such as transition
probabilities.

8 BPF

madis A vector of length K with discrepancies of individual local units based on the
Mahalanobis measure. It is essentially the quadratic discrepancy between ob-
served and estimated votes weighted by the inverse of the estimated variance.

lk The value of the log-likelihood at convergence.

selected.units A vector with the indexes corresponding to the units finally selected to estimate
the vote transition probability matrix.

iter An integer number indicating the number of iterations performed before con-
verging or when stopped.

X Matrix of order KxR with the adjusted electoral results recorded in election 1.

Y Matrix of order KxC with the adjusted electoral results recorded in election 2.

inputs A list containing all the objects with the values used as arguments by the func-
tion.

Note

Constraints may be used to force estimates to take values different from those obtained by uncon-
strained estimation. As such, these tools should be used sparingly and, essentially, to assess whether
estimates are substantially (significantly) different from what we would expect or unexpected esti-
mates are only due to random variation. To first order approximation, twice the difference between
the unconstrained and the constrained log-likelihood should be distributed as a chi-square with 1
degree of freedom. This allows to test which constraints are in substantial conflict with the data.

Author(s)

Antonio Forcina, <forcinarosara@gmail.com>

Jose M. Pavia, <pavia@uv.es>

References

Brown, P. and Payne, C. (1986). Aggregate data, ecological regression and voting transitions. Jour-
nal of the American Statistical Association, 81, 453–460. doi:10.1080/01621459.1986.10478290

Forcina, A., Gnaldi, M. and Bracalente, B. (2012). A revised Brown and Payne model of voting
behaviour applied to the 2009 elections in Italy. Statistical Methods & Applications, 21, 109–119.
doi:10.1007/s102600110184x

Examples

votes1 <- structure(list(P1 = c(16L, 4L, 13L, 6L, 1L, 16L, 6L, 17L, 48L, 14L),
P2 = c(8L, 3L, 0L, 5L, 1L, 4L, 7L, 6L, 28L, 8L),
P3 = c(38L, 11L, 11L, 3L, 13L, 39L, 14L, 34L, 280L, 84L),
P4 = c(66L, 5L, 18L, 39L, 30L, 57L, 35L, 65L, 180L, 78L),
P5 = c(14L, 0L, 5L, 2L, 4L, 21L, 6L, 11L, 54L, 9L),
P6 = c(8L, 2L, 5L, 3L, 0L, 7L, 7L, 11L, 45L, 17L),
P7 = c(7L, 3L, 5L, 2L, 3L, 17L, 7L, 13L, 40L, 8L)),
row.names = c(NA, 10L), class = "data.frame")

votes2 <- structure(list(C1 = c(2L, 1L, 2L, 2L, 0L, 4L, 0L, 4L, 19L, 14L),
C2 = c(7L, 3L, 1L, 7L, 2L, 5L, 3L, 10L, 21L, 6L),
C3 = c(78L, 7L, 28L, 42L, 28L, 84L, 49L, 85L, 260L, 100L),

https://doi.org/10.1080/01621459.1986.10478290
https://doi.org/10.1007/s10260-011-0184-x

plot.BPF 9

C4 = c(56L, 14L, 20L, 7L, 19L, 54L, 22L, 50L, 330L, 91L),
C5 = c(14L, 3L, 6L, 2L, 3L, 14L, 8L, 8L, 45L, 7L)),
row.names = c(NA, 10L), class = "data.frame")

example <- BPF(votes1, votes2, local = "IPF")$TM

plot.BPF Graphical representation of a RxC ecological inference (vote transfer)
matrix

Description

Plot method for objects obtained with BPF.

Usage

S3 method for class 'BPF'
plot(
x,
margins = TRUE,
digits = 2,
row.names = NULL,
col.names = NULL,
size.numbers = 6,
size.labels = 4,
size.margins = 6,
colour.cells = "darkolivegreen3",
colour.grid = "floralwhite",
alpha = 0.5,
which = NULL,
...,
show.plot = TRUE

)

Arguments

x An object output of the BPF function.

margins A TRUE/FALSE argument informing whether the margins of the matrix should be
displayed. Default, TRUE.

digits Integer indicating the number of decimal places to be shown. Default, 2.

row.names Names to be used for the rows of the matrix.

col.names Names to be used for the columns of the matrix.

size.numbers A reference number indicating the average font size to be used for the transfer
numbers. Default, 6.

size.labels A number indicating the font size to be used for labels. Default, 4.

size.margins A number indicating the font size to be used for margin numbers. Default, 6.

10 plot.BPF

colour.cells Background base colour for cells.

colour.grid Colour to be used for grid lines.

alpha A [0,1] number of colour transparency.

which A vector of integers informing the units for which the aggregate transfer matrix
should be plotted. Default, NULL: the global matrix is shown.

... Other arguments passed on to methods. Not currently used.

show.plot A TRUE/FALSE value indicating whether the plot should be displayed as a side-
effect. By default, TRUE.

Value

Invisibly returns the (ggplot) description of the plot, which is a list with components that contain
the plot itself, the data, information about the scales, panels etc.

Note

ggplot2 is needed to be installed for this function to work.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

votes1 <- structure(list(P1 = c(16L, 4L, 13L, 6L, 1L, 16L, 6L, 17L, 48L, 14L),
P2 = c(8L, 3L, 0L, 5L, 1L, 4L, 7L, 6L, 28L, 8L),
P3 = c(38L, 11L, 11L, 3L, 13L, 39L, 14L, 34L, 280L, 84L),
P4 = c(66L, 5L, 18L, 39L, 30L, 57L, 35L, 65L, 180L, 78L),
P5 = c(14L, 0L, 5L, 2L, 4L, 21L, 6L, 11L, 54L, 9L),
P6 = c(8L, 2L, 5L, 3L, 0L, 7L, 7L, 11L, 45L, 17L),
P7 = c(7L, 3L, 5L, 2L, 3L, 17L, 7L, 13L, 40L, 8L)),
row.names = c(NA, 10L), class = "data.frame")

votes2 <- structure(list(C1 = c(2L, 1L, 2L, 2L, 0L, 4L, 0L, 4L, 19L, 14L),
C2 = c(7L, 3L, 1L, 7L, 2L, 5L, 3L, 10L, 21L, 6L),
C3 = c(78L, 7L, 28L, 42L, 28L, 84L, 49L, 85L, 260L, 100L),
C4 = c(56L, 14L, 20L, 7L, 19L, 54L, 22L, 50L, 330L, 91L),
C5 = c(14L, 3L, 6L, 2L, 3L, 14L, 8L, 8L, 45L, 7L)),
row.names = c(NA, 10L), class = "data.frame")

example <- BPF(votes1, votes2)
p <- plot(example, show.plot = FALSE)
p

print.BPF 11

print.BPF Print a summary of an output of the BPF function

Description

Print method for objects obtained with the BPF function.

Usage

S3 method for class 'BPF'
print(x, ..., margins = TRUE, digits = 2)

Arguments

x An object output of the BPF function.

... Other arguments passed on to methods. Not currently used.

margins A TRUE/FALSE argument informing if the margins of the transition matrix should
be displayed. Default, TRUE.

digits Integer indicating the number of decimal places to be shown. Default, 2.

Value

No return value, called for side effects.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

votes1 <- structure(list(P1 = c(16L, 4L, 13L, 6L, 1L, 16L, 6L, 17L, 48L, 14L),
P2 = c(8L, 3L, 0L, 5L, 1L, 4L, 7L, 6L, 28L, 8L),
P3 = c(38L, 11L, 11L, 3L, 13L, 39L, 14L, 34L, 280L, 84L),
P4 = c(66L, 5L, 18L, 39L, 30L, 57L, 35L, 65L, 180L, 78L),
P5 = c(14L, 0L, 5L, 2L, 4L, 21L, 6L, 11L, 54L, 9L),
P6 = c(8L, 2L, 5L, 3L, 0L, 7L, 7L, 11L, 45L, 17L),
P7 = c(7L, 3L, 5L, 2L, 3L, 17L, 7L, 13L, 40L, 8L)),
row.names = c(NA, 10L), class = "data.frame")

votes2 <- structure(list(C1 = c(2L, 1L, 2L, 2L, 0L, 4L, 0L, 4L, 19L, 14L),
C2 = c(7L, 3L, 1L, 7L, 2L, 5L, 3L, 10L, 21L, 6L),
C3 = c(78L, 7L, 28L, 42L, 28L, 84L, 49L, 85L, 260L, 100L),
C4 = c(56L, 14L, 20L, 7L, 19L, 54L, 22L, 50L, 330L, 91L),
C5 = c(14L, 3L, 6L, 2L, 3L, 14L, 8L, 8L, 45L, 7L)),
row.names = c(NA, 10L), class = "data.frame")

example <- BPF(votes1, votes2, local = "none")
print(example, digits = 1, margins = TRUE)

12 simula_BPF

print.summary.BPF Print a summary of a summary.BPF object

Description

Print method for summary.BPFC objects

Usage

S3 method for class 'summary.BPF'
print(x, ..., margins = TRUE, digits = 2)

Arguments

x An summary.BPF class object.

... Other arguments passed on to methods. Not currently used.

margins A TRUE/FALSE argument informing if the margins of the transition matrix should
be displayed. Default, TRUE.

digits Integer indicating the number of decimal places to be shown. Default, 2.

Value

No return value, called for side effects.

simula_BPF Simulate RxC Tables from Overdispersed-Multinomial Models

Description

Generates at random a set of RxC tables with the joint distribution of voters in two elections accord-
ing to the model proposed in Forcina et al. (2012), as extension of Brown and Payne (1986), under
the assumption that local units are homogeneous (no covariates). Results in the first election may
be provided by the user or generated at random according to the overdispersed multinomial model.

Usage

simula_BPF(
n.units,
TM,
prop1,
polling.sizes,
theta1 = 0.1,
theta2 = 0.1,
cs = 50,
noise = 0,

simula_BPF 13

simplify = FALSE,
...

)

Arguments

n.units Either a positive integer number, K, indicating the number of polling units to be
simulated, or a KxR data.frame of a matrix with the number of votes gained in
election 1 for each of the R options in each of the K units. If n.units is a matrix
(data.frame) of counts (votes) the values of arguments prop1 and theta1 are
ommitted.

TM A row-standardized RxC matrix with the underlying global transition proba-
bilities of the simulated elections. If the matrix is not row-standardized, it is
internally row-standardized by the function.

prop1 A vector of length R with the initial assumed probabilities of voting (to be sim-
ulated) for each of the R competing options in the first election. If the provided
vector is not a set of probabilities (i.e., a vector of positive numbers adding to
1), it is internally standardized by the function.

polling.sizes Either a vector of two components with two positive integer numbers indicating
the minimum and maximum number of voters for each unit or a vector of length
n.units of positive integer numbers informing about the number of voters in
each unit. When polling.sizes is a vector of length two, a number of voters
is randomly assigned for each unit using a uniform distribution with parameters
the minimum and maximum values included in polling.sizes.

theta1 A number between 0 and 1 used as the overdispersion parameter. This parameter
is employed by the underlying Dirichlet distribution, in conjunction with prop1,
to randomly generate vectors of probabilities for each unit. These vectors are
then used to simulate the results of the first election. The smaller the value
of this parameter, the closer the unit-level marginal distributions for the first
election are to prop1. Default, 0.1.

theta2 Either a single number between 0 and 1 or a vector of length nrow(TM) con-
taining numbers between 0 and 1. The values in theta2 serve as overdispersion
parameters and are used alongside the row-probability vectors in TM within the
underlying Dirichlet distributions. These distributions are employed to generate
probability vectors for each combination of unit, cluster, and row, which are then
used to simulate vote transfers from the first to the second election. If theta2
is a vector, each row is assigned a distinct overdispersion parameter based on its
corresponding value. Default, 0.1.

cs A positive number indicating the average number of cluster size. Default, 50.

noise Either a single number between 0 and 1 or a vector of length nrow(TM) con-
taining numbers between 0 and 1. These numbers account for the proportion of
causal voters of each origin party (row). These numbers are used to introduce
more variability, compared to the BPF model, into the simulations. If noise > 0,
a 100*noise percentage of votes of each row of each unit are randomly assigned
among the column parties. Default, 0.

14 simula_BPF

simplify A TRUE/FALSE argument indicating whether the simulated RxCxK array of
counts by polling unit should be rearranged as a matrix of order Kx(RC). De-
fault, FALSE.

... Other arguments to be passed to the function. Not currently used.

Value

A list with the following components

votes1 A matrix of order KxR with the results simulated in each polling unit for the
first election.

votes2 A matrix of order KxC with the results simulated in each polling unit for the
second election..

TM.global A matrix of order RxC with the actual simulated global transfer matrix of counts.

TM.units An array of order RxCxK with the simulated transfer matrices of votes by
polling unit. If simplify = TRUE the simulated transfer matrices of votes are
returned organized in a Kx(RC) matrix.

inputs A list containing all the objects with the values used as arguments by the func-
tion.

Author(s)

Antonio Forcina, <forcinarosara@gmail.com>

Jose M. Pavia, <pavia@uv.es>

References

Brown, P. and Payne, C. (1986). Aggregate data, ecological regression and voting transitions. Jour-
nal of the American Statistical Association, 81, 453–460. doi:10.1080/01621459.1986.10478290

Forcina, A., Gnaldi, M. and Bracalente, B. (2012). A revised Brown and Payne model of voting
behaviour applied to the 2009 elections in Italy. Statistical Methods & Applications, 21, 109–119.
doi:10.1007/s102600110184x

See Also

Other simulators for ecological inference overdispersed-multinomial models: simula_BPF_with_deviations()

Examples

TMg <- matrix(c(0.6, 0.1, 0.3, 0.1, 0.7, 0.2, 0.1, 0.1, 0.8),
byrow = TRUE, nrow = 3)

example <- simula_BPF(n.units = 100, TM = TMg, prop1 = c(0.3, 0.3, 0.4),
polling.sizes = c(750, 850))

https://doi.org/10.1080/01621459.1986.10478290
https://doi.org/10.1007/s10260-011-0184-x

simula_BPF_with_deviations 15

simula_BPF_with_deviations

Simulate RxC Square Tables with Ecological Fallacy Effects Based on
Overdispersed-Multinomial Models

Description

Generates a set of RxC square (RxR) tables at random, representing the joint distribution of voters
in two elections, according to the model proposed by Forcina et al. (2012) as an extension of Brown
and Payne (1986), under the assumption that transition probabilities are non-homogeneous across
local units. For each unit, a unique transition table is constructed to simulate voter behavior within
that unit. Each table is created using a mixture model that considers four latent types of voters: one
group following the underlying global transition probabilities of the BPF model, another composed
mainly of loyal voters, a third characterized by strategic voting, and a final group whose probability
of loyalty to the party they supported in the first election depends on that party’s strength in the unit
during the first election

Usage

simula_BPF_with_deviations(
n.units,
TM,
prop1,
polling.sizes,
theta1 = 0.1,
theta2 = 0.1,
cs = 50,
prop.dev = c(0.4, 0.6),
prop.loyal = matrix(0.34, nrow = ifelse(is.null(dim(n.units)), n.units, nrow(n.units)),

ncol = nrow(TM)),
prop.strategic = matrix(0.33, nrow = ifelse(is.null(dim(n.units)), n.units,
nrow(n.units)), ncol = nrow(TM)),

prop.context = matrix(0.33, nrow = ifelse(is.null(dim(n.units)), n.units,
nrow(n.units)), ncol = nrow(TM)),

par.loyal = 0.95,
par.strategic = 0.5,
par.context = 0.5,
simplify = FALSE,
...

)

Arguments

n.units Either a positive integer number, K, indicating the number of polling units to be
simulated, or a KxR data.frame of a matrix with the number of votes gained in
election 1 for each of the R options in each of the K units. If n.units is a matrix

16 simula_BPF_with_deviations

(data.frame) of counts (votes) the values of arguments prop1 and theta1 are
ommitted.

TM A row-standardized RxC matrix with the underlying global transition proba-
bilities for the Overdispersed-Multinomial Model. If the matrix is not row-
standardized, it is internally row-standardized by the function.

prop1 A vector of length R with the initial assumed probabilities of voting (to be sim-
ulated) for each of the R competing options in the first election. If the provided
vector is not a set of probabilities (i.e., a vector of positive numbers adding to
1), it is internally standardized by the function.

polling.sizes Either a vector of two components with two positive integer numbers indicating
the minimum and maximum number of voters for each unit or a vector of length
n.units of positive integer numbers informing about the number of voters in
each unit. When polling.sizes is a vector of length two, a number of voters
is randomly assigned for each unit using a uniform distribution with parameters
the minimum and maximum values included in polling.sizes.

theta1 A number between 0 and 1 used as the overdispersion parameter. This parameter
is employed by the underlying Dirichlet distribution, in conjunction with prop1,
to randomly generate vectors of probabilities for each unit. These vectors are
then used to simulate the results of the first election. The smaller the value
of this parameter, the closer the unit-level marginal distributions for the first
election are to prop1. Default, 0.1.

theta2 Either a single number between 0 and 1 or a vector of length nrow(TM) con-
taining numbers between 0 and 1. The values in theta2 serve as overdispersion
parameters and are used alongside the row-probability vectors in TM within the
underlying Dirichlet distributions. These distributions are employed to generate
probability vectors for each combination of unit, cluster, and row, which are then
used to simulate vote transfers from the first to the second election. If theta2
is a vector, each row is assigned a distinct overdispersion parameter based on its
corresponding value. Default, 0.1.

cs A positive number indicating the average number of cluster size. Default, 50.

prop.dev Either a two-component vector with positive values between 0 and 1, indicating
the minimum and maximum proportion of voters (to be simulated) that devi-
ate from the base Overdispersed-Multinomial Model in each unit or a vector
of length n.units specifying the proportion of voters deviating from the basic
model in each unit. If prop.dev is a two-component vector, the proportion of
deviating voters in each unit is randomly assigned using a uniform distribution
with the specified minimum and maximum values. Default, c(0.4, 0.6).

prop.loyal A KxR matrix where each cell (k, r) represents the proportion of voters from
party r in unit k who are strongly loyal. These voters are highly likely to vote
for the same party with near certainty (see the parameter par.loyal). In con-
trast, the remaining prop.dev percent of the voters from the party follow the
transition probabilities specified in TM. The sum of the matrices prop.loyal,
prop.strategic, and prop.contextual must equal one for each cell. If this
condition is not met, the function internally standardizes the provided matrices.
Default, matrix(0.34, nrow = ifelse(is.null(dim(n.units)), n.units, nrow(n.units)),
ncol = nrow(TM)).

simula_BPF_with_deviations 17

prop.strategic A KxR matrix where each cell (k, r) represents the proportion of voters from
party r in unit k who are strategic voters. These voters are a par.strategic
percent more likely to support parties that improve their results in the second
election compared to their performance in their first election (see the parame-
ter par.strategic). In contrast, the remaining prop.dev percent of the voters
from the party follow the transition probabilities specified in TM. The sum of the
matrices prop.loyal, prop.strategic, and prop.contextual must equal one
for each cell. If this condition is not met, the function internally standardizes the
provided matrices. Default, matrix(0.33, nrow = ifelse(is.null(dim(n.units)),
n.units, nrow(n.units)), ncol = nrow(TM)).

prop.context A KxR matrix where each cell (k, r) represents the proportion of voters from
party r in unit k who are influenced by the relative strength in their neighborhood
of the party they voted for in the first election. These voters are a par.context
multiplied by the party’s strength in the unit percent more likely to support the
same party in the second election (see the parameter par.context). In con-
trast, the remaining prop.dev percent of the voters from the party follow the
transition probabilities specified in TM. The sum of the matrices prop.loyal,
prop.strategic, and prop.contextual must equal one for each cell. If this
condition is not met, the function internally standardizes the provided matrices.
Default, matrix(0.33, nrow = ifelse(is.null(dim(n.units)), n.units, nrow(n.units)),
ncol = nrow(TM)).

par.loyal A number between 0.9 and 1 indicating the minimum probability with which
loyal voters will support the same party in the second election as they did in the
first. For each unit, the probability is randomly chosen between par.loyal and
1. Default, 0.95.

par.strategic A positive number indicating the proportion of increase that the initial transfer
probabilities in TM should be increased for those parties improving their sup-
port in the second election compared to their performance in their first election.
Default, 0.5.

par.context A positive number indicating the factor by which the proportion of support for
a party in each unit should be multiplied to increase the initial transfer probabil-
ities in TM corresponding to that party. Default, 0.5.

simplify A TRUE/FALSE argument indicating whether the simulated RxCxK array of
counts by polling unit should be rearranged as a matrix of order Kx(RC). De-
fault, FALSE.

... Other arguments to be passed to the function. Not currently used.

Value

A list with the following components

votes1 A matrix of order KxR with the results simulated in each polling unit for the
first election.

votes2 A matrix of order KxC with the results simulated in each polling unit for the
second election..

TM.global A matrix of order RxC with the actual simulated global transfer matrix of counts.

18 summary.BPF

TM.units An array of order RxCxK with the simulated transfer matrices of votes by
polling unit. If simplify = TRUE the simulated transfer matrices of votes are
returned organized in a Kx(RC) matrix.

inputs A list containing all the objects with the values used as arguments by the func-
tion.

Author(s)

Antonio Forcina, <forcinarosara@gmail.com>

Jose M. Pavia, <pavia@uv.es>

References

Brown, P. and Payne, C. (1986). Aggregate data, ecological regression and voting transitions. Jour-
nal of the American Statistical Association, 81, 453–460. doi:10.1080/01621459.1986.10478290

Forcina, A., Gnaldi, M. and Bracalente, B. (2012). A revised Brown and Payne model of voting
behaviour applied to the 2009 elections in Italy. Statistical Methods & Applications, 21, 109–119.
doi:10.1007/s102600110184x

See Also

Other simulators for ecological inference overdispersed-multinomial models: simula_BPF()

Examples

TMg <- matrix(c(0.6, 0.1, 0.3, 0.1, 0.7, 0.2, 0.1, 0.1, 0.8),
byrow = TRUE, nrow = 3)

example <- simula_BPF_with_deviations(n.units = 100, TM = TMg, prop1 = c(0.3, 0.3, 0.4),
polling.sizes = c(750, 850))

summary.BPF Summarize a BPF output object

Description

Summary method for objects obtained with the BPF function

Usage

S3 method for class 'BPF'
summary(object, ...)

Arguments

object An object output of the BPF function.

... Other arguments passed on to methods. Not currently used.

https://doi.org/10.1080/01621459.1986.10478290
https://doi.org/10.1007/s10260-011-0184-x

summary.BPF 19

Value

An object of class "summary.BPF". A list with four components:

prop.matrix A matrix of order RxC with the estimated underlying proportions/rates of the
vote transitions from election 1 to election 2.

counts.matrix A matrix of order RxC with the estimated vote transfers from election 1 to elec-
tion 2.

row.margins A vector of length R with the aggregate observed/adjusted distribution of pro-
portions of votes in election 1.

col.margins A vector of length C with the aggregate observed/adjusted distribution of pro-
portions of votes in election 2.

Author(s)

Jose M. Pavia, <pavia@uv.es>

Examples

votes1 <- structure(list(P1 = c(16L, 4L, 13L, 6L, 1L, 16L, 6L, 17L, 48L, 14L),
P2 = c(8L, 3L, 0L, 5L, 1L, 4L, 7L, 6L, 28L, 8L),
P3 = c(38L, 11L, 11L, 3L, 13L, 39L, 14L, 34L, 280L, 84L),
P4 = c(66L, 5L, 18L, 39L, 30L, 57L, 35L, 65L, 180L, 78L),
P5 = c(14L, 0L, 5L, 2L, 4L, 21L, 6L, 11L, 54L, 9L),
P6 = c(8L, 2L, 5L, 3L, 0L, 7L, 7L, 11L, 45L, 17L),
P7 = c(7L, 3L, 5L, 2L, 3L, 17L, 7L, 13L, 40L, 8L)),
row.names = c(NA, 10L), class = "data.frame")

votes2 <- structure(list(C1 = c(2L, 1L, 2L, 2L, 0L, 4L, 0L, 4L, 19L, 14L),
C2 = c(7L, 3L, 1L, 7L, 2L, 5L, 3L, 10L, 21L, 6L),
C3 = c(78L, 7L, 28L, 42L, 28L, 84L, 49L, 85L, 260L, 100L),
C4 = c(56L, 14L, 20L, 7L, 19L, 54L, 22L, 50L, 330L, 91L),
C5 = c(14L, 3L, 6L, 2L, 3L, 14L, 8L, 8L, 45L, 7L)),
row.names = c(NA, 10L), class = "data.frame")

example <- BPF(votes1, votes2, local = "none")
summary(example)

Index

∗ ecological inference
overdispersed-multinomial models

BPF, 2
∗ simulators for ecological inference

overdispersed-multinomial models
simula_BPF, 12
simula_BPF_with_deviations, 15

BPF, 2

plot.BPF, 9
print.BPF, 11
print.summary.BPF, 12

simula_BPF, 12, 18
simula_BPF_with_deviations, 14, 15
summary.BPF, 18

20

	BPF
	plot.BPF
	print.BPF
	print.summary.BPF
	simula_BPF
	simula_BPF_with_deviations
	summary.BPF
	Index

