Type: Package
Title: Dynamic Panel Data Models
Version: 0.1.0
Author: Taha Zaghdoudi
Maintainer: Taha Zaghdoudi <zedtaha@gmail.com>
Description: Computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.
License: GPL-3
LazyData: TRUE
RoxygenNote: 5.0.1
Depends: R (≥ 3.3.0)
Imports: stats, gtools
NeedsCompilation: no
Packaged: 2016-08-28 10:51:09 UTC; Asus
Repository: CRAN
Date/Publication: 2016-08-28 13:24:47

Dynamic Panel Data Models

Description

This package computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.

Details

Package: dynpanel
Type: Package
Version: 1.0
Date: 2016-08-26
License: GPL-3

In this package, we apply the generalized method of moments to estimate the dynamic panel data models.

Author(s)

Taha Zaghdoudi

Taha Zaghdoudi <zedtaha@gmail.com>

References

Anderson, T. W.; Hsiao, Cheng (1981). Estimation of dynamic models with error components. ournal of the American Statistical Association. 76 (375) ,pp. 598-606.

Arellano, Manuel; Bond, Stephen (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies. 58, pp.2)-277. Cameron, A. Colin; Trivedi, Pravin K. (2005). Dynamic Models. Microeconometrics: Methods and Applications. New York: Cambridge University Press. pp. 763-768.

Hsiao, Cheng (2014). Dynamic Simultaneous Equations Models. Analysis of Panel Data. New York: Cambridge University Press. pp. 397-402.

Munnell AH (1990). Why has Productivity Growth Declined? Productivity and Public Investment, New England Economic Review, pp. 3-22.

Examples

 # Load data
 data(Produc)
 # Fit the dynamic panel data using the Arellano Bond (1991) instruments
 reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,4)
 summary(reg)
 # Fit the dynamic panel data using an automatic selection of appropriate IV matrix
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,0)
 #summary(reg)
 # Fit the dynamic panel data using the GMM estimator with the smallest set of instruments
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,1)
 #summary(reg)
 # Fit the dynamic panel data using a reduced form of IV from method 3
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,2)
 #summary(reg)
 # Fit the dynamic panel data using the IV matrix where the number of moments grows with kT
 # K: variables number and T: time per group
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,3)
 #summary(reg)

US States Production

Description

Usage

data(Produc)

Format

A data frame with 816 rows and 10 variables


method

Description

method

Usage

dpd(x, ...)

Arguments

x

a numeric design matrix for the model.

...

not used

Author(s)

Zaghdoudi Taha


formula

Description

formula

Usage

## S3 method for class 'formula'
dpd(formula, data = list(), index = c("id", "time"), p,
  meth = c(0, 1, 2, 3, 4), ...)

Arguments

formula

PIB~INF+TIR

data

the dataframe

index

: id is the name of the identity groups and time is the time per group

p

scalar, autoregressive order for dependent variable

meth

scalar, indicator for the Instruments to use

...

not used


Summary

Description

Summary

Usage

## S3 method for class 'dpd'
summary(object, ...)

Arguments

object

is the object of the function

...

not used