Type: | Package |
Title: | DFI Cutoffs for Latent Variable Models |
Version: | 1.1.0 |
Description: | Returns dynamic fit index (DFI) cutoffs for latent variable models that are tailored to the user's model statement, model type, and sample size. This is the counterpart of the Shiny Application, https://dynamicfit.app. |
License: | AGPL-3 |
Language: | en-US |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.2 |
Depends: | R (≥ 4.0.0) |
URL: | https://github.com/melissagwolf/dynamic |
BugReports: | https://github.com/melissagwolf/dynamic/issues |
Imports: | dplyr (≥ 1.0.0), simstandard (≥ 0.6.2), tidyr (≥ 1.1.0), lavaan (≥ 0.6-7), ggplot2 (≥ 3.3.0), magrittr (≥ 1.5), tibble (≥ 3.0.0), patchwork (≥ 1.1.1), stringr (≥ 1.4.0), purrr (≥ 0.3.3) |
Suggests: | knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2022-02-25 00:35:10 UTC; missg |
Author: | Melissa G. Wolf [aut, cre], Daniel McNeish [aut] |
Maintainer: | Melissa G. Wolf <missgord@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2022-02-28 19:40:02 UTC |
Pipe operator
Description
See magrittr::%>%
for details.
Usage
lhs %>% rhs
Dynamic fit index (DFI) cutoffs adapted from Hu & Bentler (1999) for multi-factor CFA models
Description
This function generates DFI cutoffs adapted from Hu & Bentler (1999) for multi-factor CFA models using ML estimation.
The default argument is a singular argument: a lavaan
object from the cfa
function.
The function can also accommodate manual entry of the model statement and sample size.
The app-based version of this function can be found at dynamicfit.app.
Usage
cfaHB(model, n = NULL, plot = FALSE, manual = FALSE, reps = 500)
## S3 method for class 'cfaHB'
print(x, ...)
Arguments
model |
This can either be a |
n |
If you entered a |
plot |
Displays distributions of fit indices for each level of misspecification. |
manual |
If you entered a |
reps |
(**Do not modify this**): The number of replications used in your simulation. This is set to 500 by default in both the R package and the corresponding Shiny App. |
x |
cfaHB object |
... |
other print parameters |
Value
Dynamic fit index (DFI) cutoffs for SRMR, RMSEA, and CFI.
Author(s)
Melissa G Wolf & Daniel McNeish
Maintainer: Melissa G Wolf <missgord@gmail.com>
Examples
#Lavaan object example (manual=FALSE)
dat <- lavaan::HolzingerSwineford1939
lavmod <- "F1 =~ x1 + x2 + x3
F2 =~ x4 + x5 + x6
F3 =~ x7 + x8 + x9"
fit <- lavaan::cfa(lavmod,dat)
cfaHB(fit)
#Manual entry example for a sample size of 400 (manual=TRUE)
manmod <- "F1 =~ .602*Y1 + .805*Y2 + .516*Y3 + .415*Y4
F2 =~ .413*Y5 + -.631*Y6
F1 ~~ .443*F2
Y4 ~~ .301*Y5"
exactFit(model=manmod,n=400,manual=TRUE)
Dynamic fit index (DFI) cutoffs for one-factor CFA models
Description
This function generates DFI cutoffs for one-factor CFA models using ML estimation.
The default argument is a singular argument: a lavaan
object from the cfa
function.
The function can also accommodate manual entry of the model statement and sample size.
The app-based version of this function can be found at dynamicfit.app.
Usage
cfaOne(model, n = NULL, plot = FALSE, manual = FALSE, reps = 500)
## S3 method for class 'cfaOne'
print(x, ...)
Arguments
model |
This can either be a |
n |
If you entered a |
plot |
Displays distributions of fit indices for each level of misspecification. |
manual |
If you entered a |
reps |
(**Do not modify this**): The number of replications used in your simulation. This is set to 500 by default in both the R package and the corresponding Shiny App. |
x |
cfaOne object |
... |
other print parameters |
Value
Dynamic fit index (DFI) cutoffs for SRMR, RMSEA, and CFI.
Author(s)
Melissa G Wolf & Daniel McNeish
Maintainer: Melissa G Wolf <melissagordon@ucsb.edu>
Examples
#Lavaan object example (manual=FALSE)
dat <- lavaan::HolzingerSwineford1939
lavmod <- "F1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9"
fit <- lavaan::cfa(lavmod,dat)
cfaOne(fit)
#Manual entry example for a sample size of 300 (manual=TRUE)
manmod <- "F1 =~ .602*Y1 + .805*Y2 + .857*Y3 + .631*Y4 + .345*Y5 + .646*Y6"
cfaOne(model=manmod,n=300,manual=TRUE)
Equivalence testing with adjusted fit indexes for structural equation modeling
Description
This function generates adjusted fit index cutoffs using equivalence testing,
introduced by Yuan, Chan, Marcoulides, & Bentler (2016).
The default argument is a singular argument: a lavaan
object.
The function can also accommodate manual entry of the sample size (n), model chi-square (T_ml),
degrees of freedom (df), baseline chi-square (T_mli), and number of observed variables (p).
The app-based version of this function can be found at dynamicfit.app.
Usage
equivTest(
n,
T_ml = NULL,
df = NULL,
T_mli = NULL,
p = NULL,
manual = FALSE,
plot = FALSE
)
## S3 method for class 'equivTest'
print(x, ...)
Arguments
n |
This can either be a |
T_ml |
If you entered a |
df |
If you entered a |
T_mli |
If you entered a |
p |
If you entered a |
manual |
If you entered a |
plot |
Displays a simple plot that compares your T-size RMSEA and T-Size CFI to the adjusted bins. |
x |
equivTest object |
... |
other print parameters |
Value
T-size RMSEA and T-Size CFI, along with adjusted bins for each index
Author(s)
Melissa G Wolf & Daniel McNeish
Maintainer: Melissa G Wolf <melissagordon@ucsb.edu>
Examples
#Lavaan object example (manual=FALSE)
dat <- lavaan::HolzingerSwineford1939
lavmod <- "F1 =~ x1 + x2 + x3
F2 =~ x4 + x5 + x6
F3 =~ x7 + x8 + x9"
fit <- lavaan::cfa(lavmod,dat)
equivTest(fit)
#' #Manual entry example (manual=TRUE)
n <- 301
T_ml <- 85.306
df <- 24
T_mli <- 918.852
p <- 9
equivTest(n,T_ml,df,T_mli,p,manual=TRUE)
DFI cutoffs for a Test of Exact Fit
Description
This function generates DFI cutoffs by treating the data generating model as the true model (using ML estimation).
The default argument is a singular argument: a lavaan
object from the cfa
function.
The function can also accommodate manual entry of the model statement and sample size.
Usage
exactFit(model, n, plot = FALSE, manual = FALSE, reps = 500)
## S3 method for class 'exactFit'
print(x, ...)
Arguments
model |
This can either be a |
n |
If you entered a |
plot |
Displays distributions of fit indices for each fit index. |
manual |
If you entered a |
reps |
(**Do not modify this**): The number of replications used in your simulation. This is set to 500 by default in both the R package and the corresponding Shiny App (not yet available). |
x |
exactFit object |
... |
other print parameters |
Value
Dynamic fit index (DFI) cutoffs for Chi-Square, SRMR, RMSEA, and CFI.
Author(s)
Melissa G Wolf & Daniel McNeish
Maintainer: Melissa G Wolf <missgord@gmail.com>
Examples
#Lavaan object example (manual=FALSE)
dat <- lavaan::HolzingerSwineford1939
lavmod <- "F1 =~ x1 + x2 + x3
F2 =~ x4 + x5 + x6
F3 =~ x7 + x8 + x9"
fit <- lavaan::cfa(lavmod,dat)
exactFit(fit)
#Manual entry example for a sample size of 400 (manual=TRUE)
manmod <- "F1 =~ .602*Y1 + .805*Y2 + .516*Y3 + .415*Y4
F2 =~ .413*Y5 + -.631*Y6
F1 ~~ .443*F2
Y4 ~~ .301*Y5"
exactFit(model=manmod,n=400,manual=TRUE)