Title: | Statistical Combination of Diagnostic Tests |
Description: | A system for combining two diagnostic tests using various approaches that include statistical and machine-learning-based methodologies. These approaches are divided into four groups: linear combination methods, non-linear combination methods, mathematical operators, and machine learning algorithms. See the https://biotools.erciyes.edu.tr/dtComb/ website for more information, documentation, and examples. |
Version: | 1.0.7 |
URL: | https://github.com/gokmenzararsiz/dtComb |
Language: | en-US |
Depends: | R (≥ 3.5.0) |
Imports: | pROC (≥ 1.18.0), caret, epiR, gam, ggplot2, ggpubr, glmnet, OptimalCutpoints |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-03-27 16:50:17 UTC; serrailaydayerlitas |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
VignetteBuilder: | knitr |
Author: | Serra Ilayda Yerlitas [aut, ctb], Serra Bersan Gengec [aut, ctb], Necla Kochan [aut, ctb], Gozde Erturk Zararsiz [aut, ctb], Selcuk Korkmaz [aut, ctb], Gokmen Zararsiz [aut, ctb, cre] |
Maintainer: | Gokmen Zararsiz <gokmen.zararsiz@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-03-30 17:00:06 UTC |
dtComb: A Comprehensive R Package for Combining Diagnostic Tests
Description
The dtComb package provides tools to calculate combination scores of two biomarkers, categorized into four main types:
-
linComb
: Linear combinations, -
nonlinComb
: Non-linear combinations, -
mathComb
: Mathematical operator-based combinations, -
mlComb
: Machine learning–based combinations.
Author(s)
Maintainer: Gokmen Zararsiz gokmen.zararsiz@gmail.com [contributor]
Authors:
Serra Ilayda Yerlitas ilaydayerlitas340@gmail.com [contributor]
Serra Bersan Gengec serrabersan@gmail.com [contributor]
Necla Kochan necla.kayaalp@gmail.com [contributor]
Gozde Erturk Zararsiz gozdeerturk9@gmail.com [contributor]
Selcuk Korkmaz selcukorkmaz@gmail.com [contributor]
See Also
Useful links:
Machine learning model table for mlComb() Includes machine learning models used for the mlComb function
Description
Machine learning model table for mlComb() Includes machine learning models used for the mlComb function
Usage
data(allMethods)
Format
A data frame with 113 rows and 2 variables:
- Method
Valid name for the function
- Model
Model name
Examples
data(allMethods)
allMethods
Available classification/regression methods in dtComb
Description
This function returns a data.frame of available classification
methods in dtComb
. These methods are imported from the caret package.
Usage
availableMethods()
Value
No return value
contains the method names and explanations of the
machine-learning models available for the dtComb package.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
availableMethods()
Biomarker data from carriers of a rare genetic disorder A data set containing the carriers of a rare genetic disorder for 120 samples.
Description
Biomarker data from carriers of a rare genetic disorder A data set containing the carriers of a rare genetic disorder for 120 samples.
Usage
data(exampleData2)
Format
A data frame with 120 rows and 5 variables:
- Group
Indicator whether the person is a carrier; values:
"carriers"
and"normals"
.- m1
Biomarker 1, 1. measurement blood sample
- m2
Biomarker 2, 2. measurement blood sample
- m3
Biomarker 3, 3. measurement blood sample
- m4
Biomarker 4, 4. measurement blood sample
Examples
data(exampleData2)
exampleData2$Group <- factor(exampleData2$Group)
gcol <- c("#E69F00", "#56B4E9")
plot(exampleData2$m1, exampleData2$m2,
col = gcol[as.numeric(exampleData2$Group)]
)
Simulated data with healthy and diseased individuals A simulation data containing 250 diseased and 250 healthy individuals.
Description
Simulated data with healthy and diseased individuals A simulation data containing 250 diseased and 250 healthy individuals.
Usage
data(exampleData3)
Format
A data frame with 500 rows and 3 variables:
- status
Indicator of one's condition, values healthy and diseased
- marker1
1. biomarker
- marker2
2. biomarker
Examples
data(exampleData3)
exampleData3$status <- factor(exampleData3$status)
gcol <- c("#E69F00", "#56B4E9")
plot(exampleData3$marker1, exampleData3$marker2,
col = gcol[as.numeric(exampleData3$status)]
)
Helper function for PCL method.
Description
The helper_PCL
function estimates the optimized value of
given biomarkers for the PCL method.
Usage
helper_PCL(lambda, neg.set, pos.set)
Arguments
lambda |
a |
neg.set |
a |
pos.set |
a |
Value
A numeric
value for the estimated optimized value
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- cbind(laparotomy$ddimer, laparotomy$log_leukocyte)
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
neg.set <- markers[status == levels(status)[1], ]
pos.set <- markers[status == levels(status)[2], ]
lambda <- 0.5
stat <- helper_PCL(lambda, neg.set = neg.set, pos.set = pos.set)
Helper function for PT method.
Description
The helper_PT
function estimates the optimized value of
given biomarkers for the PT method.
Usage
helper_PT(lambda, neg.set, pos.set)
Arguments
lambda |
a |
neg.set |
a |
pos.set |
a |
Value
A numeric
value for the estimated optimized value
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- cbind(laparotomy$ddimer, laparotomy$log_leukocyte)
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
neg.set <- markers[status == levels(status)[1], ]
pos.set <- markers[status == levels(status)[2], ]
lambda <- 0.5
stat <- helper_PT(lambda, neg.set = neg.set, pos.set = pos.set)
Helper function for TS method.
Description
The helper_TS
function calculates the combination
coefficient and optimized value of given biomarkers for the TS method.
Usage
helper_TS(theta, markers, status)
Arguments
theta |
a |
markers |
a |
status |
a |
Value
A numeric
Optimized value calculated with combination scores
using theta
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- cbind(laparotomy$ddimer, laparotomy$log_leukocyte)
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
t <- 0.5
stat <- helper_TS(theta = t, markers = markers, status = status)
Helper function for minimax method.
Description
The helper_minimax
function calculates the combination
coefficient and optimized value of given biomarkers for the minimax method.
Usage
helper_minimax(t, neg.set, pos.set, markers, status)
Arguments
t |
a |
neg.set |
a |
pos.set |
a |
markers |
a |
status |
a |
Value
A numeric
Optimized value calculated with combination scores
using t
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- cbind(laparotomy$ddimer, laparotomy$log_leukocyte)
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
neg.set <- markers[status == levels(status)[1], ]
pos.set <- markers[status == levels(status)[2], ]
t <- 0.5
stat <- helper_minimax(t,
neg.set = neg.set, pos.set = pos.set,
markers = markers, status
)
Helper function for minmax method.
Description
The helper_minmax
function estimates optimized value of
given biomarkers for the minmax method.
Usage
helper_minmax(lambda, neg.set, pos.set)
Arguments
lambda |
a |
neg.set |
a |
pos.set |
a |
Value
A numeric
value for the estimated optimized value
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- cbind(laparotomy$ddimer, laparotomy$log_leukocyte)
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
neg.set <- markers[status == levels(status)[1], ]
pos.set <- markers[status == levels(status)[2], ]
lambda <- 0.5
stat <- helper_minmax(lambda, neg.set = neg.set, pos.set = pos.set)
Calculate Cohen's kappa and accuracy.
Description
The kappa.accuracy
calculates Cohen's kappa and accuracy.
Usage
## S3 method for class 'accuracy'
kappa(DiagStatCombined)
Arguments
DiagStatCombined |
a |
Value
A list
of Cohen's kappa and accuracy values
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Diagnostic laparotomy dataset A data set containing the results of diagnostic laparotomy procedures for 225 patients.
Description
Examples data for the dtComb package
Usage
data(laparotomy)
Format
A data frame with 225 rows and 3 variables:
- group
Indicator whether the procedure was needed; values:
"needed"
or"not_needed"
.- ddimer
Biomarker 1, D-Dimer protein level in blood, ng/mL
- log_leukocyte
Biomarker 2, Logarithm of Leukocyte count in blood, per mcL
Examples
data(laparotomy)
laparotomy$group <- factor(laparotomy$group)
gcol <- c("#E69F00", "#56B4E9")
plot(laparotomy$ddimer, laparotomy$log_leukocyte,
col = gcol[as.numeric(laparotomy$group)]
)
Linear Combination Methods for Diagnostic Test Scores
Description
The linComb
function calculates the combination
scores of two diagnostic tests selected among several linear combination
methods and standardization options.
Usage
linComb(
markers = NULL,
status = NULL,
event = NULL,
method = c("scoring", "SL", "logistic", "minmax", "PT", "PCL", "minimax", "TS"),
resample = c("none", "cv", "repeatedcv", "boot"),
nfolds = 5,
nrepeats = 3,
niters = 10,
standardize = c("none", "min_max_scale", "zScore", "tScore", "scale_mean_to_one",
"scale_sd_to_one"),
ndigits = 0,
show.plot = TRUE,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",
"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",
"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...
)
Arguments
markers |
a |
status |
a |
event |
a |
method |
a The available methods are:
|
resample |
a
|
nfolds |
a |
nrepeats |
a |
niters |
a |
standardize |
a
|
ndigits |
a |
show.plot |
a |
direction |
a |
conf.level |
a |
cutoff.method |
a |
show.result |
a |
... |
further arguments. Currently has no effect on the results. |
Value
A list of numeric
linear combination scores calculated
according to the given method and standardization option.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- laparotomy[, -1]
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
event <- "needed"
score1 <- linComb(
markers = markers, status = status, event = event,
method = "logistic", resample = "none", show.plot = TRUE,
standardize = "none", direction = "<", cutoff.method = "Youden"
)
# call data
data(exampleData2)
# define the function parameters
markers <- exampleData2[, -c(1:3, 6:7)]
status <- factor(exampleData2$Group, levels = c("normals", "carriers"))
event <- "carriers"
score2 <- linComb(
markers = markers, status = status, event = event,
method = "PT", resample = "none", standardize = "none", direction = "<",
cutoff.method = "Youden", show.result = "TRUE"
)
score3 <- linComb(
markers = markers, status = status, event = event,
method = "minmax", resample = "none", direction = "<",
cutoff.method = "Youden"
)
Combine two diagnostic tests with several mathematical operators and distance measures.
Description
The mathComb
function returns the combination results of
two diagnostic tests with different mathematical operators, distance
measures, standardization, and transform options.
Usage
mathComb(
markers = NULL,
status = NULL,
event = NULL,
method = c("add", "multiply", "divide", "subtract", "distance", "baseinexp",
"expinbase"),
distance = c("euclidean", "manhattan", "chebyshev", "kulczynski_d", "lorentzian",
"avg", "taneja", "kumar-johnson"),
standardize = c("none", "min_max_scale", "zScore", "tScore", "scale_mean_to_one",
"scale_sd_to_one"),
transform = c("none", "log", "exp", "sin", "cos"),
show.plot = TRUE,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",
"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",
"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...
)
Arguments
markers |
a |
status |
a |
event |
a |
method |
a
|
distance |
a
|
standardize |
a
|
transform |
A
|
show.plot |
a |
direction |
a |
conf.level |
a |
cutoff.method |
a |
show.result |
A |
... |
further arguments. Currently has no effect on the results. |
Value
A list containing the computed combination scores and, optionally, diagnostic performance metrics.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
data(laparotomy)
markers <- laparotomy[, -1]
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
event <- "needed"
direction <- "<"
cutoff.method <- "Youden"
score1 <- mathComb(
markers = markers, status = status, event = event,
method = "distance", distance = "avg", direction = direction, show.plot = FALSE,
standardize = "none", cutoff.method = cutoff.method
)
score2 <- mathComb(
markers = markers, status = status, event = event,
method = "baseinexp", transform = "exp", direction = direction,
cutoff.method = cutoff.method
)
score3 <- mathComb(
markers = markers, status = status, event = event,
method = "subtract", direction = "auto", cutoff.method = "MinValueSp", transform = "sin"
)
Combine two diagnostic tests with Machine Learning Algorithms.
Description
The mlComb
function calculates the combination
scores of two diagnostic tests selected among several Machine Learning
Algorithms
Usage
mlComb(
markers = NULL,
status = NULL,
event = NULL,
method = NULL,
resample = NULL,
niters = 5,
nfolds = 5,
nrepeats = 3,
preProcess = NULL,
show.plot = TRUE,
B = 25,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",
"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",
"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...
)
Arguments
markers |
a |
status |
a |
event |
a |
method |
a IMPORTANT: See https://topepo.github.io/caret/available-models.html for further information about the methods used in this function. |
resample |
a |
niters |
a |
nfolds |
a |
nrepeats |
a |
preProcess |
a |
show.plot |
a |
B |
a |
direction |
a |
conf.level |
a |
cutoff.method |
a |
show.result |
a |
... |
optional arguments passed to selected classifiers. |
Value
A list
of AUC values, diagnostic statistics,
coordinates of the ROC curve for the combination score obtained using
Machine Learning Algorithms as well as the given biomarkers individually, a
comparison table for the AUC values of individual biomarkers and combination
score obtained and the fitted model.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- laparotomy[, -1]
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
event <- "needed"
model <- mlComb(
markers = markers, status = status, event = event,
method = "knn", resample = "repeatedcv", nfolds = 10, nrepeats = 5,
preProcess = c("center", "scale"), direction = "<", cutoff.method = "Youden"
)
Combine two diagnostic tests with several non-linear combination methods.
Description
The nonlinComb
function calculates the combination
scores of two diagnostic tests selected among several non-linear combination
methods and standardization options
Usage
nonlinComb(
markers = NULL,
status = NULL,
event = NULL,
method = c("polyreg", "ridgereg", "lassoreg", "elasticreg", "splines", "sgam", "nsgam"),
degree1 = 3,
degree2 = 3,
df1 = 4,
df2 = 4,
resample = c("none", "cv", "repeatedcv", "boot"),
nfolds = 5,
nrepeats = 3,
niters = 10,
standardize = c("none", "min_max_scale", "zScore", "tScore", "scale_mean_to_one",
"scale_sd_to_one"),
include.interact = FALSE,
alpha = 0.5,
show.plot = TRUE,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",
"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",
"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...
)
Arguments
markers |
a |
status |
a |
event |
a |
method |
a
|
degree1 |
a |
degree2 |
a |
df1 |
a |
df2 |
a |
resample |
a
|
nfolds |
a |
nrepeats |
a |
niters |
a |
standardize |
a
|
include.interact |
a |
alpha |
a |
show.plot |
a |
direction |
a |
conf.level |
a |
cutoff.method |
a |
show.result |
a |
... |
further arguments. Currently has no effect on the results. |
Value
A list of numeric
nonlinear combination scores calculated
according to the given method and standardization option
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
data("laparotomy")
data <- laparotomy
markers <- data[, -1]
status <- factor(data$group, levels = c("not_needed", "needed"))
event <- "needed"
cutoff.method <- "Youden"
score1 <- nonlinComb(
markers = markers, status = status, event = event,
method = "lassoreg", include.interact = FALSE, resample = "boot", niters = 5,
degree1 = 4, degree2 = 4, cutoff.method = cutoff.method,
direction = "<"
)
score2 <- nonlinComb(
markers = markers, status = status, event = event,
method = "splines", resample = "none", cutoff.method = cutoff.method,
standardize = "tScore", direction = "<"
)
score3 <- nonlinComb(
markers = markers, status = status, event = event,
method = "lassoreg", resample = "repeatedcv", include.interact = TRUE,
cutoff.method = "ROC01", standardize = "zScore", direction = "auto"
)
Plot the combination scores using the training model
Description
The plotComb
a function that generates plots from the
training model. The function takes argument model. The outputs of the
function are three different plots generated from the combination scores.
Usage
plotComb(model, status)
Arguments
model |
a |
status |
a |
Value
A data.frame
plots
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- laparotomy[, -1]
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
event <- "needed"
score1 <- linComb(
markers = markers, status = status, event = event,
method = "scoring", resample = "none",
standardize = "none", direction = "<", cutoff.method = "Youden"
)
plotComb(score1, status)
score2 <- nonlinComb(
markers = markers, status = status, event = event,
method = "nsgam", resample = "cv", include.interact = FALSE, direction = "<",
standardize = "zScore", cutoff.method = "Youden"
)
plot.score2 <- plotComb(score2, status)
score3 <- mathComb(
markers = markers, status = status, event = event,
method = "distance", distance = "euclidean", direction = "auto",
standardize = "tScore", cutoff.method = "Youden"
)
plot.score3 <- plotComb(score3, status)
Predict combination scores and labels for new data sets using the training model
Description
The predict.dtComb
is a function that generates predictions
for a new dataset of biomarkers using the parameters from the fitted model.
The function takes arguments newdata and model. The function's output is the
combination scores and labels of object type.
Usage
## S3 method for class 'dtComb'
predict(object, newdata = NULL, ...)
Arguments
object |
a |
newdata |
a |
... |
further arguments. Currently has no effect on the results. |
Value
A data.frame
predicted combination scores (or probabilities)
and labels
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- laparotomy[, -1]
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
event <- "needed"
score1 <- linComb(
markers = markers, status = status, event = event,
method = "logistic", resample = "none",
standardize = "none", direction = "<", cutoff.method = "Youden"
)
comb.score1 <- predict(score1, markers)
score2 <- nonlinComb(
markers = markers, status = status, event = "needed", include.interact = TRUE,
method = "polyreg", resample = "repeatedcv", nfolds = 5,
nrepeats = 10, cutoff.method = "Youden", direction = "auto"
)
comb.score2 <- predict(score2, markers)
score3 <- mathComb(
markers = markers, status = status, event = event,
method = "distance", distance = "euclidean", direction = "auto",
standardize = "tScore", cutoff.method = "Youden"
)
comb.score3 <- predict(score3, markers)
Print the summary of linComb, nonlinComb, mlComb and mathComb functions.
Description
The print_train
function prints the summary statistics of
the fitted model
Usage
print_train(print_model)
Arguments
print_model |
a |
Value
No return value
writes a summary of the results to the console.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Generate ROC curves and related statistics for the given markers and Combination score.
Description
The rocsum
function returns the ROC curves with
coordinates, Area Under the Curves of markers and combination score, Area Under
the Curve comparison of markers and combination score, Confusion matrices for both
markers and combination score with the cutoff values derived from the ROC Curves.
Usage
rocsum(
markers = NULL,
comb.score = NULL,
status = NULL,
event = NULL,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",
"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",
"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.plot = show.plot
)
Arguments
markers |
a |
comb.score |
a matrix of |
status |
a |
event |
a |
direction |
a |
conf.level |
a |
cutoff.method |
a |
show.plot |
a |
Value
A list of numeric
ROC Curves, AUC statistics and Confusion
matrices.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Standardization according to the training model parameters.
Description
The std.test
Standardization parameters will be taken
from the fitted training model and applied to the new data set.
Usage
std.test(newdata, model)
Arguments
newdata |
a |
model |
a |
Value
A numeric
dataframe of standardized biomarkers
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Standardization according to the chosen method.
Description
The std.train
Standardization (min_max_scale, zScore etc.) can be
estimated from the training data and applied to any dataset with the same
variables.
Usage
std.train(data, standardize = NULL)
Arguments
data |
a |
standardize |
a
|
Value
A numeric
data.frame of standardized biomarkers
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
# call data
data(laparotomy)
# define the function parameters
markers <- laparotomy[, -1]
markers2 <- std.train(markers, "deviance")
Mathematical transformations for biomarkers
Description
Applies a selected mathematical transformation ("log"
, "exp"
, "sin"
, or "cos"
) to biomarker data.
Usage
transform_math(markers, transform)
Arguments
markers |
A |
transform |
A character string specifying the transformation method to be applied.
Supported methods are: |
Value
A numeric
data frame containing the transformed biomarkers.
Author(s)
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
Examples
data(laparotomy)
markers <- laparotomy[, -1]
transform_math(markers, transform = "log")