Package 'dpcc'

July 22, 2025

Type Package
Title Dynamic Programming for Convex Clustering
Version 1.0.0
Author Bingyuan Zhang, Jie Chen, Yoshikazu Terada
Maintainer Bingyuan Zhang <zhang@sigmath.es.osaka-u.ac.jp></zhang@sigmath.es.osaka-u.ac.jp>
Description Use dynamic programming method to solve 11 convex clustering with identical weights.
License MIT + file LICENSE
Encoding UTF-8
LazyData False
RoxygenNote 7.1.1
LinkingTo Rcpp
Imports Rcpp
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-06-01 06:40:02 UTC
Contents
cdp
cpaint
find_lambda
Index

2 cpaint

cdp

L1 convex clustering with a single lambda.

Description

L1 convex clustering with a single lambda.

Usage

```
cdp(X, lam)
```

Arguments

X a data matrix of n * p or a data vector with length n.

lam a tuning parameter.

Details

A list with length p equal to the dimension of the data matrix. Each dimension includes a vector of the estimated centroids.

Value

the estimated centroids.

Examples

```
# generate a data matrix with n = 10 and p = 2.
X = matrix(rnorm(10*2), 10, 2)
lam = find_lambda(X)/2
# set a tuning parameter lambda.
cdp(X, lam)
```

cpaint

L1 convex clustering with a lambda sequence.

Description

L1 convex clustering with a lambda sequence.

Usage

```
cpaint(X, lam)
```

find_lambda 3

Arguments

```
X a data matrix of n * p or a data vector with length n. lam a sequence of lambdas.
```

Details

A list with length p equal to the dimension of the data matrix. Each dimension includes a sequence of vectors. Each vector includes the estimated centroids with a certain tuning parameter lambda.

Value

A sequence of estimated centroids.

Examples

```
# generate a data matrix with n = 10 and p = 2.
X = matrix(rnorm(10*2), 10, 2)
# set the biggest lambda in the sequence.
lam_max = find_lambda(X)
# set the length of the sequence.
K = 10
# equally separate the sequence with K.
Lam = sapply(1:K, function(i) i/K*lam_max)
cpaint(X,Lam)
```

find_lambda

Return the lambda which causes all the points become fused into one cluster.

Description

Return the lambda which causes all the points become fused into one cluster.

Usage

```
find_lambda(X)
```

Arguments

```
X data matrix of n * p
```

Value

the biggest lambda

Examples

```
X = matrix(rnorm(3*2), 3, 2)
find_lambda(X)
```

Index

```
cdp, 2
cpaint, 2
find_lambda, 3
```