Title: | Create Elegant Table 1 in HTML for Bio-Statistics |
Version: | 2.1.0 |
Description: | Creates the "table one" of bio-medical papers. Fill it with your data and the name of the variable which you'll make the group(s) out of and it will make univariate, bivariate analysis and parse it into HTML. It also allows you to visualize all your data with graphic representation. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
Language: | en-US |
RoxygenNote: | 7.2.3 |
Imports: | dplyr, kableExtra, methods, parallel, purrr, stats, stringi, tibble, tidyr |
NeedsCompilation: | no |
Packaged: | 2023-06-29 08:24:33 UTC; tiago2 |
Author: | Edouard Baudouin |
Maintainer: | Edouard Baudouin <edouardpierre.baudouin@aphp.fr> |
Repository: | CRAN |
Date/Publication: | 2023-06-29 17:20:06 UTC |
S4 class initialization function
Description
Initialization function for Var initialize,Var-method()
Usage
Var(name, type = "", normal = TRUE)
Arguments
name |
A character taking name of the variable |
type |
A character taking name of the variable type |
normal |
Logical, if variable, is numeric; is it normal |
Value
Var Object
S4 class
Description
A S4 class containing name, type and normality assessment of variable
Slots
name
A character taking name of the variable
type
A character taking name of the variable type
normal
Logical, if variable, is numeric; is it normal
S4 class
Description
A S4 class containing Var initialize,Var-method()
It also contains the pvalue, the parsed value
the missing values and the group for which it was calculated
Slots
group_var
The subgroup for which proportions, mean/sd were calculated and missing values
pvalue
The calculated pvalue
parsed_name
The name of the variable parsed with the n (%), mean (SD)
value
The values calculated parsed
missing.value
Missing values numbers and proportions n (%)
missing.value.name
Missing values concatenate with the level of the variable if it factor
Method to access S4 Var elements
Description
Method to modify Var elements by name
Usage
## S4 replacement method for signature 'Var'
x[i] <- value
Arguments
x |
: object |
i |
: Element name |
value |
: Value to be added |
Value
object
Method to access S4 Var elements
Description
Method to modify VarGroup initialize,VarGroup-method()
elements by name
Usage
## S4 replacement method for signature 'VarGroup'
x[i] <- value
Arguments
x |
Object |
i |
Element name |
value |
Value to be added |
Value
object
Method to modify S4 Var elements
Description
Method to modify parseClass initialize,parseClass-method()
elements by name
Usage
## S4 replacement method for signature 'parseClass'
x[i] <- value
Arguments
x |
: Object |
i |
: Element name |
value |
: Value to be added |
Value
parseClass Object
Method to access S4 Var elements
Description
Method to access Var elements by name
Usage
## S4 method for signature 'Var'
x[i]
Arguments
x |
: object |
i |
: value |
Value
object of Var
Method to access S4 Var elements
Description
Method to access VarGroup initialize,VarGroup-method()
elements by name
Usage
## S4 method for signature 'VarGroup'
x[i]
Arguments
x |
: object |
i |
: value |
Value
object element
Method to access S4 Var elements
Description
Method to access parseClass initialize,parseClass-method()
elements by name
Usage
## S4 method for signature 'parseClass'
x[i]
Arguments
x |
: Object |
i |
: Element name |
Value
object
anaBiv generic function
Description
Generic function of anaBiv which gives bivariate analysis according to group
Usage
anaBiv(var, group, parallel, ...)
Arguments
var |
listVar object or data.frame |
group |
Variable to make subgroups with |
parallel |
Logical. Make analysis using parallel from |
... |
digits.p can be specified as descTab |
Value
A list of VarGroup object or data.frame
anaBiv data.frame function
Description
Generic function of anaBiv which gives bivariate analysis according to group
Usage
## S4 method for signature 'data.frame,character'
anaBiv(var, group, parallel, ...)
Arguments
var |
listVar object or data.frame |
group |
Variable to make subgroups with |
parallel |
Logical. Make analysis using parallel from |
... |
digits.p can be specified as descTab |
Value
A list of VarGroup object or data.frame
anaBiv data.frame function
Description
Generic function of anaBiv which gives bivariate analysis according to group
Usage
## S4 method for signature 'listVar,character'
anaBiv(var, group, parallel, ...)
Arguments
var |
listVar object or data.frame |
group |
Variable to make subgroups with |
parallel |
Logical. Make analysis using parallel from |
... |
digits.p can be specified as descTab |
Value
A list of VarGroup object or data.frame
Generic function to create a table of descriptive analysis of a dataset
Description
This function allows you to display all together all univariate analysis (median/mean; IQR/SD; proportions) and bivariates analysis (Wilcoxon, Chi² or Fisher). The univariate analysis can be sub-grouped by a variable of interest of n levels. Appropriate statistics test will be applied
Usage
descTab(
data,
group = NULL,
quanti = TRUE,
quali = TRUE,
na.print = FALSE,
pvalue = TRUE,
digits.p = 3L,
digits.qt = 1L,
digits.ql = 1L,
normality = "normal",
parallel = FALSE,
mc.cores = 0
)
Arguments
data |
A datasaset. Needs to be a data.frame/tibble object |
group |
Optional. The name of the variable to make sub-groups comparisons. |
quanti , quali , na.print , pvalue |
Logical. If false, won't display quantitative/qualitative/Missing values/pvalues variable results |
digits.p |
Integer. Significant digits for p value |
digits.qt |
Integer. Significant digits for mean/median, SD/IQR |
digits.ql |
Integer. Significant digits for proportions |
normality |
One of "assess", "normal", "manual", "non normal". See details |
parallel |
Logical. Make analysis using parallel from |
mc.cores |
If parallel is TRUE, how many Cores to used. |
Value
A S4 objects parseClass()
containing the main table accessible by ["table"] subscript.
Examples
data(iris)
library(stringi)
iris$fact_1<-as.factor(as.character(sample(1:5, 150, replace = TRUE)))
n_na<-sample(1:150, 30)
iris[n_na, "fact_1"]<-NA
iris$fact_2<-as.factor(as.character(sample(1:2, 150, replace = TRUE)))
n_na<-sample(1:150, 10)
iris[n_na, "fact_2"]<-NA
iris$fact_3<-as.factor(as.character(stri_rand_strings(150, 1, '[A-B]')))
iris$num<-runif(150, min = 0, max = 100)
n_na<-sample(1:150, 5)
iris[n_na, "num"]<-NA
iris_test<-descTab(iris, group = "Species", na.print = TRUE)
This function is depreciated, please use anaBiv(). anaBiv()
Description
This function is depreciated, please use anaBiv(). anaBiv()
Usage
ft_ana_biv(...)
Arguments
... |
None |
Value
No return value, depreciated
This function is depreciated, please use anaBiv(). descTab()
Description
This function is depreciated, please use anaBiv(). descTab()
Usage
ft_desc_tab(...)
Arguments
... |
None |
Value
No return value, depreciated
This function is depreciated, please use parseClassFun()
Description
This function is depreciated, please use parseClassFun()
Usage
ft_parse(...)
Arguments
... |
None |
Value
No return value, depreciated
S4 class initialization function
Description
Initialization function for Var initialize,Var-method()
Usage
## S4 method for signature 'Var'
initialize(.Object, name, type, normal)
Arguments
.Object |
Object to be initialized |
name |
A character taking name of the variable |
type |
A character taking name of the variable type |
normal |
Logical, if variable, is numeric; is it normal |
Value
Var Object
S4 class initialization function
Description
Initialization function for VarGroup initialize,VarGroup-method()
Usage
## S4 method for signature 'VarGroup'
initialize(
.Object,
x,
group_var,
pvalue,
parsed_name,
value,
missing.value,
missing.value.name
)
Arguments
.Object |
Object to be initialized |
x |
A Var object |
group_var |
The subgroup for which proportions, mean/sd were calculated and missing values |
pvalue |
The calculated pvalue |
parsed_name |
The name of the variable parsed with the n (%), mean (SD) |
value |
The values calculated parsed |
missing.value |
Missing values numbers and proportions n (%) |
missing.value.name |
Missing values concatenate with the level of the variable if it factor |
Value
VarGroup object
S4 class initialization function
Description
Initialization function for parseClass object initialize,parseClass-method()
Usage
## S4 method for signature 'parseClass'
initialize(
.Object,
table,
group,
pvalue,
na.print,
quanti,
quali,
var_list,
data,
digits.qt,
digits.ql
)
Arguments
.Object |
The object to create |
table |
The result of descTab |
group |
The variable from which to make subgroups |
pvalue , na.print , quanti , quali |
Values from descTab |
var_list |
An object of listVar |
data |
The dataset provided in descTab |
digits.qt , digits.ql |
As provided in descTab |
Value
parseClass object
S4 class
Description
A class of list of Var object
Slots
List
a list of Var
S4 class initialization function
Description
Initialization function for parseClass object initialize,parseClass-method()
Usage
parseClass(
table,
group,
pvalue,
na.print,
quanti,
quali,
var_list,
data,
digits.qt,
digits.ql
)
Arguments
table |
The result of descTab |
group |
The variable from which to make subgroups |
pvalue , na.print , quanti , quali |
Values from descTab |
var_list |
An object of listVar |
data |
The dataset provided in descTab |
digits.qt , digits.ql |
As provided in descTab |
Value
parseClass object
S4 class
Description
A S4 class containing all the information needed for parsClassFun the missing values and the group for which it was calculated
Slots
table
The result of descTab
group
The variable from which to make subgroups
pvalue,na.print,quanti,quali
Values from descTab
descTab()
var_list
An object of listVar
listVar-class()
data
The dataset provided in descTab
digits.qt,digits.ql
As provided in descTab
Make the LaTeX/HTML table. Generic function
Description
Make the LaTeX/HTML table. Generic function
Usage
parseClassFun(
table,
col.order = NULL,
levels_to_keep = NULL,
group_rows_labels = NULL
)
Arguments
table |
|
col.order |
Optional. A vector containing the column order. If set, must contains at least all levels of group. Three columns created are "var", "Total", and "pvalue" which can be present in the vector |
levels_to_keep |
Optional, named list. If the variable is binary, which level to keep. Default is the last level of levels(variable). Must be as: list("variable name" = "level to keep"). |
group_rows_labels |
Optional, named list. Create row labels in order to regroup them. Must be as list("label" = c("var1", "var2), "label2" = c("var3", "var4")). |
Value
An HTML/LaTex file which can be used directly in Rmarkdown and copy paste
Examples
data(iris)
library(stringi)
iris$fact_1<-as.factor(as.character(sample(1:5, 150, replace = TRUE)))
n_na<-sample(1:150, 30)
iris[n_na, "fact_1"]<-NA
iris$fact_2<-as.factor(as.character(stri_rand_strings(150, 1, '[A-B]')))
iris$num<-runif(150, min = 0, max = 100)
n_na<-sample(1:150, 5)
iris[n_na, "num"]<-NA
iris_test<-descTab(iris, group = "Species", na.print = TRUE)
testParse<-parseClassFun(iris_test, levels_to_keep = list("fact_2" = "A"),
group_rows_labels = list("Size" = c("Petal.Length", "Petal.Width"),
"My_f" = c("num", "fact_2")))
Make the LaTeX/HTML table
Description
This functions takes the S4 output of descTab to create an HTML parsed table
Usage
## S4 method for signature 'parseClass'
parseClassFun(
table,
col.order = NULL,
levels_to_keep = NULL,
group_rows_labels = NULL
)
Arguments
table |
|
col.order |
Optional. A vector containing the column order. If set, must contains at least all levels of group. Three columns created are "var", "Total", and "pvalue" which can be present in the vector |
levels_to_keep |
Optional, named list. If the variable is binary, which level to keep. Default is the last level of levels(variable). Must be as: list("variable name" = "level to keep"). |
group_rows_labels |
Optional, named list. Create row labels in order to regroup them. Must be as list("label" = c("var1", "var2), "label2" = c("var3", "var4")). |
Value
An HTML/LaTex file which can be used directly in Rmarkdown and copy paste
Examples
data(iris)
library(stringi)
iris$fact_1<-as.factor(as.character(sample(1:5, 150, replace = TRUE)))
n_na<-sample(1:150, 30)
iris[n_na, "fact_1"]<-NA
iris$fact_2<-as.factor(as.character(stri_rand_strings(150, 1, '[A-B]')))
iris$num<-runif(150, min = 0, max = 100)
n_na<-sample(1:150, 5)
iris[n_na, "num"]<-NA
iris_test<-descTab(iris, group = "Species", na.print = TRUE)
testParse<-parseClassFun(iris_test, levels_to_keep = list("fact_2" = "A"),
group_rows_labels = list("Size" = c("Petal.Length", "Petal.Width"),
"My_f" = c("num", "fact_2")))