
Package ‘dm’
July 22, 2025

Title Relational Data Models

Version 1.0.12

Date 2025-07-02

Description Provides tools for working with multiple related
tables, stored as data frames or in a relational database. Multiple
tables (data and metadata) are stored in a compound object, which can
then be manipulated with a pipe-friendly syntax.

License MIT + file LICENSE

URL https://dm.cynkra.com/, https://github.com/cynkra/dm

BugReports https://github.com/cynkra/dm/issues

Depends R (>= 3.3)

Imports backports, cli (>= 2.2.0), dplyr (>= 1.1.0), glue, igraph,
lifecycle (>= 1.0.3), memoise, methods, purrr (>= 1.0.0), rlang
(>= 1.0.2), tibble (>= 3.0.0), tidyr (>= 1.0.0), tidyselect (>=
1.2.0), vctrs (>= 0.3.2)

Suggests brio, colourpicker, covr, DBI (>= 1.2.0), dbplyr (>= 2.3.4),
DiagrammeR, DiagrammeRsvg, digest, duckdb (>= 0.4.0), fansi,
forcats, htmltools, htmlwidgets, jsonlite, keyring, knitr,
labelled (>= 2.12.0), magrittr, nycflights13, odbc (>= 1.4.2),
pillar, pixarfilms, pool, progress, reactable, RMariaDB (>=
1.3.3), rmarkdown, RPostgres, RSQLite (>= 2.2.8), rstudioapi,
shiny, shinyAce, shinydashboard, testthat (>= 3.2.0),
tidyverse, waldo, withr

Config/Needs/website brio, bslib, cynkra/cynkratemplate, htmltools,
pagedown, purrr, rmarkdown, whisker, xml2

Config/Needs/check anthonynorth/roxyglobals

VignetteBuilder knitr

Config/autostyle/scope line_breaks

Config/autostyle/strict true

Config/testthat/edition 3

1

https://dm.cynkra.com/
https://github.com/cynkra/dm
https://github.com/cynkra/dm/issues

2 Contents

Config/testthat/parallel true

Config/testthat/start-first zzx-deprecated, flatten, dplyr, filter-dm,
draw-dm, bind, rows-dm, learn

Encoding UTF-8

RoxygenNote 7.3.2.9000

NeedsCompilation no

Author Tobias Schieferdecker [aut],
Kirill Müller [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1416-3412>),

Antoine Fabri [ctb],
Darko Bergant [aut],
Katharina Brunner [ctb],
James Wondrasek [ctb],
Indrajeet Patil [ctb] (ORCID: <https://orcid.org/0000-0003-1995-6531>),
Maëlle Salmon [ctb] (ORCID: <https://orcid.org/0000-0002-2815-0399>),
energie360° AG [fnd],
cynkra GmbH [fnd, cph] (ROR: <https://ror.org/0335t7e62>)

Maintainer Kirill Müller <kirill@cynkra.com>

Repository CRAN

Date/Publication 2025-07-02 16:50:06 UTC

Contents
check_key . 4
check_set_equality . 5
check_subset . 6
copy_dm_to . 6
db_schema_create . 8
db_schema_drop . 9
db_schema_exists . 10
db_schema_list . 11
decompose_table . 12
dm . 13
dm_add_fk . 15
dm_add_pk . 17
dm_add_uk . 18
dm_deconstruct . 20
dm_disambiguate_cols . 21
dm_draw . 22
dm_enum_fk_candidates . 24
dm_examine_cardinalities . 25
dm_examine_constraints . 27
dm_filter . 28
dm_financial . 29
dm_flatten_to_tbl . 30

https://orcid.org/0000-0002-1416-3412
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0002-2815-0399
https://ror.org/0335t7e62

Contents 3

dm_from_con . 31
dm_get_all_fks . 32
dm_get_all_pks . 33
dm_get_all_uks . 34
dm_get_con . 35
dm_get_tables . 36
dm_gui . 37
dm_has_pk . 38
dm_mutate_tbl . 38
dm_nest_tbl . 39
dm_nrow . 40
dm_nycflights13 . 40
dm_pack_tbl . 41
dm_paste . 42
dm_pixarfilms . 43
dm_ptype . 44
dm_rename . 45
dm_rm_fk . 46
dm_rm_pk . 47
dm_rm_uk . 48
dm_select . 48
dm_select_tbl . 49
dm_set_colors . 50
dm_set_table_description . 51
dm_sql . 53
dm_unnest_tbl . 54
dm_unpack_tbl . 55
dm_unwrap_tbl . 56
dm_validate . 57
dm_wrap_tbl . 58
dm_zoom_to . 59
dplyr_join . 61
dplyr_table_manipulation . 63
enum_pk_candidates . 65
examine_cardinality . 66
glimpse.dm . 69
head.dm_zoomed . 70
json_nest . 71
json_nest_join . 72
json_pack . 73
json_pack_join . 74
json_unnest . 75
json_unpack . 76
materialize . 77
pack_join . 78
pull_tbl . 79
reunite_parent_child . 80
rows-dm . 81

4 check_key

tidyr_table_manipulation . 84

Index 86

check_key Check if column(s) can be used as keys

Description

check_key() accepts a data frame and, optionally, columns. It throws an error if the specified
columns are NOT a unique key of the data frame. If the columns given in the ellipsis ARE a key,
the data frame itself is returned silently, so that it can be used for piping.

Usage

check_key(x, ..., .data = deprecated())

Arguments

x The data frame whose columns should be tested for key properties.

... The names of the columns to be checked, processed with dplyr::select(). If
omitted, all columns will be checked.

.data Deprecated.

Value

Returns x, invisibly, if the check is passed. Otherwise an error is thrown and the reason for it is
explained.

Examples

data <- tibble::tibble(a = c(1, 2, 1), b = c(1, 4, 1), c = c(5, 6, 7))
this is failing:
try(check_key(data, a, b))

this is passing:
check_key(data, a, c)
check_key(data)

check_set_equality 5

check_set_equality Check column values for set equality

Description

check_set_equality() is a wrapper of check_subset().

It tests if one table is a subset of another and vice versa, i.e., if both sets are the same. If not, it
throws an error.

Usage

check_set_equality(
x,
y,
...,
x_select = NULL,
y_select = NULL,
by_position = NULL

)

Arguments

x, y A data frame or lazy table.

... These dots are for future extensions and must be empty.
x_select, y_select

Key columns to restrict the check, processed with dplyr::select().

by_position Set to TRUE to ignore column names and match by position instead. The default
means matching by name, use x_select and/or y_select to align the names.

Value

Returns x, invisibly, if the check is passed. Otherwise an error is thrown and the reason for it is
explained.

Examples

data_1 <- tibble::tibble(a = c(1, 2, 1), b = c(1, 4, 1), c = c(5, 6, 7))
data_2 <- tibble::tibble(a = c(1, 2, 3), b = c(4, 5, 6), c = c(7, 8, 9))
this is failing:
try(check_set_equality(data_1, data_2, x_select = a, y_select = a))

data_3 <- tibble::tibble(a = c(2, 1, 2), b = c(4, 5, 6), c = c(7, 8, 9))
this is passing:
check_set_equality(data_1, data_3, x_select = a, y_select = a)
this is still failing:
try(check_set_equality(data_2, data_3))

6 copy_dm_to

check_subset Check column values for subset

Description

check_subset() tests if x is a subset of y. For convenience, the x_select and y_select arguments
allow restricting the check to a set of key columns without affecting the return value.

Usage

check_subset(x, y, ..., x_select = NULL, y_select = NULL, by_position = NULL)

Arguments

x, y A data frame or lazy table.

... These dots are for future extensions and must be empty.
x_select, y_select

Key columns to restrict the check, processed with dplyr::select().

by_position Set to TRUE to ignore column names and match by position instead. The default
means matching by name, use x_select and/or y_select to align the names.

Value

Returns x, invisibly, if the check is passed. Otherwise an error is thrown and the reason for it is
explained.

Examples

data_1 <- tibble::tibble(a = c(1, 2, 1), b = c(1, 4, 1), c = c(5, 6, 7))
data_2 <- tibble::tibble(a = c(1, 2, 3), b = c(4, 5, 6), c = c(7, 8, 9))
this is passing:
check_subset(data_1, data_2, x_select = a, y_select = a)

this is failing:
try(check_subset(data_2, data_1))

copy_dm_to Copy data model to data source

Description

copy_dm_to() takes a dplyr::src_dbi object or a DBI::DBIConnection object as its first ar-
gument and a dm object as its second argument. The latter is copied to the former. The de-
fault is to create temporary tables, set temporary = FALSE to create permanent tables. Unless
set_key_constraints is FALSE, primary key constraints are set on all databases, and in addition
foreign key constraints are set on MSSQL and Postgres/Redshift databases.

copy_dm_to 7

Usage

copy_dm_to(
dest,
dm,
...,
set_key_constraints = TRUE,
table_names = NULL,
temporary = TRUE,
schema = NULL,
progress = NA,
unique_table_names = NULL,
copy_to = NULL

)

Arguments

dest An object of class "src" or "DBIConnection".

dm A dm object.

... These dots are for future extensions and must be empty.
set_key_constraints

If TRUE will mirror dm primary and foreign key constraints on a database and
create indexes for foreign key constraints. Set to FALSE if your data model
currently does not satisfy primary or foreign key constraints.

table_names Desired names for the tables on dest; the names within the dm remain un-
changed. Can be NULL, a named character vector, or a vector of DBI::Id objects.
If left NULL (default), the names will be determined automatically depending on
the temporary argument:

1. temporary = TRUE (default): unique table names based on the names of the
tables in the dm are created.

2. temporary = FALSE: the table names in the dm are used as names for the
tables on dest.

If a function or one-sided formula, table_names is converted to a function using
rlang::as_function(). This function is called with the unquoted table names
of the dm object as the only argument. The output of this function is processed
by DBI::dbQuoteIdentifier(), that result should be a vector of identifiers of
the same length as the original table names.
Use a variant of table_names = ~ DBI::SQL(paste0("schema_name", ".",
.x)) to specify the same schema for all tables. Use table_names = identity
with temporary = TRUE to avoid giving temporary tables unique names.
If a named character vector, the names of this vector need to correspond to the
table names in the dm, and its values are the desired names on dest. The value
is processed by DBI::dbQuoteIdentifier(), that result should be a vector of
identifiers of the same length as the original table names.
Use qualified names corresponding to your database’s syntax to specify e.g.
database and schema for your tables.

8 db_schema_create

temporary If TRUE, only temporary tables will be created. These tables will vanish when
disconnecting from the database.

schema Name of schema to copy the dm to. If schema is provided, an error will be thrown
if temporary = FALSE or table_names is not NULL.
Not all DBMS are supported.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

unique_table_names, copy_to
Must be NULL.

Value

A dm object on the given src with the same table names as the input dm.

Examples

con <- DBI::dbConnect(RSQLite::SQLite())

Copy to temporary tables, unique table names by default:
temp_dm <- copy_dm_to(

con,
dm_nycflights13(),
set_key_constraints = FALSE

)

Persist, explicitly specify table names:
persistent_dm <- copy_dm_to(

con,
dm_nycflights13(),
temporary = FALSE,
table_names = ~ paste0("flights_", .x)

)
dbplyr::remote_name(persistent_dm$planes)

DBI::dbDisconnect(con)

db_schema_create Create a schema on a database

Description

[Experimental]
db_schema_create() creates a schema on the database.

Usage

db_schema_create(con, schema, ...)

db_schema_drop 9

Arguments

con An object of class "src" or "DBIConnection".

schema Class character or SQL (cf. Details), name of the schema

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

An error is thrown if a schema of that name already exists.

The argument schema (and dbname for MSSQL) can be provided as SQL objects. Keep in mind, that
in this case it is assumed that they are already correctly quoted as identifiers using DBI::dbQuoteIdentifier().

Additional arguments are:

• dbname: supported for MSSQL. Create a schema in a different database on the connected
MSSQL-server; default: database addressed by con.

Value

NULL invisibly.

See Also

Other schema handling functions: db_schema_drop(), db_schema_exists(), db_schema_list()

db_schema_drop Remove a schema from a database

Description

[Experimental]
db_schema_drop() deletes a schema from the database. For certain DBMS it is possible to force
the removal of a non-empty schema, see below.

Usage

db_schema_drop(con, schema, force = FALSE, ...)

Arguments

con An object of class "src" or "DBIConnection".

schema Class character or SQL (cf. Details), name of the schema

force Boolean, default FALSE. Set to TRUE to drop a schema and all objects it contains
at once. Currently only supported for Postgres/Redshift.

... Passed on to the individual methods.

10 db_schema_exists

Details

Methods are not available for all DBMS.

An error is thrown if no schema of that name exists.

The argument schema (and dbname for MSSQL) can be provided as SQL objects. Keep in mind, that
in this case it is assumed that they are already correctly quoted as identifiers.

Additional arguments are:

• dbname: supported for MSSQL. Remove a schema from a different database on the connected
MSSQL-server; default: database addressed by con.

Value

NULL invisibly.

See Also

Other schema handling functions: db_schema_create(), db_schema_exists(), db_schema_list()

db_schema_exists Check for existence of a schema on a database

Description

[Experimental]
db_schema_exists() checks, if a schema exists on the database.

Usage

db_schema_exists(con, schema, ...)

Arguments

con An object of class "src" or "DBIConnection".

schema Class character or SQL, name of the schema

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

Additional arguments are:

• dbname: supported for MSSQL. Check if a schema exists on a different database on the con-
nected MSSQL-server; default: database addressed by con.

Value

A boolean: TRUE if schema exists, FALSE otherwise.

db_schema_list 11

See Also

Other schema handling functions: db_schema_create(), db_schema_drop(), db_schema_list()

db_schema_list List schemas on a database

Description

[Experimental]

db_schema_list() lists the available schemas on the database.

Usage

db_schema_list(con, include_default = TRUE, ...)

Arguments

con An object of class "src" or "DBIConnection".
include_default

Boolean, if TRUE (default), also the default schema on the database is included
in the result

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

Additional arguments are:

• dbname: supported for MSSQL. List schemas on a different database on the connected MSSQL-
server; default: database addressed by con.

Value

A tibble with the following columns:

schema_name the names of the schemas,

schema_owner the schema owner names.

See Also

Other schema handling functions: db_schema_create(), db_schema_drop(), db_schema_exists()

12 decompose_table

decompose_table Decompose a table into two linked tables

Description

[Experimental]
Perform table surgery by extracting a ’parent table’ from a table, linking the original table and the
new table by a key, and returning both tables.

decompose_table() accepts a data frame, a name for the ’ID column’ that will be newly created,
and the names of the columns that will be extracted into the new data frame.

It creates a ’parent table’, which consists of the columns specified in the ellipsis, and a new ’ID
column’. Then it removes those columns from the original table, which is now called the ’child
table, and adds the ’ID column’.

Usage

decompose_table(.data, new_id_column, ...)

Arguments

.data Data frame from which columns ... are to be extracted.

new_id_column Name of the identifier column (primary key column) for the parent table. A
column of this name is also added in ’child table’.

... The columns to be extracted from the .data.
One or more unquoted expressions separated by commas. You can treat variable
names as if they were positions, so you can use expressions like x:y to select
ranges of variables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming") for an introduction to those concepts.
See select helpers for more details, and the examples about tidyselect helpers,
such as starts_with(), everything(), ...

Value

A named list of length two:

• entry "child_table": the child table with column new_id_column referring to the same column
in parent_table,

• entry "parent_table": the "lookup table" for child_table.

Life cycle

This function is marked "experimental" because it seems more useful when applied to a table in
a dm object. Changing the interface later seems harmless because these functions are most likely
used interactively.

dm 13

See Also

Other table surgery functions: reunite_parent_child()

Examples

decomposed_table <- decompose_table(mtcars, new_id, am, gear, carb)
decomposed_table$child_table
decomposed_table$parent_table

dm Data model class

Description

The dm class holds a list of tables and their relationships. It is inspired by datamodelr, and extends
the idea by offering operations to access the data in the tables.

dm() creates a dm object from tbl objects (tibbles or lazy data objects).

new_dm() is a low-level constructor that creates a new dm object.

• If called without arguments, it will create an empty dm.

• If called with arguments, no validation checks will be made to ascertain that the inputs are of
the expected class and internally consistent; use dm_validate() to double-check the returned
object.

is_dm() returns TRUE if the input is of class dm.

as_dm() coerces objects to the dm class

Usage

dm(
...,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
.quiet = FALSE

)

new_dm(tables = list())

is_dm(x)

as_dm(x, ...)

https://github.com/bergant/datamodelr

14 dm

Arguments

... Tables or existing dm objects to add to the dm object. Unnamed tables are auto-
named, dm objects must not be named.

.name_repair, .quiet
Options for name repair. Forwarded as repair and quiet to vctrs::vec_as_names().

tables A named list of the tables (tibble-objects, not names), to be included in the dm
object.

x An object.

Value

For dm(), new_dm(), as_dm(): A dm object.

For is_dm(): A scalar logical, TRUE if is this object is a dm.

See Also

• dm_from_con() for connecting to all tables in a database and importing the primary and for-
eign keys

• dm_get_tables() for returning a list of tables

• dm_add_pk() and dm_add_fk() for adding primary and foreign keys

• copy_dm_to() for DB interaction

• dm_draw() for visualization

• dm_flatten_to_tbl() for flattening

• dm_filter() for filtering

• dm_select_tbl() for creating a dm with only a subset of the tables

• dm_nycflights13() for creating an example dm object

• decompose_table() for table surgery

• check_key() and check_subset() for checking for key properties

• examine_cardinality() for checking the cardinality of the relation between two tables

Examples

dm(trees, mtcars)

new_dm(list(trees = trees, mtcars = mtcars))

as_dm(list(trees = trees, mtcars = mtcars))

is_dm(dm_nycflights13())

dm_nycflights13()$airports

dm_nycflights13()["airports"]

dm_add_fk 15

dm_nycflights13()[["airports"]]

dm_nycflights13() %>% names()

library(dm)
library(nycflights13)

using `data.frame` objects
new_dm(tibble::lst(weather, airports))

using `dm_keyed_tbl` objects
dm <- dm_nycflights13()
y1 <- dm$planes %>%

mutate() %>%
select(everything())

y2 <- dm$flights %>%
left_join(dm$airlines, by = "carrier")

new_dm(list("tbl1" = y1, "tbl2" = y2))

dm_add_fk Add foreign keys

Description

dm_add_fk() marks the specified columns as the foreign key of table table with respect to a key
of table ref_table. Usually the referenced columns are a primary key in ref_table. However, it
is also possible to specify other columns via the ref_columns argument. If check == TRUE, then it
will first check if the values in columns are a subset of the values of the key in table ref_table.

Usage

dm_add_fk(
dm,
table,
columns,
ref_table,
ref_columns = NULL,
...,
check = FALSE,
on_delete = c("no_action", "cascade")

)

Arguments

dm A dm object.

table A table in the dm.

16 dm_add_fk

columns The columns of table which are to become the foreign key columns that refer-
ence ref_table. To define a compound key, use c(col1, col2).

ref_table The table which table will be referencing.

ref_columns The column(s) of table which are to become the referenced column(s) in ref_table.
By default, the primary key is used. To define a compound key, use c(col1,
col2).

... These dots are for future extensions and must be empty.

check Boolean, if TRUE, a check will be performed to determine if the values of columns
are a subset of the values of the key column(s) of ref_table.

on_delete [Experimental]
Defines behavior if a row in the parent table is deleted. - "no_action", the
default, means that no action is taken and the operation is aborted if child rows
exist - "cascade" means that the child row is also deleted This setting is picked
up by copy_dm_to() with set_key_constraints = TRUE, and by dm_sql(),
and might be considered by dm_rows_delete() in a future version.

Details

It is possible that a foreign key (FK) is pointing to columns that are neither primary (PK) nor explicit
unique keys (UK). This can happen

1. when a FK is added without a corresponding PK or UK being present in the parent table

2. when the PK or UK is removed (dm_rm_pk()/dm_rm_uk()) without first removing the associ-
ated FKs.

These columns are then a so-called "implicit unique key" of the referenced table and can be listed
via dm_get_all_uks().

Value

An updated dm with an additional foreign key relation.

See Also

Other foreign key functions: dm_enum_fk_candidates(), dm_get_all_fks(), dm_rm_fk()

Examples

nycflights_dm <- dm(
planes = nycflights13::planes,
flights = nycflights13::flights,
weather = nycflights13::weather

)

nycflights_dm %>%
dm_draw()

Create foreign keys:
nycflights_dm %>%

dm_add_pk 17

dm_add_pk(planes, tailnum) %>%
dm_add_fk(flights, tailnum, planes) %>%
dm_add_pk(weather, c(origin, time_hour)) %>%
dm_add_fk(flights, c(origin, time_hour), weather) %>%
dm_draw()

Keys can be checked during creation:
try(

nycflights_dm %>%
dm_add_pk(planes, tailnum) %>%
dm_add_fk(flights, tailnum, planes, check = TRUE)

)

dm_add_pk Add a primary key

Description

dm_add_pk() marks the specified columns as the primary key of the specified table. If check ==
TRUE, then it will first check if the given combination of columns is a unique key of the table. If
force == TRUE, the function will replace an already set key, without altering foreign keys previously
pointing to that primary key.

Usage

dm_add_pk(
dm,
table,
columns,
...,
autoincrement = FALSE,
check = FALSE,
force = FALSE

)

Arguments

dm A dm object.

table A table in the dm.

columns Table columns, unquoted. To define a compound key, use c(col1, col2).

... These dots are for future extensions and must be empty.

autoincrement [Experimental] If TRUE, the column specified in columns will be populated
automatically with a sequence of integers.

check Boolean, if TRUE, a check is made if the combination of columns is a unique key
of the table.

18 dm_add_uk

force Boolean, if FALSE (default), an error will be thrown if there is already a primary
key set for this table. If TRUE, a potential old pk is deleted before setting a new
one.

Details

There can be only one primary key per table in a dm. It’s possible though to set an unlimited
number of unique keys using dm_add_uk() or adding foreign keys pointing to columns other than
the primary key columns with dm_add_fk().

Value

An updated dm with an additional primary key.

See Also

Other primary key functions: dm_add_uk(), dm_get_all_pks(), dm_get_all_uks(), dm_has_pk(),
dm_rm_pk(), dm_rm_uk(), enum_pk_candidates()

Examples

nycflights_dm <- dm(
planes = nycflights13::planes,
airports = nycflights13::airports,
weather = nycflights13::weather

)

nycflights_dm %>%
dm_draw()

Create primary keys:
nycflights_dm %>%

dm_add_pk(planes, tailnum) %>%
dm_add_pk(airports, faa, check = TRUE) %>%
dm_add_pk(weather, c(origin, time_hour)) %>%
dm_draw()

Keys can be checked during creation:
try(

nycflights_dm %>%
dm_add_pk(planes, manufacturer, check = TRUE)

)

dm_add_uk Add a unique key

dm_add_uk 19

Description

dm_add_uk() marks the specified columns as a unique key of the specified table. If check == TRUE,
then it will first check if the given combination of columns is a unique key of the table.

Usage

dm_add_uk(dm, table, columns, ..., check = FALSE)

Arguments

dm A dm object.

table A table in the dm.

columns Table columns, unquoted. To define a compound key, use c(col1, col2).

... These dots are for future extensions and must be empty.

check Boolean, if TRUE, a check is made if the combination of columns is a unique key
of the table.

Details

The difference between a primary key (PK) and a unique key (UK) consists in the following:

• When a local dm is copied to a database (DB) with copy_dm_to(), a PK will be set on the DB
by default, whereas a UK is being ignored.

• A PK can be set as an autoincrement key (also implemented on certain DBMS when the dm
is transferred to the DB)

• There can be only one PK for each table, whereas there can be unlimited UKs

• A UK will be used, if the same table has an autoincrement PK in addition, to ensure that
during delta load processes on the DB (cf. dm_rows_append()) the foreign keys are updated
accordingly. If no UK is available, the insertion is done row-wise, which also ensures a correct
matching, but can be much slower.

• A UK can generally enhance the data model by adding additional information

• There can also be implicit UKs, when the columns addressed by a foreign key are neither a
PK nor a UK. These implicit UKs are also listed by dm_get_all_uks()

Value

An updated dm with an additional unqiue key.

See Also

Other primary key functions: dm_add_pk(), dm_get_all_pks(), dm_get_all_uks(), dm_has_pk(),
dm_rm_pk(), dm_rm_uk(), enum_pk_candidates()

20 dm_deconstruct

Examples

nycflights_dm <- dm(
planes = nycflights13::planes,
airports = nycflights13::airports,
weather = nycflights13::weather

)

Create unique keys:
nycflights_dm %>%

dm_add_uk(planes, tailnum) %>%
dm_add_uk(airports, faa, check = TRUE) %>%
dm_add_uk(weather, c(origin, time_hour)) %>%
dm_get_all_uks()

Keys can be checked during creation:
try(

nycflights_dm %>%
dm_add_uk(planes, manufacturer, check = TRUE)

)

dm_deconstruct Create code to deconstruct a dm object

Description

[Experimental]

Emits code that assigns each table in the dm to a variable, using pull_tbl() with keyed = TRUE.
These tables retain information about primary and foreign keys, even after data transformations,
and can be converted back to a dm object with dm().

Usage

dm_deconstruct(dm, dm_name = NULL)

Arguments

dm A dm object.

dm_name The code to use to access the dm object, by default the expression passed to this
function.

Value

This function is called for its side effect of printing generated code.

dm_disambiguate_cols 21

Examples

dm <- dm_nycflights13()
dm_deconstruct(dm)
airlines <- pull_tbl(dm, "airlines", keyed = TRUE)
airports <- pull_tbl(dm, "airports", keyed = TRUE)
flights <- pull_tbl(dm, "flights", keyed = TRUE)
planes <- pull_tbl(dm, "planes", keyed = TRUE)
weather <- pull_tbl(dm, "weather", keyed = TRUE)
by_origin <-

flights %>%
group_by(origin) %>%
summarize(mean_arr_delay = mean(arr_delay, na.rm = TRUE)) %>%
ungroup()

by_origin
dm(airlines, airports, flights, planes, weather, by_origin) %>%

dm_draw()

dm_disambiguate_cols Resolve column name ambiguities

Description

This function ensures that all columns in a dm have unique names.

Usage

dm_disambiguate_cols(
dm,
.sep = ".",
...,
.quiet = FALSE,
.position = c("suffix", "prefix")

)

Arguments

dm A dm object.

.sep The character variable that separates the names of the table and the names of the
ambiguous columns.

... These dots are for future extensions and must be empty.

.quiet Boolean. By default, this function lists the renamed columns in a message, pass
TRUE to suppress this message.

.position [Experimental] By default, table names are appended to the column names to
resolve conflicts. Prepending table names was the default for versions before
1.0.0, use "prefix" to achieve this behavior.

22 dm_draw

Details

The function first checks if there are any column names that are not unique. If there are, those
columns will be assigned new, unique, names by prefixing their existing name with the name of their
table and a separator. Columns that act as primary or foreign keys will not be renamed because only
the foreign key column will remain when two tables are joined, making that column name "unique"
as well.

Value

A dm whose column names are unambiguous.

Examples

dm_nycflights13() %>%
dm_disambiguate_cols()

dm_draw Draw a diagram of the data model

Description

dm_draw() draws a diagram, a visual representation of the data model.

Usage

dm_draw(
dm,
rankdir = "LR",
...,
col_attr = NULL,
view_type = c("keys_only", "all", "title_only"),
columnArrows = TRUE,
graph_attrs = "",
node_attrs = "",
edge_attrs = "",
focus = NULL,
graph_name = "Data Model",
column_types = NULL,
backend = "DiagrammeR",
font_size = NULL

)

dm_draw 23

Arguments

dm A dm object.

rankdir Graph attribute for direction (e.g., ’BT’ = bottom –> top).

... These dots are for future extensions and must be empty.

col_attr Deprecated, use colummn_types instead.

view_type Can be "keys_only" (default), "all" or "title_only". It defines the level of details
for rendering tables (only primary and foreign keys, all columns, or no columns).

columnArrows Edges from columns to columns (default: TRUE).

graph_attrs Additional graph attributes.

node_attrs Additional node attributes.

edge_attrs Additional edge attributes.

focus A list of parameters for rendering (table filter).

graph_name The name of the graph.

column_types Set to TRUE to show column types.

backend Currently, only the default "DiagrammeR" is accepted. Pass this value explicitly
if your code not only uses this function to display a data model but relies on the
type of the return value.

font_size [Experimental]
Font size for:

• header, defaults to 16

• column, defaults to 16

• table_description, defaults to 8

Can be set as a named integer vector, e.g. c(table_headers = 18L, table_description
= 6L).

Details

Currently, dm uses DiagrammeR to draw diagrams. Use DiagrammeRsvg::export_svg() to con-
vert the diagram to an SVG file.

The backend for drawing the diagrams might change in the future. If you rely on DiagrammeR,
pass an explicit value for the backend argument.

Value

An object with a print() method, which, when printed, produces the output seen in the viewer as
a side effect. Currently, this is an object of class grViz (see also DiagrammeR::grViz()), but this
is subject to change.

See Also

dm_set_colors() for defining the table colors.

dm_set_table_description() for adding details to one or more tables in the diagram

24 dm_enum_fk_candidates

Examples

dm_nycflights13() %>%
dm_draw()

dm_nycflights13(cycle = TRUE) %>%
dm_draw(view_type = "title_only")

head(dm_get_available_colors())
length(dm_get_available_colors())

dm_nycflights13() %>%
dm_get_colors()

dm_enum_fk_candidates Foreign key candidates

Description

[Experimental]
Determine which columns would be good candidates to be used as foreign keys of a table, to refer-
ence the primary key column of another table of the dm object.

Usage

dm_enum_fk_candidates(dm, table, ref_table, ...)

enum_fk_candidates(dm_zoomed, ref_table, ...)

Arguments

dm A dm object.

table The table whose columns should be tested for suitability as foreign keys.

ref_table A table with a primary key.

... These dots are for future extensions and must be empty.

dm_zoomed A dm with a zoomed table.

Details

dm_enum_fk_candidates() first checks if ref_table has a primary key set, if not, an error is
thrown.

If ref_table does have a primary key, then a join operation will be tried using that key as the by
argument of join() to match it to each column of table. Attempting to join incompatible columns
triggers an error.

The outcome of the join operation determines the value of the why column in the result:

dm_examine_cardinalities 25

• an empty value for a column of table that is a suitable foreign key candidate

• the count and percentage of missing matches for a column that is not suitable

• the error message triggered for unsuitable candidates that may include the types of mismatched
columns

enum_fk_candidates() works like dm_enum_fk_candidates() with the zoomed table as table.

Value

A tibble with the following columns:

columns columns of table,

candidate boolean: are these columns a candidate for a foreign key,

why if not a candidate for a foreign key, explanation for for this.

Life cycle

These functions are marked "experimental" because we are not yet sure about the interface, in
particular if we need both dm_enum...() and enum...() variants. Changing the interface later
seems harmless because these functions are most likely used interactively.

See Also

Other foreign key functions: dm_add_fk(), dm_get_all_fks(), dm_rm_fk()

Examples

dm_nycflights13() %>%
dm_enum_fk_candidates(flights, airports)

dm_nycflights13() %>%
dm_zoom_to(flights) %>%
enum_fk_candidates(airports)

dm_examine_cardinalities

Learn about your data model

Description

[Experimental]

This function returns a tibble with information about the cardinality of the FK constraints. The
printing for this object is special, use tibble::as_tibble() to print as a regular tibble.

26 dm_examine_cardinalities

Usage

dm_examine_cardinalities(
.dm,
...,
.progress = NA,
dm = deprecated(),
progress = deprecated()

)

Arguments

.dm A dm object.

... These dots are for future extensions and must be empty.

.progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

dm, progress [Deprecated]

Details

Uses examine_cardinality() on each foreign key that is defined in the dm.

Value

A tibble with the following columns:

child_table child table,

child_fk_cols foreign key column(s) in child table as list of character vectors,

parent_table parent table,

parent_key_cols key column(s) in parent table as list of character vectors,

cardinality the nature of cardinality along the foreign key.

See Also

Other cardinality functions: examine_cardinality()

Examples

dm_nycflights13() %>%
dm_examine_cardinalities()

dm_examine_constraints 27

dm_examine_constraints

Validate your data model

Description

This function returns a tibble with information about which key constraints are met (is_key = TRUE)
or violated (FALSE). The printing for this object is special, use tibble::as_tibble() to print as a
regular tibble.

Usage

dm_examine_constraints(
.dm,
...,
.progress = NA,
dm = deprecated(),
progress = deprecated()

)

Arguments

.dm A dm object.

... These dots are for future extensions and must be empty.

.progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

dm, progress [Deprecated]

Details

For the primary key constraints, it is tested if the values in the respective columns are all unique.
For the foreign key constraints, the tests check if for each foreign key constraint, the values of the
foreign key column form a subset of the values of the referenced column.

Value

A tibble with the following columns:

table the table in the dm,

kind "PK" or "FK",

columns the table columns that define the key,

ref_table for foreign keys, the referenced table,

is_key logical,

problem if is_key = FALSE, the reason for that.

28 dm_filter

Examples

dm_nycflights13() %>%
dm_examine_constraints()

dm_filter Filtering

Description

Filtering a table of a dm object may affect other tables that are connected to it directly or indirectly
via foreign key relations.

dm_filter() can be used to define filter conditions for tables using syntax that is similar to
dplyr::filter(). The filters work across related tables: The resulting dm object only contains
rows that are related (directly or indirectly) to rows that remain after applying the filters on all
tables.

Usage

dm_filter(.dm, ...)

Arguments

.dm A dm object.

... Named logical predicates. The names correspond to tables in the dm object. The
predicates are defined in terms of the variables in the corresponding table, they
are passed on to dplyr::filter().

Multiple conditions are combined with &. Only the rows where the condition
evaluates to TRUE are kept.

Details

As of dm 1.0.0, these conditions are no longer stored in the dm object, instead they are applied to all
tables during the call to dm_filter(). Calling dm_apply_filters() or dm_apply_filters_to_tbl()
is no longer necessary.

Use dm_zoom_to() and dplyr::filter() to filter rows without affecting related tables.

Value

An updated dm object with filters executed across all tables.

dm_financial 29

Examples

dm_nyc <- dm_nycflights13()
dm_nyc %>%

dm_nrow()

dm_nyc_filtered <-
dm_nycflights13() %>%
dm_filter(airports = (name == "John F Kennedy Intl"))

dm_nyc_filtered %>%
dm_nrow()

If you want to keep only those rows in the parent tables
whose primary key values appear as foreign key values in
`flights`, you can set a `TRUE` filter in `flights`:
dm_nyc %>%

dm_filter(flights = (1 == 1)) %>%
dm_nrow()

note that in this example, the only affected table is
`airports` because the departure airports in `flights` are
only the three New York airports.

dm_financial Creates a dm object for the Financial data

Description

dm_financial() creates an example dm object from the tables at https://relational.fel.cvut.cz/dataset/Financial.
The connection is established once per session, subsequent calls return the same connection.

dm_financial_sqlite() copies the data to a temporary SQLite database. The data is downloaded
once per session, subsequent calls return the same database. The trans table is excluded due to its
size.

Usage

dm_financial()

dm_financial_sqlite()

Value

A dm object.

Examples

dm_financial() %>%
dm_draw()

30 dm_flatten_to_tbl

dm_flatten_to_tbl Flatten a part of a dm into a wide table

Description

dm_flatten_to_tbl() gathers all information of interest in one place in a wide table. It performs
a disambiguation of column names and a cascade of joins.

Usage

dm_flatten_to_tbl(dm, .start, ..., .recursive = FALSE, .join = left_join)

Arguments

dm A dm object.

.start The table from which all outgoing foreign key relations are considered when
establishing a processing order for the joins. An interesting choice could be for
example a fact table in a star schema.

... [Experimental]
Unquoted names of the tables to be included in addition to the .start table.
The order of the tables here determines the order of the joins. If the argument is
empty, all tables that can be reached will be included. tidyselect is supported,
see dplyr::select() for details on the semantics.

.recursive Logical, defaults to FALSE. Should not only parent tables be joined to .start,
but also their ancestors?

.join The type of join to be performed, see dplyr::join().

Details

With ... left empty, this function will join together all the tables of your dm object that can be
reached from the .start table, in the direction of the foreign key relations (pointing from the child
tables to the parent tables), using the foreign key relations to determine the argument by for the
necessary joins. The result is one table with unique column names. Use the ... argument if you
would like to control which tables should be joined to the .start table.

Mind that calling dm_flatten_to_tbl() with .join = right_join and no table order determined
in the ... argument will not lead to a well-defined result if two or more foreign tables are to be
joined to .start. The resulting table would depend on the order the tables that are listed in the dm.
Therefore, trying this will result in a warning.

Since .join = nest_join does not make sense in this direction (LHS = child table, RHS = parent
table: for valid key constraints each nested column entry would be a tibble of one row), an error
will be thrown if this method is chosen.

The difference between .recursive = FALSE and .recursive = TRUE is the following (see the ex-
amples):

• .recursive = FALSE allows only one level of hierarchy (i.e., direct neighbors to table .start),
while

dm_from_con 31

• .recursive = TRUE will go through all levels of hierarchy while joining.

Additionally, these functions differ from dm_wrap_tbl(), which always returns a dm object.

Value

A single table that results from consecutively joining all affected tables to the .start table.

Examples

dm_financial() %>%
dm_select_tbl(-loans) %>%
dm_flatten_to_tbl(.start = cards)

dm_financial() %>%
dm_select_tbl(-loans) %>%
dm_flatten_to_tbl(.start = cards, .recursive = TRUE)

dm_from_con Load a dm from a remote data source

Description

dm_from_con() creates a dm from some or all tables in a dplyr::src (a database or an environment)
or which are accessible via a DBI-Connection. For Postgres/Redshift and SQL Server databases,
primary and foreign keys are imported from the database.

Usage

dm_from_con(
con = NULL,
table_names = NULL,
learn_keys = NULL,
.names = NULL,
...

)

Arguments

con A DBI::DBIConnection or a Pool object.

table_names A character vector of the names of the tables to include.

learn_keys [Experimental]
Set to TRUE to query the definition of primary and foreign keys from the database.
Currently works only for Postgres/Redshift and SQL Server databases. The de-
fault attempts to query and issues an informative message.

32 dm_get_all_fks

.names [Experimental]
A glue specification that describes how to name the tables within the output,
currently only for MSSQL, Postgres/Redshift and MySQL/MariaDB. This can
use {.table} to stand for the table name, and {.schema} to stand for the name
of the schema which the table lives within. The default (NULL) is equivalent to
"{.table}" when a single schema is specified in schema, and "{.schema}.{.table}"
for the case where multiple schemas are given, and may change in future ver-
sions.

... [Experimental]
Additional parameters for the schema learning query.

• schema: supported for MSSQL (default: "dbo"), Postgres/Redshift (de-
fault: "public"), and MariaDB/MySQL (default: current database). Learn
the tables in a specific schema (or database for MariaDB/MySQL).

• dbname: supported for MSSQL. Access different databases on the con-
nected MSSQL-server; default: active database.

• table_type: supported for Postgres/Redshift (default: "BASE TABLE"). Spec-
ify the table type. Options are:
1. "BASE TABLE" for a persistent table (normal table type)
2. "VIEW" for a view
3. "FOREIGN TABLE" for a foreign table
4. "LOCAL TEMPORARY" for a temporary table

Value

A dm object.

Examples

con <- dm_get_con(dm_financial())

Avoid DBI::dbDisconnect() here, because we don't own the connection

dm_get_all_fks Get foreign key constraints

Description

Get a summary of all foreign key relations in a dm.

Usage

dm_get_all_fks(dm, parent_table = NULL, ...)

dm_get_all_pks 33

Arguments

dm A dm object.

parent_table One or more table names, unquoted, to return foreign key information for. If
given, foreign keys are returned in that order. The default NULL returns informa-
tion for all tables.

... These dots are for future extensions and must be empty.

Value

A tibble with the following columns:

child_table child table,

child_fk_cols foreign key column(s) in child table as list of character vectors,

parent_table parent table,

parent_key_cols key column(s) in parent table as list of character vectors.

on_delete behavior on deletion of rows in the parent table.

See Also

Other foreign key functions: dm_add_fk(), dm_enum_fk_candidates(), dm_rm_fk()

Examples

dm_nycflights13() %>%
dm_get_all_fks()

dm_get_all_pks Get all primary keys of a dm object

Description

dm_get_all_pks() checks the dm object for primary keys and returns the tables and the respective
primary key columns.

Usage

dm_get_all_pks(dm, table = NULL, ...)

Arguments

dm A dm object.

table One or more table names, unquoted, to return primary key information for. If
given, primary keys are returned in that order. The default NULL returns infor-
mation for all tables.

... These dots are for future extensions and must be empty.

34 dm_get_all_uks

Value

A tibble with the following columns:

table table name,

pk_col column name(s) of primary key, as list of character vectors.

See Also

Other primary key functions: dm_add_pk(), dm_add_uk(), dm_get_all_uks(), dm_has_pk(),
dm_rm_pk(), dm_rm_uk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_get_all_pks()

dm_get_all_uks Get all unique keys of a dm object

Description

dm_get_all_uks() checks the dm object for unique keys (primary keys, explicit and implicit unique
keys) and returns the tables and the respective unique key columns.

Usage

dm_get_all_uks(dm, table = NULL, ...)

Arguments

dm A dm object.

table One or more table names, unquoted, to return unique key information for. The
default NULL returns information for all tables.

... These dots are for future extensions and must be empty.

Details

There are 3 kinds of unique keys:

• PK: Primary key, set by dm_add_pk()

• explicit UK: Unique key, set by dm_add_uk()

• implicit UK: Unique key, not explicitly set, but referenced by a foreign key.

dm_get_con 35

Value

A tibble with the following columns:

table table name,

uk_col column name(s) of primary key, as list of character vectors,

kind kind of unique key, see details.

See Also

Other primary key functions: dm_add_pk(), dm_add_uk(), dm_get_all_pks(), dm_has_pk(),
dm_rm_pk(), dm_rm_uk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_get_all_uks()

dm_get_con Get connection

Description

dm_get_con() returns the DBI connection for a dm object. This works only if the tables are stored
on a database, otherwise an error is thrown.

Usage

dm_get_con(dm)

Arguments

dm A dm object.

Details

All lazy tables in a dm object must be stored on the same database server and accessed through the
same connection, because a large part of the package’s functionality relies on efficient joins.

Value

The DBI::DBIConnection object for a dm object.

Examples

dm_financial() %>%
dm_get_con()

36 dm_get_tables

dm_get_tables Get tables

Description

dm_get_tables() returns a named list of dplyr tbl objects of a dm object.

Usage

dm_get_tables(x, ..., keyed = FALSE)

Arguments

x A dm object.

... These dots are for future extensions and must be empty.

keyed [Experimental] Set to TRUE to return objects of the internal class "dm_keyed_tbl"
that will contain information on primary and foreign keys in the individual table
objects. This allows using dplyr workflows on those tables and later reconstruct
them into a dm object. See dm_deconstruct() for a function that generates cor-
responding code for an existing dm object, and vignette("tech-dm-keyed")
for details.

Value

A named list with the tables (data frames or lazy tables) constituting the dm.

See Also

dm() and new_dm() for constructing a dm object from tables.

Examples

dm_nycflights13() %>%
dm_get_tables()

dm_nycflights13() %>%
dm_get_tables(keyed = TRUE)

dm_nycflights13() %>%
dm_get_tables(keyed = TRUE) %>%
new_dm()

dm_gui 37

dm_gui Shiny app for defining dm objects

Description

[Experimental]

This function starts a Shiny application that allows to define dm objects from a database or from
local data frames. The application generates R code that can be inserted or copy-pasted into an R
script or function.

Usage

dm_gui(..., dm = NULL, select_tables = TRUE, debug = FALSE)

Arguments

... These dots are for future extensions and must be empty.

dm An initial dm object, currently required.

select_tables Show selectize input to select tables?

debug Set to TRUE to simplify debugging of the app.

Details

In a future release, the app will also allow composing dm objects directly from database connections
or data frames.

The signature of this function is subject to change without notice. This should not pose too many
problems, because it will usually be run interactively.

Examples

Not run:
dm <- dm_nycflights13(cycle = TRUE)
dm_gui(dm = dm)

End(Not run)

38 dm_mutate_tbl

dm_has_pk Check for primary key

Description

dm_has_pk() checks if a given table has columns marked as its primary key.

Usage

dm_has_pk(dm, table, ...)

Arguments

dm A dm object.

table A table in the dm.

... These dots are for future extensions and must be empty.

Value

A logical value: TRUE if the given table has a primary key, FALSE otherwise.

See Also

Other primary key functions: dm_add_pk(), dm_add_uk(), dm_get_all_pks(), dm_get_all_uks(),
dm_rm_pk(), dm_rm_uk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_has_pk(flights)

dm_nycflights13() %>%
dm_has_pk(planes)

dm_mutate_tbl Update tables in a dm

Description

[Experimental]
Updates one or more existing tables in a dm. For now, the column names must be identical. This
restriction may be levied optionally in the future.

Usage

dm_mutate_tbl(dm, ...)

dm_nest_tbl 39

Arguments

dm A dm object.
... One or more tables to update in the dm. Must be named.

See Also

dm(), dm_select_tbl()

Examples

dm_nycflights13() %>%
dm_mutate_tbl(flights = nycflights13::flights[1:3,])

dm_nest_tbl Nest a table inside its dm

Description

[Experimental]
dm_nest_tbl() converts a child table to a nested column in its parent table. The child table should
not have children itself (i.e. it needs to be a terminal child table).

Usage

dm_nest_tbl(dm, child_table, into = NULL)

Arguments

dm A dm.
child_table A terminal table with one parent table.
into The table to nest child_tables into, optional as it can be guessed from the

foreign keys unambiguously but useful to be explicit.

See Also

dm_wrap_tbl(), dm_unwrap_tbl(), dm_pack_tbl()

Examples

nested_dm <-
dm_nycflights13() %>%
dm_select_tbl(airlines, flights) %>%
dm_nest_tbl(flights)

nested_dm

nested_dm$airlines

40 dm_nycflights13

dm_nrow Number of rows

Description

Returns a named vector with the number of rows for each table.

Usage

dm_nrow(dm)

Arguments

dm A dm object.

Value

A named vector with the number of rows for each table.

Examples

dm_nycflights13() %>%
dm_filter(airports = (faa %in% c("EWR", "LGA"))) %>%
dm_nrow()

dm_nycflights13 Creates a dm object for the nycflights13 data

Description

Creates an example dm object from the tables in nycflights13, along with the references. See
nycflights13::flights for a description of the data. As described in nycflights13::planes,
the relationship between the flights table and the planes tables is "weak", it does not satisfy data
integrity constraints.

Usage

dm_nycflights13(
...,
cycle = FALSE,
color = TRUE,
subset = TRUE,
compound = TRUE,
table_description = FALSE

)

dm_pack_tbl 41

Arguments

... These dots are for future extensions and must be empty.

cycle Boolean. If FALSE (default), only one foreign key relation (from flights$origin
to airports$faa) between the flights table and the airports table is estab-
lished. If TRUE, a dm object with a double reference between those tables will be
produced.

color Boolean, if TRUE (default), the resulting dm object will have colors assigned to
different tables for visualization with dm_draw().

subset Boolean, if TRUE (default), the flights table is reduced to flights with column
day equal to 10.

compound Boolean, if FALSE, no link will be established between tables flights and
weather, because this requires compound keys.

table_description

Boolean, if TRUE, a description will be added for each table that will be displayed
when drawing the table with dm_draw().

Value

A dm object consisting of nycflights13 tables, complete with primary and foreign keys and option-
ally colored.

See Also

vignette("howto-dm-df")

Examples

dm_nycflights13() %>%
dm_draw()

dm_pack_tbl dm_pack_tbl()

Description

[Experimental]

dm_pack_tbl() converts a parent table to a packed column in its child table. The parent table
should not have parent tables itself (i.e. it needs to be a terminal parent table).

Usage

dm_pack_tbl(dm, parent_table, into = NULL)

42 dm_paste

Arguments

dm A dm.

parent_table A terminal table with one child table.

into The table to pack parent_tables into, optional as it can be guessed from the
foreign keys unambiguously but useful to be explicit.

See Also

dm_wrap_tbl(), dm_unwrap_tbl(), dm_nest_tbl().

Examples

dm_packed <-
dm_nycflights13() %>%
dm_pack_tbl(planes)

dm_packed

dm_packed$flights

dm_packed$flights$planes

dm_paste Create R code for a dm object

Description

dm_paste() takes an existing dm and emits the code necessary for its creation.

Usage

dm_paste(dm, select = NULL, ..., tab_width = 2, options = NULL, path = NULL)

Arguments

dm A dm object.

select Deprecated, see "select" in the options argument.

... Must be empty.

tab_width Indentation width for code from the second line onwards

options Formatting options. A character vector containing some of:

• "tables": tibble() calls for empty table definitions derived from dm_ptype(),
overrides "select".

• "select": dm_select() statements for columns that are part of the dm.
• "keys": dm_add_pk(), dm_add_fk() and dm_add_uk() statements for adding

keys.

dm_pixarfilms 43

• "color": dm_set_colors() statements to set color.
• "all": All options above except "select"

Default NULL is equivalent to c("keys", "color")

path Output file, if NULL the code is printed to the console.

Details

The code emitted by the function reproduces the structure of the dm object. The options argument
controls the level of detail: keys, colors, table definitions. Data in the tables is never included, see
dm_ptype() for the underlying logic.

Value

Code for producing the prototype of the given dm.

Examples

dm() %>%
dm_paste()

dm_nycflights13() %>%
dm_paste()

dm_nycflights13() %>%
dm_paste(options = "select")

dm_pixarfilms Creates a dm object for the pixarfilms data

Description

Creates an example dm object from the tables in pixarfilms, along with the references.

Usage

dm_pixarfilms(..., color = TRUE, consistent = FALSE)

Arguments

... These dots are for future extensions and must be empty.

color Boolean, if TRUE (default), the resulting dm object will have colors assigned to
different tables for visualization with dm_draw().

consistent Boolean, In the original dm the film column in pixar_films contains missing
values so cannot be made a proper primary key. Set to TRUE to remove those
records.

44 dm_ptype

Value

A dm object consisting of pixarfilms tables, complete with primary and foreign keys and optionally
colored.

Examples

dm_pixarfilms()
dm_pixarfilms() %>%

dm_draw()

dm_ptype Prototype for a dm object

Description

The prototype contains all tables, all primary and foreign keys, but no data. All tables are truncated
and converted to zero-row tibbles, also for remote data models. Columns retain their type. This is
useful for performing creation and population of a database in separate steps.

Usage

dm_ptype(dm)

Arguments

dm A dm object.

Examples

dm_financial() %>%
dm_ptype()

dm_financial() %>%
dm_ptype() %>%
dm_nrow()

dm_rename 45

dm_rename Rename columns

Description

Rename the columns of your dm using syntax that is similar to dplyr::rename().

Usage

dm_rename(dm, table, ...)

Arguments

dm A dm object.

table A table in the dm.

... One or more unquoted expressions separated by commas. You can treat variable
names as if they were positions, and use expressions like x:y to select the ranges
of variables.
Use named arguments, e.g. new_name = old_name, to rename the selected vari-
ables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming", package = "dplyr") for an intro-
duction to those concepts.
See select helpers for more details, and the examples about tidyselect helpers,
such as starts_with(), everything(), etc.

Details

If key columns are renamed, then the meta-information of the dm is updated accordingly.

Value

An updated dm with the columns of table renamed.

Examples

dm_nycflights13() %>%
dm_rename(airports, code = faa, altitude = alt)

46 dm_rm_fk

dm_rm_fk Remove foreign keys

Description

dm_rm_fk() can remove either one reference between two tables, or multiple references at once
(with a message). An error is thrown if no matching foreign key is found.

Usage

dm_rm_fk(
dm,
table = NULL,
columns = NULL,
ref_table = NULL,
ref_columns = NULL,
...

)

Arguments

dm A dm object.

table A table in the dm. Pass NULL to remove all matching keys.

columns Table columns, unquoted. To refer to a compound key, use c(col1, col2). Pass
NULL (the default) to remove all matching keys.

ref_table The table referenced by the table argument. Pass NULL to remove all matching
keys.

ref_columns The columns of table that should no longer be referencing the primary key of
ref_table. To refer to a compound key, use c(col1, col2).

... These dots are for future extensions and must be empty.

Value

An updated dm without the matching foreign key relation(s).

See Also

Other foreign key functions: dm_add_fk(), dm_enum_fk_candidates(), dm_get_all_fks()

Examples

dm_nycflights13(cycle = TRUE) %>%
dm_rm_fk(flights, dest, airports) %>%
dm_draw()

dm_rm_pk 47

dm_rm_pk Remove a primary key

Description

If a table name is provided, dm_rm_pk() removes the primary key from this table and leaves the dm
object otherwise unaltered. If no table is given, the dm is stripped of all primary keys at once. An er-
ror is thrown if no primary key matches the selection criteria. If the selection criteria are ambiguous,
a message with unambiguous replacement code is shown. Foreign keys are never removed.

Usage

dm_rm_pk(dm, table = NULL, columns = NULL, ..., fail_fk = NULL)

Arguments

dm A dm object.

table A table in the dm. Pass NULL to remove all matching keys.

columns Table columns, unquoted. To refer to a compound key, use c(col1, col2). Pass
NULL (the default) to remove all matching keys.

... These dots are for future extensions and must be empty.

fail_fk [Deprecated]

Value

An updated dm without the indicated primary key(s).

See Also

Other primary key functions: dm_add_pk(), dm_add_uk(), dm_get_all_pks(), dm_get_all_uks(),
dm_has_pk(), dm_rm_uk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_rm_pk(airports) %>%
dm_draw()

48 dm_select

dm_rm_uk Remove a unique key

Description

dm_rm_uk() removes one or more unique keys from a table and leaves the dm object otherwise
unaltered. An error is thrown if no unique key matches the selection criteria. If the selection criteria
are ambiguous, a message with unambiguous replacement code is shown. Foreign keys are never
removed.

Usage

dm_rm_uk(dm, table = NULL, columns = NULL, ...)

Arguments

dm A dm object.

table A table in the dm. Pass NULL to remove all matching keys.

columns Table columns, unquoted. To refer to a compound key, use c(col1, col2). Pass
NULL (the default) to remove all matching keys.

... These dots are for future extensions and must be empty.

Value

An updated dm without the indicated unique key(s).

See Also

Other primary key functions: dm_add_pk(), dm_add_uk(), dm_get_all_pks(), dm_get_all_uks(),
dm_has_pk(), dm_rm_pk(), enum_pk_candidates()

dm_select Select columns

Description

Select columns of your dm using syntax that is similar to dplyr::select().

Usage

dm_select(dm, table, ...)

dm_select_tbl 49

Arguments

dm A dm object.

table A table in the dm.

... One or more unquoted expressions separated by commas. You can treat variable
names as if they were positions, and use expressions like x:y to select the ranges
of variables.
Use named arguments, e.g. new_name = old_name, to rename the selected vari-
ables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming", package = "dplyr") for an intro-
duction to those concepts.
See select helpers for more details, and the examples about tidyselect helpers,
such as starts_with(), everything(), etc.

Details

If key columns are renamed, then the meta-information of the dm is updated accordingly. If key
columns are removed, then all related relations are dropped as well.

Value

An updated dm with the columns of table reduced and/or renamed.

Examples

dm_nycflights13() %>%
dm_select(airports, code = faa, altitude = alt)

dm_select_tbl Select and rename tables

Description

dm_select_tbl() keeps the selected tables and their relationships, optionally renaming them.

dm_rename_tbl() renames tables.

Usage

dm_select_tbl(dm, ...)

dm_rename_tbl(dm, ...)

50 dm_set_colors

Arguments

dm A dm object.

... One or more table names of the tables of the dm object. tidyselect is sup-
ported, see dplyr::select() for details on the semantics.

Value

The input dm with tables renamed or removed.

Examples

dm_nycflights13() %>%
dm_select_tbl(airports, fl = flights)

dm_nycflights13() %>%
dm_rename_tbl(ap = airports, fl = flights)

dm_set_colors Color in database diagrams

Description

dm_set_colors() allows to define the colors that will be used to display the tables of the data
model with dm_draw(). The colors can either be specified with hex color codes or using the names
of the built-in R colors. An overview of the colors corresponding to the standard color names can
be found at the bottom of https://rpubs.com/krlmlr/colors.

dm_get_colors() returns the colors defined for a data model.

dm_get_available_colors() returns an overview of the names of the available colors These are
the standard colors also returned by grDevices::colors() plus a default table color with the name
"default".

Usage

dm_set_colors(dm, ...)

dm_get_colors(dm)

dm_get_available_colors()

Arguments

dm A dm object.

... Colors to set in the form color = table. Allowed colors are all hex coded colors
(quoted) and the color names from dm_get_available_colors(). tidyselect
is supported, see dplyr::select() for details on the semantics.

https://rpubs.com/krlmlr/colors

dm_set_table_description 51

Value

For dm_set_colors(): the updated data model.

For dm_get_colors(), a named character vector of table names with the colors in the names. This
allows calling dm_set_colors(!!!dm_get_colors(...)). Use tibble::enframe() to convert
this to a tibble.

For dm_get_available_colors(), a vector with the available colors.

Examples

dm_nycflights13(color = FALSE) %>%
dm_set_colors(
darkblue = starts_with("air"),
"#5986C4" = flights

) %>%
dm_draw()

Splicing is supported:
nyc_cols <-

dm_nycflights13() %>%
dm_get_colors()

nyc_cols

dm_nycflights13(color = FALSE) %>%
dm_set_colors(!!!nyc_cols) %>%
dm_draw()

dm_set_table_description

Add info about a dm’s tables

Description

When creating a diagram from a dm using dm_draw() the table descriptions set with dm_set_table_description()
will be displayed.

Usage

dm_set_table_description(dm, ...)

dm_get_table_description(dm, table = NULL, ...)

dm_reset_table_description(dm, table = NULL, ...)

52 dm_set_table_description

Arguments

dm A dm object.
... For dm_set_table_description(): Descriptions for tables to set in the form

description = table. tidyselect is supported, see dplyr::select() for
details on the semantics.
For dm_get_table_description() and dm_reset_table_description(): These
dots are for future extensions and must be empty.

table One or more table names, unquoted, for which to
1. get information about the current description(s) with dm_get_table_description().
2. remove descriptions with dm_reset_table_description().

In both cases the default applies to all tables in the dm.

Details

Multi-line descriptions can be achieved using the newline symbol \n. Descriptions are set with
dm_set_table_description(). The currently set descriptions can be checked using dm_get_table_description().
Descriptions can be removed using dm_reset_table_description().

Value

For dm_set_table_description(): A dm object containing descriptions for specified tables.

For dm_get_table_description: A named vector of tables, with the descriptions in the names.

For dm_reset_table_description(): A dm object without descriptions for specified tables.

Examples

desc_flights <- rlang::set_names(
"flights",
paste(

"On-time data for all flights",
"that departed NYC (i.e. JFK, LGA or EWR) in 2013.",
sep = "\n"

)
)
nyc_desc <- dm_nycflights13() %>%

dm_set_table_description(
!!desc_flights,
"Weather at the airport of\norigin at time of departure" = weather

)
nyc_desc %>%

dm_draw()

dm_get_table_description(nyc_desc)
dm_reset_table_description(nyc_desc, flights) %>%

dm_draw(font_size = c(header = 18L, table_description = 9L, column = 15L))

pull_tbl(nyc_desc, flights) %>%
labelled::label_attribute()

dm_sql 53

dm_sql Create DDL and DML scripts for a dm a and database connection

Description

[Experimental]

Generate SQL scripts to create tables, load data and set constraints, keys and indices. This function
powers copy_dm_to() and is useful if you need more control over the process of copying a dm to a
database.

Usage

dm_sql(dm, dest, table_names = NULL, temporary = TRUE)

dm_ddl_pre(dm, dest, table_names = NULL, temporary = TRUE)

dm_dml_load(dm, dest, table_names = NULL, temporary = TRUE)

dm_ddl_post(dm, dest, table_names = NULL, temporary = TRUE)

Arguments

dm A dm object.

dest Connection to database.

table_names A named character vector or named vector of DBI::Id, DBI::SQL or dbplyr ob-
jects created with dbplyr::ident(), dbplyr::in_schema() or dbplyr::in_catalog(),
with one unique element for each table in dm. The default, NULL, means to use
the original table names.

temporary Should the tables be marked as temporary? Defaults to TRUE.

Details

• dm_ddl_pre() generates CREATE TABLE statements (including PRIMARY KEY definition).

• dm_dml_load() generates INSERT INTO statements.

• dm_ddl_post() generates scripts for FOREIGN KEY, UNIQUE KEY and INDEX.

• dm_sql() calls all three above and returns a complete set of scripts.

Value

Nested list of SQL statements.

54 dm_unnest_tbl

Examples

con <- DBI::dbConnect(RSQLite::SQLite())
dm <- dm_nycflights13()
s <- dm_sql(dm, con)
s
DBI::dbDisconnect(con)

dm_unnest_tbl Unnest columns from a wrapped table

Description

[Experimental]

dm_unnest_tbl() target a specific column to unnest from the given table in a given dm. A ptype
or a set of keys should be given, not both.

Usage

dm_unnest_tbl(dm, parent_table, col, ptype)

Arguments

dm A dm.

parent_table A table in the dm with nested columns.

col The column to unnest (unquoted).

ptype A dm, only used to query names of primary and foreign keys.

Details

dm_nest_tbl() is an inverse operation to dm_unnest_tbl() if differences in row and column order
are ignored. The opposite is true if referential constraints between both tables are satisfied.

Value

A dm.

See Also

dm_unwrap_tbl(), dm_unpack_tbl(), dm_nest_tbl(), dm_pack_tbl(), dm_wrap_tbl(), dm_examine_constraints(),
dm_examine_cardinalities(), dm_ptype().

dm_unpack_tbl 55

Examples

airlines_wrapped <-
dm_nycflights13() %>%
dm_wrap_tbl(airlines)

The ptype is required for reconstruction.
It can be an empty dm, only primary and foreign keys are considered.
ptype <- dm_ptype(dm_nycflights13())

airlines_wrapped %>%
dm_unnest_tbl(airlines, flights, ptype)

dm_unpack_tbl Unpack columns from a wrapped table

Description

#’ @description [Experimental]

Usage

dm_unpack_tbl(dm, child_table, col, ptype)

Arguments

dm A dm.

child_table A table in the dm with packed columns.

col The column to unpack (unquoted).

ptype A dm, only used to query names of primary and foreign keys.

Details

dm_unpack_tbl() targets a specific column to unpack from the given table in a given dm. A ptype
or a set of keys should be given, not both.

dm_pack_tbl() is an inverse operation to dm_unpack_tbl() if differences in row and column order
are ignored. The opposite is true if referential constraints between both tables are satisfied and if
all rows in the parent table have at least one child row, i.e. if the relationship is of cardinality 1:n or
1:1.

See Also

dm_unwrap_tbl(), dm_unnest_tbl(), dm_nest_tbl(), dm_pack_tbl(), dm_wrap_tbl(), dm_examine_constraints(),
dm_examine_cardinalities(), dm_ptype().

56 dm_unwrap_tbl

Examples

flights_wrapped <-
dm_nycflights13() %>%
dm_wrap_tbl(flights)

The ptype is required for reconstruction.
It can be an empty dm, only primary and foreign keys are considered.
ptype <- dm_ptype(dm_nycflights13())

flights_wrapped %>%
dm_unpack_tbl(flights, airlines, ptype)

dm_unwrap_tbl Unwrap a single table dm

Description

[Experimental]

dm_unwrap_tbl() unwraps all tables in a dm object so that the resulting dm matches a given ptype
dm. It runs a sequence of dm_unnest_tbl() and dm_unpack_tbl() operations on the dm.

Usage

dm_unwrap_tbl(dm, ptype, progress = NA)

Arguments

dm A dm.

ptype A dm, only used to query names of primary and foreign keys.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

Value

A dm.

See Also

dm_wrap_tbl(), dm_unnest_tbl(), dm_examine_constraints(), dm_examine_cardinalities(),
dm_ptype().

dm_validate 57

Examples

roundtrip <-
dm_nycflights13() %>%
dm_wrap_tbl(root = flights) %>%
dm_unwrap_tbl(ptype = dm_ptype(dm_nycflights13()))

roundtrip

The roundtrip has the same structure but fewer rows:
dm_nrow(dm_nycflights13())
dm_nrow(roundtrip)

dm_validate Validator

Description

dm_validate() checks the internal consistency of a dm object.

Usage

dm_validate(x)

Arguments

x An object.

Details

In theory, with the exception of new_dm(), all dm objects created or modified by functions in this
package should be valid, and this function should not be needed. Please file an issue if any dm
operation creates an invalid object.

Value

Returns the dm, invisibly, after finishing all checks.

Examples

dm_validate(dm())

bad_dm <- structure(list(bad = "dm"), class = "dm")
try(dm_validate(bad_dm))

58 dm_wrap_tbl

dm_wrap_tbl Wrap dm into a single tibble dm

Description

[Experimental]
dm_wrap_tbl() creates a single tibble dm containing the root table enhanced with all the data
related to it through the relationships stored in the dm. It runs a sequence of dm_nest_tbl() and
dm_pack_tbl() operations on the dm.

Usage

dm_wrap_tbl(dm, root, strict = TRUE, progress = NA)

Arguments

dm A cycle free dm object.

root Table to wrap the dm into (unquoted).

strict Whether to fail for cyclic dms that cannot be wrapped into a single table, if
FALSE a partially wrapped dm will be returned.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

Details

dm_wrap_tbl() is an inverse to dm_unwrap_tbl(), i.e., wrapping after unwrapping returns the
same information (disregarding row and column order). The opposite is not generally true: since
dm_wrap_tbl() keeps only rows related directly or indirectly to rows in the root table. Even if
all referential constraints are satisfied, unwrapping after wrapping loses rows in parent tables that
don’t have a corresponding row in the child table.

This function differs from dm_flatten_to_tbl() and dm_squash_to_tbl() , which always return
a single table, and not a dm object.

Value

A dm object.

See Also

dm_unwrap_tbl(), dm_nest_tbl(), dm_examine_constraints(), dm_examine_cardinalities().

Examples

dm_nycflights13() %>%
dm_wrap_tbl(root = airlines)

dm_zoom_to 59

dm_zoom_to Mark table for manipulation

Description

Zooming to a table of a dm allows for the use of many dplyr-verbs directly on this table, while
retaining the context of the dm object.

dm_zoom_to() zooms to the given table.

dm_update_zoomed() overwrites the originally zoomed table with the manipulated table. The filter
conditions for the zoomed table are added to the original filter conditions.

dm_insert_zoomed() adds a new table to the dm.

dm_discard_zoomed() discards the zoomed table and returns the dm as it was before zooming.

Please refer to vignette("tech-db-zoom", package = "dm") for a more detailed introduction.

Usage

dm_zoom_to(dm, table)

dm_insert_zoomed(dm, new_tbl_name = NULL, repair = "unique", quiet = FALSE)

dm_update_zoomed(dm)

dm_discard_zoomed(dm)

Arguments

dm A dm object.

table A table in the dm.

new_tbl_name Name of the new table.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", "universal", "unique_quiet", or "universal_quiet".
If a function, it is invoked with a vector of minimal names and must return min-
imal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.
The options "unique_quiet" and "universal_quiet" are here to help the user
who calls this function indirectly, via another function which exposes repair

60 dm_zoom_to

but not quiet. Specifying repair = "unique_quiet" is like specifying repair = "unique", quiet = TRUE.
When the "*_quiet" options are used, any setting of quiet is silently overrid-
den.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.
Users can silence the name repair messages by setting the "rlib_name_repair_verbosity"
global option to "quiet".

Details

Whenever possible, the key relations of the original table are transferred to the resulting table when
using dm_insert_zoomed() or dm_update_zoomed().

Functions from dplyr that are supported for a dm_zoomed: group_by(), summarise(), mutate(),
transmute(), filter(), select(), rename() and ungroup(). You can use these functions just
like you would with a normal table.

Calling filter() on a zoomed dm is different from calling dm_filter(): only with the latter, the
filter expression is added to the list of table filters stored in the dm.

Furthermore, different join()-variants from dplyr are also supported, e.g. left_join() and
semi_join(). (Support for dplyr::nest_join() is planned.) The join-methods for dm_zoomed
infer the columns to join by from the primary and foreign keys, and have an extra argument select
that allows choosing the columns of the RHS table.

And – last but not least – also the tidyr-functions unite() and separate() are supported for
dm_zoomed.

Value

For dm_zoom_to(): A dm_zoomed object.

For dm_insert_zoomed(), dm_update_zoomed() and dm_discard_zoomed(): A dm object.

Examples

flights_zoomed <- dm_zoom_to(dm_nycflights13(), flights)

flights_zoomed

flights_zoomed_transformed <-
flights_zoomed %>%
mutate(am_pm_dep = ifelse(dep_time < 1200, "am", "pm")) %>%
`by`-argument of `left_join()` can be explicitly given
otherwise the key-relation is used
left_join(airports) %>%
select(year:dep_time, am_pm_dep, everything())

flights_zoomed_transformed

replace table `flights` with the zoomed table
flights_zoomed_transformed %>%

dplyr_join 61

dm_update_zoomed()

insert the zoomed table as a new table
flights_zoomed_transformed %>%

dm_insert_zoomed("extended_flights") %>%
dm_draw()

discard the zoomed table
flights_zoomed_transformed %>%

dm_discard_zoomed()

dplyr_join dplyr join methods for zoomed dm objects

Description

Use these methods without the ’.dm_zoomed’ suffix (see examples).

Usage

S3 method for class 'dm_zoomed'
left_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'dm_keyed_tbl'
left_join(x, y, by = NULL, copy = NULL, suffix = NULL, ..., keep = FALSE)

S3 method for class 'dm_zoomed'
inner_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'dm_keyed_tbl'
inner_join(x, y, by = NULL, copy = NULL, suffix = NULL, ..., keep = FALSE)

S3 method for class 'dm_zoomed'
full_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'dm_keyed_tbl'
full_join(x, y, by = NULL, copy = NULL, suffix = NULL, ..., keep = FALSE)

S3 method for class 'dm_zoomed'
right_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'dm_keyed_tbl'
right_join(x, y, by = NULL, copy = NULL, suffix = NULL, ..., keep = FALSE)

S3 method for class 'dm_zoomed'
semi_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

62 dplyr_join

S3 method for class 'dm_keyed_tbl'
semi_join(x, y, by = NULL, copy = NULL, ...)

S3 method for class 'dm_zoomed'
anti_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'dm_keyed_tbl'
anti_join(x, y, by = NULL, copy = NULL, ...)

S3 method for class 'dm_zoomed'
nest_join(x, y, by = NULL, copy = FALSE, keep = FALSE, name = NULL, ...)

Arguments

x, y tbls to join. x is the dm_zoomed and y is another table in the dm.

by If left NULL (default), the join will be performed by via the foreign key relation
that exists between the originally zoomed table (now x) and the other table (y).
If you provide a value (for the syntax see dplyr::join), you can also join tables
that are not connected in the dm.

copy Disabled, since all tables in a dm are by definition on the same src.

suffix Disabled, since columns are disambiguated automatically if necessary, changing
the column names to table_name.column_name.

select Select a subset of the RHS-table’s columns, the syntax being select = c(col_1,
col_2, col_3) (unquoted or quoted). This argument is specific for the join-
methods for dm_zoomed. The table’s by column(s) are automatically added if
missing in the selection.

... see dplyr::join

keep Should the new list-column contain join keys? The default will preserve the join
keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the name
of y is used.

Examples

flights_dm <- dm_nycflights13()
dm_zoom_to(flights_dm, flights) %>%
left_join(airports, select = c(faa, name))

this should illustrate that tables don't necessarily need to be connected
dm_zoom_to(flights_dm, airports) %>%

semi_join(airlines, by = "name")

dplyr_table_manipulation 63

dplyr_table_manipulation

dplyr table manipulation methods for zoomed dm objects

Description

Use these methods without the ’.dm_zoomed’ suffix (see examples).

Usage

S3 method for class 'dm_zoomed'
filter(.data, ...)

S3 method for class 'dm_zoomed'
mutate(.data, ...)

S3 method for class 'dm_zoomed'
transmute(.data, ...)

S3 method for class 'dm_zoomed'
select(.data, ...)

S3 method for class 'dm_zoomed'
relocate(.data, ..., .before = NULL, .after = NULL)

S3 method for class 'dm_zoomed'
rename(.data, ...)

S3 method for class 'dm_zoomed'
distinct(.data, ..., .keep_all = FALSE)

S3 method for class 'dm_zoomed'
arrange(.data, ...)

S3 method for class 'dm_zoomed'
slice(.data, ..., .keep_pk = NULL)

S3 method for class 'dm_zoomed'
group_by(.data, ...)

S3 method for class 'dm_keyed_tbl'
group_by(.data, ...)

S3 method for class 'dm_zoomed'
ungroup(x, ...)

S3 method for class 'dm_zoomed'

64 dplyr_table_manipulation

summarise(.data, ...)

S3 method for class 'dm_keyed_tbl'
summarise(.data, ...)

S3 method for class 'dm_zoomed'
count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

S3 method for class 'dm_zoomed'
tally(x, ...)

S3 method for class 'dm_zoomed'
pull(.data, var = -1, ...)

S3 method for class 'dm_zoomed'
compute(x, ...)

Arguments

.data object of class dm_zoomed

... see corresponding function in package dplyr or tidyr

.before, .after <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

.keep_all For distinct.dm_zoomed(): see dplyr::distinct()

.keep_pk For slice.dm_zoomed: Logical, if TRUE, the primary key will be retained during
this transformation. If FALSE, it will be dropped. By default, the value is NULL,
which causes the function to issue a message in case a primary key is available
for the zoomed table. This argument is specific for the slice.dm_zoomed()
method.

x For ungroup.dm_zoomed: object of class dm_zoomed

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

enum_pk_candidates 65

.drop Handling of factor levels that don’t appear in the data, passed on to group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect the
output.

var A variable specified as:

• a literal variable name
• a positive integer, giving the position counting from the left
• a negative integer, giving the position counting from the right.

The default returns the last column (on the assumption that’s the column you’ve
created most recently).
This argument is taken by expression and supports quasiquotation (you can un-
quote column names and column locations).

Examples

zoomed <- dm_nycflights13() %>%
dm_zoom_to(flights) %>%
group_by(month) %>%
arrange(desc(day)) %>%
summarize(avg_air_time = mean(air_time, na.rm = TRUE))

zoomed
dm_insert_zoomed(zoomed, new_tbl_name = "avg_air_time_per_month")

enum_pk_candidates Primary key candidate

Description

[Experimental]
enum_pk_candidates() checks for each column of a table if the column contains only unique
values, and is thus a suitable candidate for a primary key of the table.

dm_enum_pk_candidates() performs these checks for a table in a dm object.

Usage

enum_pk_candidates(table, ...)

dm_enum_pk_candidates(dm, table, ...)

Arguments

table A table in the dm.

... These dots are for future extensions and must be empty.

dm A dm object.

66 examine_cardinality

Value

A tibble with the following columns:

columns columns of table,

candidate boolean: are these columns a candidate for a primary key,

why if not a candidate for a primary key column, explanation for this.

Life cycle

These functions are marked "experimental" because we are not yet sure about the interface, in
particular if we need both dm_enum...() and enum...() variants. Changing the interface later
seems harmless because these functions are most likely used interactively.

See Also

Other primary key functions: dm_add_pk(), dm_add_uk(), dm_get_all_pks(), dm_get_all_uks(),
dm_has_pk(), dm_rm_pk(), dm_rm_uk()

Examples

nycflights13::flights %>%
enum_pk_candidates()

dm_nycflights13() %>%
dm_enum_pk_candidates(airports)

examine_cardinality Check table relations

Description

All check_cardinality_...() functions test the following conditions:

1. Are all rows in x unique?

2. Are the rows in y a subset of the rows in x?

3. Does the relation between x and y meet the cardinality requirements? One row from x must
correspond to the requested number of rows in y, e.g. _0_1 means that there must be zero or
one rows in y for each row in x.

examine_cardinality() also checks the first two points and subsequently determines the type of
cardinality.

For convenience, the x_select and y_select arguments allow restricting the check to a set of key
columns without affecting the return value.

examine_cardinality 67

Usage

check_cardinality_0_n(
x,
y,
...,
x_select = NULL,
y_select = NULL,
by_position = NULL

)

check_cardinality_1_n(
x,
y,
...,
x_select = NULL,
y_select = NULL,
by_position = NULL

)

check_cardinality_1_1(
x,
y,
...,
x_select = NULL,
y_select = NULL,
by_position = NULL

)

check_cardinality_0_1(
x,
y,
...,
x_select = NULL,
y_select = NULL,
by_position = NULL

)

examine_cardinality(
x,
y,
...,
x_select = NULL,
y_select = NULL,
by_position = NULL

)

68 examine_cardinality

Arguments

x Parent table, data frame or lazy table.

y Child table, data frame or lazy table.

... These dots are for future extensions and must be empty.
x_select, y_select

Key columns to restrict the check, processed with dplyr::select().

by_position Set to TRUE to ignore column names and match by position instead. The default
means matching by name, use x_select and/or y_select to align the names.

Details

All cardinality functions accept a parent and a child table (x and y). All rows in x must be unique,
and all rows in y must be a subset of the rows in x. The x_select and y_select arguments allow
restricting the check to a set of key columns without affecting the return value. If given, both
arguments must refer to the same number of key columns.

The cardinality specifications "0_n", "1_n", "0_1", "1_1" refer to the expected relation that the child
table has with the parent table. "0", "1" and "n" refer to the occurrences of value combinations in y
that correspond to each combination in the columns of the parent table. "n" means "more than one"
in this context, with no upper limit.

"0_n": no restrictions, each row in x has at least 0 and at most n corresponding occurrences in y.

"1_n": each row in x has at least 1 and at most n corresponding occurrences in y. This means that
there is a "surjective" mapping from the child table to the parent table, i.e. each parent table row
exists at least once in the child table.

"0_1": each row in x has at least 0 and at most 1 corresponding occurrence in y. This means that
there is a "injective" mapping from the child table to the parent table, i.e. no combination of values
in the parent table columns is addressed multiple times. But not all parent table rows have to be
referred to.

"1_1": each row in x occurs exactly once in y. This means that there is a "bijective" ("injective"
AND "surjective") mapping between the child table and the parent table, i.e. the sets of rows are
identical.

Finally, examine_cardinality() tests for and returns the nature of the relationship (injective,
surjective, bijective, or none of these) between the two given sets of columns. If either x is not
unique or there are rows in y that are missing from x, the requirements for a cardinality test is not
fulfilled. No error will be thrown, but the result will contain the information which prerequisite was
violated.

Value

check_cardinality_...() return x, invisibly, if the check is passed, to support pipes. Otherwise
an error is thrown and the reason for it is explained.

examine_cardinality() returns a character variable specifying the type of relationship between
the two columns.

See Also

Other cardinality functions: dm_examine_cardinalities()

glimpse.dm 69

Examples

d1 <- tibble::tibble(a = 1:5)
d2 <- tibble::tibble(a = c(1:4, 4L))
d3 <- tibble::tibble(c = c(1:5, 5L), d = 0)
This does not pass, `a` is not unique key of d2:
try(check_cardinality_0_n(d2, d1))

Columns are matched by name by default:
try(check_cardinality_0_n(d1, d3))

This passes, multiple values in d3$c are allowed:
check_cardinality_0_n(d1, d2)

This does not pass, injectivity is violated:
try(check_cardinality_1_1(d1, d3, y_select = c(a = c)))
try(check_cardinality_0_1(d1, d3, x_select = c(c = a)))

What kind of cardinality is it?
examine_cardinality(d1, d3, x_select = c(c = a))
examine_cardinality(d1, d2)

glimpse.dm Get a glimpse of your dm object

Description

glimpse() provides an overview (dimensions, column data types, primary keys, etc.) of all tables
included in the dm object. It will additionally print details about outgoing foreign keys for the child
table.

glimpse() is provided by the pillar package, and re-exported by dm. See pillar::glimpse() for
more details.

Usage

S3 method for class 'dm'
glimpse(x, width = NULL, ...)

S3 method for class 'dm_zoomed'
glimpse(x, width = NULL, ...)

Arguments

x A dm object.

width Controls the maximum number of columns on a line used in printing. If NULL,
getOption("width") will be consulted.

... Passed to pillar::glimpse().

70 head.dm_zoomed

Examples

dm_nycflights13() %>% glimpse()

dm_nycflights13() %>%
dm_zoom_to(flights) %>%
glimpse()

head.dm_zoomed utils table manipulation methods for dm_zoomed objects

Description

Extract the first or last rows from a table. Use these methods without the ’.dm_zoomed’ suffix (see
examples). The methods for regular dm objects extract the first or last tables.

Usage

S3 method for class 'dm_zoomed'
head(x, n = 6L, ...)

S3 method for class 'dm_zoomed'
tail(x, n = 6L, ...)

Arguments

x object of class dm_zoomed

n an integer vector of length up to dim(x) (or 1, for non-dimensioned objects). A
logical is silently coerced to integer. Values specify the indices to be selected
in the corresponding dimension (or along the length) of the object. A positive
value of n[i] includes the first/last n[i] indices in that dimension, while a neg-
ative value excludes the last/first abs(n[i]), including all remaining indices. NA
or non-specified values (when length(n) < length(dim(x))) select all indices
in that dimension. Must contain at least one non-missing value.

... arguments to be passed to or from other methods.

Details

see manual for the corresponding functions in utils.

Value

A dm_zoomed object.

json_nest 71

Examples

zoomed <- dm_nycflights13() %>%
dm_zoom_to(flights) %>%
head(4)

zoomed
dm_insert_zoomed(zoomed, new_tbl_name = "head_flights")

json_nest JSON nest

Description

[Experimental]

A wrapper around tidyr::nest() which stores the nested data into JSON columns.

Usage

json_nest(.data, ..., .names_sep = NULL)

Arguments

.data A data frame, a data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <tidy-select> Columns to pack, specified using name-variable pairs of the
form new_col = c(col1, col2, col3). The right hand side can be any valid
tidy select expression.

.names_sep If NULL, the default, the names will be left as is.

See Also

tidyr::nest(), json_nest_join()

Examples

df <- tibble::tibble(x = c(1, 1, 1, 2, 2, 3), y = 1:6, z = 6:1)
nested <- json_nest(df, data = c(y, z))
nested

72 json_nest_join

json_nest_join JSON nest join

Description

[Experimental]

A wrapper around dplyr::nest_join() which stores the joined data into a JSON column. json_nest_join()
returns all rows and columns in x with a new JSON columns that contains all nested matches from
y.

Usage

json_nest_join(x, y, by = NULL, ..., copy = FALSE, keep = FALSE, name = NULL)

Arguments

x, y A pair of data frames or data frame extensions (e.g. a tibble).

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

... Other parameters passed onto methods.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve the join
keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the name
of y is used.

json_pack 73

See Also

dplyr::nest_join(), json_pack_join()

Examples

df1 <- tibble::tibble(x = 1:3)
df2 <- tibble::tibble(x = c(1, 1, 2), y = c("first", "second", "third"))
df3 <- json_nest_join(df1, df2)
df3
df3$df2

json_pack JSON pack

Description

[Experimental]

A wrapper around tidyr::pack() which stores the packed data into JSON columns.

Usage

json_pack(.data, ..., .names_sep = NULL)

Arguments

.data A data frame, a data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <tidy-select> Columns to pack, specified using name-variable pairs of the
form new_col = c(col1, col2, col3). The right hand side can be any valid
tidy select expression.

.names_sep If NULL, the default, the names will be left as is.

See Also

tidyr::pack(), json_pack_join()

Examples

df <- tibble::tibble(x1 = 1:3, x2 = 4:6, x3 = 7:9, y = 1:3)
packed <- json_pack(df, x = c(x1, x2, x3), y = y)
packed

74 json_pack_join

json_pack_join JSON pack join

Description

[Experimental]

A wrapper around pack_join() which stores the joined data into a JSON column. json_pack_join()
returns all rows and columns in x with a new JSON columns that contains all packed matches from
y.

Usage

json_pack_join(x, y, by = NULL, ..., copy = FALSE, keep = FALSE, name = NULL)

Arguments

x, y A pair of data frames or data frame extensions (e.g. a tibble).

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

... Other parameters passed onto methods.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve the join
keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the name
of y is used.

json_unnest 75

See Also

pack_join(), json_nest_join()

Examples

df1 <- tibble::tibble(x = 1:3)
df2 <- tibble::tibble(x = c(1, 1, 2), y = c("first", "second", "third"))
df3 <- json_pack_join(df1, df2)
df3
df3$df2

json_unnest Unnest a JSON column

Description

A wrapper around tidyr::unnest() that extracts its data from a JSON column. The inverse of
json_nest().

Usage

json_unnest(data, cols, ..., names_sep = NULL, names_repair = "check_unique")

Arguments

data A data frame, a data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

cols <tidy-select> List-columns to unnest.
When selecting multiple columns, values from the same row will be recycled to
their common size.

... Arguments passed to methods.

names_sep If NULL, the default, the outer names will come from the inner names. If a
string, the outer names will be formed by pasting together the outer and the
inner column names, separated by names_sep.

names_repair Used to check that output data frame has valid names. Must be one of the
following options:

• "minimal": no name repair or checks, beyond basic existence,
• "unique": make sure names are unique and not empty,
• "check_unique": (the default), no name repair, but check they are unique,
• "universal": make the names unique and syntactic
• a function: apply custom name repair.
• tidyr_legacy: use the name repair from tidyr 0.8.
• a formula: a purrr-style anonymous function (see rlang::as_function())

See vctrs::vec_as_names() for more details on these terms and the strategies
used to enforce them.

76 json_unpack

Value

An object of the same type as data

Examples

tibble(a = 1, b = '[{ "c": 2 }, { "c": 3 }]') %>%
json_unnest(b)

json_unpack Unpack a JSON column

Description

A wrapper around tidyr::unpack() that extracts its data from a JSON column. The inverse of
json_pack().

Usage

json_unpack(data, cols, ..., names_sep = NULL, names_repair = "check_unique")

Arguments

data A data frame, a data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

cols <tidy-select> Columns to unpack.

... Arguments passed to methods.

names_sep If NULL, the default, the names will be left as is. In pack(), inner names will
come from the former outer names; in unpack(), the new outer names will come
from the inner names.
If a string, the inner and outer names will be used together. In unpack(), the
names of the new outer columns will be formed by pasting together the outer
and the inner column names, separated by names_sep. In pack(), the new inner
names will have the outer names + names_sep automatically stripped. This
makes names_sep roughly symmetric between packing and unpacking.

names_repair Used to check that output data frame has valid names. Must be one of the
following options:

• "minimal": no name repair or checks, beyond basic existence,
• "unique": make sure names are unique and not empty,
• "check_unique": (the default), no name repair, but check they are unique,
• "universal": make the names unique and syntactic
• a function: apply custom name repair.
• tidyr_legacy: use the name repair from tidyr 0.8.
• a formula: a purrr-style anonymous function (see rlang::as_function())

See vctrs::vec_as_names() for more details on these terms and the strategies
used to enforce them.

materialize 77

Value

An object of the same type as data

Examples

tibble(a = 1, b = '{ "c": 2, "d": 3 }') %>%
json_unpack(b)

materialize Materialize

Description

compute() materializes all tables in a dm to new temporary tables on the database.

collect() downloads the tables in a dm object as local tibbles.

Usage

S3 method for class 'dm'
compute(x, ..., temporary = TRUE)

S3 method for class 'dm'
collect(x, ..., progress = NA)

Arguments

x A dm object.

... Passed on to compute().

temporary Must remain TRUE.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

Details

Called on a dm object, these methods create a copy of all tables in the dm. Depending on the size of
your data this may take a long time.

To create permament tables, first create the database schema using copy_dm_to() or dm_sql(),
and then use dm_rows_append().

Value

A dm object of the same structure as the input.

78 pack_join

Examples

financial <- dm_financial_sqlite()

financial %>%
pull_tbl(districts) %>%
dbplyr::remote_name()

compute() copies the data to new tables:
financial %>%

compute() %>%
pull_tbl(districts) %>%
dbplyr::remote_name()

collect() returns a local dm:
financial %>%

collect() %>%
pull_tbl(districts) %>%
class()

pack_join Pack Join

Description

[Experimental]

pack_join() returns all rows and columns in x with a new packed column that contains all matches
from y.

Usage

pack_join(x, y, by = NULL, ..., copy = FALSE, keep = FALSE, name = NULL)

S3 method for class 'dm_zoomed'
pack_join(x, y, by = NULL, ..., copy = FALSE, keep = FALSE, name = NULL)

Arguments

x, y A pair of data frames or data frame extensions (e.g. a tibble).

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.

pull_tbl 79

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

... Other parameters passed onto methods.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve the join
keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the name
of y is used.

See Also

dplyr::nest_join(), tidyr::pack()

Examples

df1 <- tibble::tibble(x = 1:3)
df2 <- tibble::tibble(x = c(1, 1, 2), y = c("first", "second", "third"))
pack_join(df1, df2)

pull_tbl Retrieve a table

Description

This generic has methods for both dm classes:

1. With pull_tbl.dm() you can chose which table of the dm you want to retrieve.

2. With pull_tbl.dm_zoomed() you will retrieve the zoomed table in the current state.

Usage

pull_tbl(dm, table, ..., keyed = FALSE)

80 reunite_parent_child

Arguments

dm A dm object.

table One unquoted table name for pull_tbl.dm(), ignored for pull_tbl.dm_zoomed().

... These dots are for future extensions and must be empty.

keyed [Experimental] Set to TRUE to return objects of the internal class "dm_keyed_tbl"
that will contain information on primary and foreign keys in the individual table
objects. This allows using dplyr workflows on those tables and later reconstruct
them into a dm object. See dm_deconstruct() for a function that generates cor-
responding code for an existing dm object, and vignette("tech-dm-keyed")
for details.

Value

The requested table.

See Also

dm_deconstruct() to generate code of the form pull_tbl(..., keyed = TRUE) from an existing
dm object.

Examples

For an unzoomed dm you need to specify the table to pull:
dm_nycflights13() %>%

pull_tbl(airports)

If zoomed, pulling detaches the zoomed table from the dm:
dm_nycflights13() %>%

dm_zoom_to(airports) %>%
pull_tbl()

reunite_parent_child Merge two tables that are linked by a foreign key relation

Description

[Experimental]
Perform table fusion by combining two tables by a common (key) column, and then removing this
column.

reunite_parent_child(): After joining the two tables by the column id_column, this column
will be removed. The transformation is roughly the inverse of what decompose_table() does.

reunite_parent_child_from_list(): After joining the two tables by the column id_column,
id_column is removed.

This function is almost exactly the inverse of decompose_table() (the order of the columns is not
retained, and the original row names are lost).

rows-dm 81

Usage

reunite_parent_child(child_table, parent_table, id_column)

reunite_parent_child_from_list(list_of_parent_child_tables, id_column)

Arguments

child_table Table (possibly created by decompose_table()) that references parent_table

parent_table Table (possibly created by decompose_table()).

id_column Identical name of referencing / referenced column in child_table/parent_table.

list_of_parent_child_tables

Cf arguments child_table and parent_table from reunite_parent_child(),
but both in a named list (as created by decompose_table()).

Value

A wide table produced by joining the two given tables.

Life cycle

These functions are marked "experimental" because they seem more useful when applied to a table
in a dm object. Changing the interface later seems harmless because these functions are most likely
used interactively.

See Also

Other table surgery functions: decompose_table()

Examples

decomposed_table <- decompose_table(mtcars, new_id, am, gear, carb)
ct <- decomposed_table$child_table
pt <- decomposed_table$parent_table

reunite_parent_child(ct, pt, new_id)
reunite_parent_child_from_list(decomposed_table, new_id)

rows-dm Modifying rows for multiple tables

82 rows-dm

Description

[Experimental]

These functions provide a framework for updating data in existing tables. Unlike compute(),
copy_to() or copy_dm_to(), no new tables are created on the database. All operations expect that
both existing and new data are presented in two compatible dm objects on the same data source.

The functions make sure that the tables in the target dm are processed in topological order so that
parent (dimension) tables receive insertions before child (fact) tables.

These operations, in contrast to all other operations, may lead to irreversible changes to the under-
lying database. Therefore, in-place operation must be requested explicitly with in_place = TRUE.
By default, an informative message is given.

dm_rows_insert() adds new records via rows_insert() with conflict = "ignore". Dupli-
cate records will be silently discarded. This operation requires primary keys on all tables, use
dm_rows_append() to insert unconditionally.

dm_rows_append() adds new records via rows_append(). The primary keys must differ from ex-
isting records. This must be ensured by the caller and might be checked by the underlying database.
Use in_place = FALSE and apply dm_examine_constraints() to check beforehand.

dm_rows_update() updates existing records via rows_update(). Primary keys must match for all
records to be updated.

dm_rows_patch() updates missing values in existing records via rows_patch(). Primary keys
must match for all records to be patched.

dm_rows_upsert() updates existing records and adds new records, based on the primary key, via
rows_upsert().

dm_rows_delete() removes matching records via rows_delete(), based on the primary key. The
order in which the tables are processed is reversed.

Usage

dm_rows_insert(x, y, ..., in_place = NULL, progress = NA)

dm_rows_append(x, y, ..., in_place = NULL, progress = NA)

dm_rows_update(x, y, ..., in_place = NULL, progress = NA)

dm_rows_patch(x, y, ..., in_place = NULL, progress = NA)

dm_rows_upsert(x, y, ..., in_place = NULL, progress = NA)

dm_rows_delete(x, y, ..., in_place = NULL, progress = NA)

Arguments

x Target dm object.

y dm object with new data.

... These dots are for future extensions and must be empty.

rows-dm 83

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

Value

A dm object of the same dm_ptype() as x. If in_place = TRUE, the underlying data is updated as a
side effect, and x is returned, invisibly.

Examples

Establish database connection:
sqlite <- DBI::dbConnect(RSQLite::SQLite())

Entire dataset with all dimension tables populated
with flights and weather data truncated:
flights_init <-

dm_nycflights13() %>%
dm_zoom_to(flights) %>%
filter(FALSE) %>%
dm_update_zoomed() %>%
dm_zoom_to(weather) %>%
filter(FALSE) %>%
dm_update_zoomed()

Target database:
flights_sqlite <- copy_dm_to(sqlite, flights_init, temporary = FALSE)
print(dm_nrow(flights_sqlite))

First update:
flights_jan <-

dm_nycflights13() %>%
dm_select_tbl(flights, weather) %>%
dm_zoom_to(flights) %>%
filter(month == 1) %>%
dm_update_zoomed() %>%
dm_zoom_to(weather) %>%
filter(month == 1) %>%
dm_update_zoomed()

print(dm_nrow(flights_jan))

Copy to temporary tables on the target database:
flights_jan_sqlite <- copy_dm_to(sqlite, flights_jan)

Dry run by default:
dm_rows_append(flights_sqlite, flights_jan_sqlite)
print(dm_nrow(flights_sqlite))

Explicitly request persistence:

84 tidyr_table_manipulation

dm_rows_append(flights_sqlite, flights_jan_sqlite, in_place = TRUE)
print(dm_nrow(flights_sqlite))

Second update:
flights_feb <-

dm_nycflights13() %>%
dm_select_tbl(flights, weather) %>%
dm_zoom_to(flights) %>%
filter(month == 2) %>%
dm_update_zoomed() %>%
dm_zoom_to(weather) %>%
filter(month == 2) %>%
dm_update_zoomed()

Copy to temporary tables on the target database:
flights_feb_sqlite <- copy_dm_to(sqlite, flights_feb)

Explicit dry run:
flights_new <- dm_rows_append(

flights_sqlite,
flights_feb_sqlite,
in_place = FALSE

)
print(dm_nrow(flights_new))
print(dm_nrow(flights_sqlite))

Check for consistency before applying:
flights_new %>%

dm_examine_constraints()

Apply:
dm_rows_append(flights_sqlite, flights_feb_sqlite, in_place = TRUE)
print(dm_nrow(flights_sqlite))

DBI::dbDisconnect(sqlite)

tidyr_table_manipulation

tidyr table manipulation methods for zoomed dm objects

Description

Use these methods without the ’.dm_zoomed’ suffix (see examples).

Usage

S3 method for class 'dm_zoomed'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

tidyr_table_manipulation 85

S3 method for class 'dm_keyed_tbl'
unite(data, ...)

S3 method for class 'dm_zoomed'
separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, ...)

S3 method for class 'dm_keyed_tbl'
separate(data, ...)

Arguments

data object of class dm_zoomed

col For unite.dm_zoomed: see tidyr::unite()

For separate.dm_zoomed: see tidyr::separate()

... For unite.dm_zoomed: see tidyr::unite()

For separate.dm_zoomed: see tidyr::separate()

sep For unite.dm_zoomed: see tidyr::unite()

For separate.dm_zoomed: see tidyr::separate()

remove For unite.dm_zoomed: see tidyr::unite()

For separate.dm_zoomed: see tidyr::separate()

na.rm see tidyr::unite()

into see tidyr::separate()

Examples

zoom_united <- dm_nycflights13() %>%
dm_zoom_to(flights) %>%
select(year, month, day) %>%
unite("month_day", month, day)

zoom_united
zoom_united %>%

separate(month_day, c("month", "day"))

Index

∗ DB interaction functions
copy_dm_to, 6

∗ cardinality functions
dm_examine_cardinalities, 25
examine_cardinality, 66

∗ flattening functions
dm_flatten_to_tbl, 30

∗ foreign key functions
dm_add_fk, 15
dm_enum_fk_candidates, 24
dm_get_all_fks, 32
dm_rm_fk, 46

∗ primary key functions
dm_add_pk, 17
dm_add_uk, 18
dm_get_all_pks, 33
dm_get_all_uks, 34
dm_has_pk, 38
dm_rm_pk, 47
dm_rm_uk, 48
enum_pk_candidates, 65

∗ schema handling functions
db_schema_create, 8
db_schema_drop, 9
db_schema_exists, 10
db_schema_list, 11

∗ table surgery functions
decompose_table, 12
reunite_parent_child, 80

?join_by, 72, 74, 79

anti_join.dm_keyed_tbl (dplyr_join), 61
anti_join.dm_zoomed (dplyr_join), 61
arrange.dm_zoomed

(dplyr_table_manipulation), 63
as_dm (dm), 13

check_cardinality_...
(examine_cardinality), 66

check_cardinality_0_1
(examine_cardinality), 66

check_cardinality_0_n
(examine_cardinality), 66

check_cardinality_1_1
(examine_cardinality), 66

check_cardinality_1_n
(examine_cardinality), 66

check_key, 4
check_key(), 14
check_set_equality, 5
check_subset, 6
check_subset(), 5, 14
collect.dm (materialize), 77
compute(), 77, 82
compute.dm (materialize), 77
compute.dm_zoomed

(dplyr_table_manipulation), 63
copy_dm_to, 6
copy_dm_to(), 14, 16, 53, 77, 82
copy_to(), 82
count.dm_zoomed

(dplyr_table_manipulation), 63
cross_join(), 72, 74, 79

db_schema_create, 8, 10, 11
db_schema_drop, 9, 9, 11
db_schema_exists, 9, 10, 10, 11
db_schema_list, 9–11, 11
DBI::DBIConnection, 6, 31, 35
DBI::dbQuoteIdentifier(), 7, 9
DBI::Id, 7, 53
DBI::SQL, 53
dbplyr::ident(), 53
dbplyr::in_catalog(), 53
dbplyr::in_schema(), 53
decompose_table, 12, 81
decompose_table(), 14
DiagrammeR::grViz(), 23
DiagrammeRsvg::export_svg(), 23

86

INDEX 87

distinct.dm_zoomed
(dplyr_table_manipulation), 63

dm, 6, 13, 18, 23, 24, 26, 28–34, 38–40, 43, 45,
47, 48, 50, 52, 59, 65, 82

dm(), 20, 36, 39
dm_add_fk, 15, 25, 33, 46
dm_add_fk(), 14, 18, 42
dm_add_pk, 17, 19, 34, 35, 38, 47, 48, 66
dm_add_pk(), 14, 34, 42
dm_add_uk, 18, 18, 34, 35, 38, 47, 48, 66
dm_add_uk(), 18, 34, 42
dm_ddl_post (dm_sql), 53
dm_ddl_pre (dm_sql), 53
dm_deconstruct, 20
dm_deconstruct(), 36, 80
dm_disambiguate_cols, 21
dm_discard_zoomed (dm_zoom_to), 59
dm_dml_load (dm_sql), 53
dm_draw, 22
dm_draw(), 14, 41, 50, 51
dm_enum_fk_candidates, 16, 24, 33, 46
dm_enum_pk_candidates

(enum_pk_candidates), 65
dm_examine_cardinalities, 25, 68
dm_examine_cardinalities(), 54–56, 58
dm_examine_constraints, 27
dm_examine_constraints(), 54–56, 58, 82
dm_filter, 28
dm_filter(), 14, 60
dm_financial, 29
dm_financial_sqlite (dm_financial), 29
dm_flatten_to_tbl, 30
dm_flatten_to_tbl(), 14
dm_from_con, 31
dm_from_con(), 14
dm_get_all_fks, 16, 25, 32, 46
dm_get_all_pks, 18, 19, 33, 35, 38, 47, 48, 66
dm_get_all_uks, 18, 19, 34, 34, 38, 47, 48, 66
dm_get_all_uks(), 16, 19
dm_get_available_colors

(dm_set_colors), 50
dm_get_colors (dm_set_colors), 50
dm_get_con, 35
dm_get_table_description

(dm_set_table_description), 51
dm_get_table_description(), 52
dm_get_tables, 36
dm_get_tables(), 14

dm_gui, 37
dm_has_pk, 18, 19, 34, 35, 38, 47, 48, 66
dm_insert_zoomed (dm_zoom_to), 59
dm_mutate_tbl, 38
dm_nest_tbl, 39
dm_nest_tbl(), 42, 54, 55, 58
dm_nrow, 40
dm_nycflights13, 40
dm_nycflights13(), 14
dm_pack_tbl, 41
dm_pack_tbl(), 39, 54, 55, 58
dm_paste, 42
dm_pixarfilms, 43
dm_ptype, 44
dm_ptype(), 42, 43, 54–56, 83
dm_rename, 45
dm_rename_tbl (dm_select_tbl), 49
dm_reset_table_description

(dm_set_table_description), 51
dm_reset_table_description(), 52
dm_rm_fk, 16, 25, 33, 46
dm_rm_pk, 18, 19, 34, 35, 38, 47, 48, 66
dm_rm_pk(), 16
dm_rm_uk, 18, 19, 34, 35, 38, 47, 48, 66
dm_rm_uk(), 16
dm_rows_... (rows-dm), 81
dm_rows_append (rows-dm), 81
dm_rows_append(), 19, 77
dm_rows_delete (rows-dm), 81
dm_rows_delete(), 16
dm_rows_insert (rows-dm), 81
dm_rows_patch (rows-dm), 81
dm_rows_update (rows-dm), 81
dm_rows_upsert (rows-dm), 81
dm_select, 48
dm_select(), 42
dm_select_tbl, 49
dm_select_tbl(), 14, 39
dm_set_colors, 50
dm_set_colors(), 23, 43
dm_set_table_description, 51
dm_set_table_description(), 23
dm_sql, 53
dm_sql(), 16, 77
dm_unnest_tbl, 54
dm_unnest_tbl(), 55, 56
dm_unpack_tbl, 55
dm_unpack_tbl(), 54, 56

88 INDEX

dm_unwrap_tbl, 56
dm_unwrap_tbl(), 39, 42, 54, 55, 58
dm_update_zoomed (dm_zoom_to), 59
dm_validate, 57
dm_validate(), 13
dm_wrap_tbl, 58
dm_wrap_tbl(), 39, 42, 54–56
dm_zoom_to, 59
dm_zoom_to(), 28
dm_zoomed_df (dm_zoom_to), 59
dplyr::distinct(), 64
dplyr::filter(), 28
dplyr::join, 62
dplyr::join(), 30
dplyr::nest_join(), 60, 72, 73, 79
dplyr::rename(), 45
dplyr::select(), 4–6, 30, 48, 50, 52, 68
dplyr::src, 31
dplyr::src_dbi, 6
dplyr_join, 61
dplyr_table_manipulation, 63

enum_fk_candidates
(dm_enum_fk_candidates), 24

enum_pk_candidates, 18, 19, 34, 35, 38, 47,
48, 65

examine_cardinality, 26, 66
examine_cardinality(), 14, 26

filter(), 60
filter.dm_zoomed

(dplyr_table_manipulation), 63
full_join.dm_keyed_tbl (dplyr_join), 61
full_join.dm_zoomed (dplyr_join), 61

glimpse.dm, 69
glimpse.dm_zoomed (glimpse.dm), 69
grDevices::colors(), 50
group_by(), 60, 65
group_by.dm_keyed_tbl

(dplyr_table_manipulation), 63
group_by.dm_zoomed

(dplyr_table_manipulation), 63

head.dm_zoomed, 70

inner_join.dm_keyed_tbl (dplyr_join), 61
inner_join.dm_zoomed (dplyr_join), 61
is_dm (dm), 13

join_by(), 72, 74, 78, 79
json_nest, 71
json_nest(), 75
json_nest_join, 72
json_nest_join(), 71, 75
json_pack, 73
json_pack(), 76
json_pack_join, 74
json_pack_join(), 73
json_unnest, 75
json_unpack, 76

left_join(), 60
left_join.dm_keyed_tbl (dplyr_join), 61
left_join.dm_zoomed (dplyr_join), 61

materialize, 77
mutate(), 60
mutate.dm_zoomed

(dplyr_table_manipulation), 63

nest_join.dm_zoomed (dplyr_join), 61
new_dm (dm), 13
new_dm(), 36, 57
nycflights13::flights, 40
nycflights13::planes, 40

pack_join, 78
pack_join(), 74, 75
pillar::glimpse(), 69
print(), 23
pull.dm_zoomed

(dplyr_table_manipulation), 63
pull_tbl, 79
pull_tbl(), 20

quasiquotation, 65

relocate.dm_zoomed
(dplyr_table_manipulation), 63

rename(), 60
rename.dm_zoomed

(dplyr_table_manipulation), 63
reunite_parent_child, 13, 80
reunite_parent_child_from_list

(reunite_parent_child), 80
right_join.dm_keyed_tbl (dplyr_join), 61
right_join.dm_zoomed (dplyr_join), 61
rlang::as_function(), 7, 75, 76
rows-dm, 81

INDEX 89

rows_append(), 82
rows_delete(), 82
rows_insert(), 82
rows_patch(), 82
rows_update(), 82
rows_upsert(), 82

select(), 60
select.dm_zoomed

(dplyr_table_manipulation), 63
semi_join(), 60
semi_join.dm_keyed_tbl (dplyr_join), 61
semi_join.dm_zoomed (dplyr_join), 61
separate(), 60
separate.dm_keyed_tbl

(tidyr_table_manipulation), 84
separate.dm_zoomed

(tidyr_table_manipulation), 84
slice.dm_zoomed

(dplyr_table_manipulation), 63
summarise(), 60
summarise.dm_keyed_tbl

(dplyr_table_manipulation), 63
summarise.dm_zoomed

(dplyr_table_manipulation), 63

tail.dm_zoomed (head.dm_zoomed), 70
tally.dm_zoomed

(dplyr_table_manipulation), 63
tbl, 13, 36
tibble, 77
tibble(), 42
tibble::as_tibble(), 25, 27
tibble::enframe(), 51
tidyr::nest(), 71
tidyr::pack(), 73, 79
tidyr::separate(), 85
tidyr::unite(), 85
tidyr::unnest(), 75
tidyr::unpack(), 76
tidyr_legacy, 75, 76
tidyr_table_manipulation, 84
tidyselect helpers, 45, 49
transmute(), 60
transmute.dm_zoomed

(dplyr_table_manipulation), 63

ungroup(), 60

ungroup.dm_zoomed
(dplyr_table_manipulation), 63

unite(), 60
unite.dm_keyed_tbl

(tidyr_table_manipulation), 84
unite.dm_zoomed

(tidyr_table_manipulation), 84

vctrs::vec_as_names(), 14, 75, 76

zoomed_df (dm_zoom_to), 59

	check_key
	check_set_equality
	check_subset
	copy_dm_to
	db_schema_create
	db_schema_drop
	db_schema_exists
	db_schema_list
	decompose_table
	dm
	dm_add_fk
	dm_add_pk
	dm_add_uk
	dm_deconstruct
	dm_disambiguate_cols
	dm_draw
	dm_enum_fk_candidates
	dm_examine_cardinalities
	dm_examine_constraints
	dm_filter
	dm_financial
	dm_flatten_to_tbl
	dm_from_con
	dm_get_all_fks
	dm_get_all_pks
	dm_get_all_uks
	dm_get_con
	dm_get_tables
	dm_gui
	dm_has_pk
	dm_mutate_tbl
	dm_nest_tbl
	dm_nrow
	dm_nycflights13
	dm_pack_tbl
	dm_paste
	dm_pixarfilms
	dm_ptype
	dm_rename
	dm_rm_fk
	dm_rm_pk
	dm_rm_uk
	dm_select
	dm_select_tbl
	dm_set_colors
	dm_set_table_description
	dm_sql
	dm_unnest_tbl
	dm_unpack_tbl
	dm_unwrap_tbl
	dm_validate
	dm_wrap_tbl
	dm_zoom_to
	dplyr_join
	dplyr_table_manipulation
	enum_pk_candidates
	examine_cardinality
	glimpse.dm
	head.dm_zoomed
	json_nest
	json_nest_join
	json_pack
	json_pack_join
	json_unnest
	json_unpack
	materialize
	pack_join
	pull_tbl
	reunite_parent_child
	rows-dm
	tidyr_table_manipulation
	Index

