Package 'ddml'

July 22, 2025

Version 0.3.0 Date 2024-10-02 **Description** Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. 'ddml' simplifies estimation based on (short-)stacking as discussed in Ahrens et al. (2024) <doi:10.1177/1536867X241233641>, which leverages multiple base learners to increase robustness to the underlying data generating process. License GPL (>= 3)URL https://github.com/thomaswiemann/ddml, https://thomaswiemann.com/ddml/ BugReports https://github.com/thomaswiemann/ddml/issues **Encoding UTF-8** LazyData true RoxygenNote 7.2.3 **Depends** R (>= 3.6)Imports methods, stats, AER, MASS, Matrix, nnls, quadprog, glmnet, ranger, xgboost Suggests sandwich, covr, testthat (>= 3.0.0), knitr, rmarkdown Config/testthat/edition 3 VignetteBuilder knitr NeedsCompilation no Author Achim Ahrens [aut], Christian B Hansen [aut], Mark E Schaffer [aut], Thomas Wiemann [aut, cre] Maintainer Thomas Wiemann < wiemann@uchicago.edu> **Repository** CRAN **Date/Publication** 2024-10-02 20:20:18 UTC

Title Double/Debiased Machine Learning

2 AE98

Contents

AE98	Random subsample from the data of Angrist & Evans (1991).	
Index		36
	AE98 crosspred crossval ddml ddml_ate ddml_fpliv ddml_late ddml_pliv ddml_pliw ddml_plim mdl_glm mdl_glm mdl_granger mdl_xgboost ols print.summary.ddml_ate print.summary.ddml_fpliv shortstacking summary.ddml_ate summary.ddml_fpliv	23 66 77 88 122 155 188 211 255 266 277 288 299 300 311 333

Description

Random subsample from the data of Angrist & Evans (1991).

Usage

AE98

Format

A data frame with 5,000 rows and 13 variables.

worked Indicator equal to 1 if the mother is employed.

weeksw Number of weeks of employment.

hoursw Hours worked per week.

morekids Indicator equal to 1 if the mother has more than 2 kids.

samesex Indicator equal to 1 if the first two children are of the same sex.

age Age in years.

agefst Age in years at birth of the first child.

crosspred 3

black Indicator equal to 1 if the mother is black.

hisp Indicator equal to 1 if the mother is Hispanic.

othrace Indicator equal to 1 if the mother is neither black nor Hispanic.

educ Years of education.

boy1st Indicator equal to 1 if the first child is male.

boy2nd Indicator equal to 1 if the second child is male.

Source

```
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/11288
```

References

Angrist J, Evans W (1998). "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size." American Economic Review, 88(3), 450-477.

crosspred

Cross-Predictions using Stacking.

Description

Cross-predictions using stacking.

Usage

```
crosspred(
 у,
 Χ,
  Z = NULL
  learners,
  sample_folds = 2,
  ensemble_type = "average",
  cv_folds = 5,
  custom_ensemble_weights = NULL,
  compute_insample_predictions = FALSE,
  compute_predictions_bylearner = FALSE,
  subsamples = NULL,
  cv_subsamples_list = NULL,
  silent = FALSE,
 progress = NULL,
  auxiliary_X = NULL
)
```

4 crosspred

Arguments

y The outcome variable.

X A (sparse) matrix of predictive variables.

Z Optional additional (sparse) matrix of predictive variables.

learners

May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the predictor. If a single learner is used, learners is a list with two named elements:

- what The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to predictive variables in X that are passed to the base learner.
- assign_Z An optional vector of column indices corresponding to predictive in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

sample_folds

Number of cross-fitting folds.

ensemble_type

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one.
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

 cv_folds

Number of folds used for cross-validation in ensemble construction.

custom_ensemble_weights

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

compute_insample_predictions

Indicator equal to 1 if in-sample predictions should also be computed.

compute_predictions_bylearner

Indicator equal to 1 if in-sample predictions should also be computed for each learner (rather than the entire ensemble).

crosspred 5

subsamples List of vectors with sample indices for cross-fitting.

cv_subsamples_list

List of lists, each corresponding to a subsample containing vectors with subsam-

ple indices for cross-validation.

silent Boolean to silence estimation updates.

progress String to print before learner and cv fold progress.

auxiliary_X An optional list of matrices of length sample_folds, each containing additional

observations to calculate predictions for.

Value

crosspred returns a list containing the following components:

oos_fitted A matrix of out-of-sample predictions, each column corresponding to an ensemble type (in chronological order).

weights An array, providing the weight assigned to each base learner (in chronological order) by the ensemble procedures.

is_fitted When compute_insample_predictions = T. a list of matrices with in-sample predictions by sample fold.

auxiliary_fitted When auxiliary_X is not NULL, a list of matrices with additional predictions.

oos_fitted_bylearner When compute_predictions_bylearner = T, a matrix of out-of-sample predictions, each column corresponding to a base learner (in chronological order).

is_fitted_bylearner When compute_insample_predictions = T and compute_predictions_bylearner = T, a list of matrices with in-sample predictions by sample fold.

auxiliary_fitted_bylearner When auxiliary_X is not NULL and compute_predictions_bylearner = T, a list of matrices with additional predictions for each learner.

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

See Also

Other utilities: crossval(), shortstacking()

```
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
X = AE98[, c("morekids", "age","agefst","black","hisp","othrace","educ")]
# Compute cross-predictions using stacking with base learners ols and lasso.
# Two stacking approaches are simultaneously computed: Equally
# weighted (ensemble_type = "average") and MSPE-minimizing with weights
in the unit simplex (ensemble_type = "nnls1"). Predictions for each
```

6 crossval

crossval

Estimator of the Mean Squared Prediction Error using Cross-Validation.

Description

Estimator of the mean squared prediction error of different learners using cross-validation.

Usage

```
crossval(
   y,
   X,
   Z = NULL,
   learners,
   cv_folds = 5,
   cv_subsamples = NULL,
   silent = FALSE,
   progress = NULL
)
```

Arguments

y The outcome variable.

X A (sparse) matrix of predictive variables.

Z Optional additional (sparse) matrix of predictive variables.

learners

learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to variables in X that are passed to the base learner.

ddml 7

 assign_Z An optional vector of column indices corresponding to variables in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all predictive variables in X (and/or Z).

cv_folds Number of folds used for cross-validation.

cv_subsamples List of vectors with sample indices for cross-validation.

silent Boolean to silence estimation updates.

progress String to print before learner and cv fold progress.

Value

crossval returns a list containing the following components:

mspe A vector of MSPE estimates, each corresponding to a base learners (in chronological order).

oos_resid A matrix of out-of-sample prediction errors, each column corresponding to a base learners (in chronological order).

cv_subsamples Pass-through of cv_subsamples. See above.

See Also

```
Other utilities: crosspred(), shortstacking()
```

Examples

ddml

ddml: Double/Debiased Machine Learning in R

Description

Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018). 'ddml' simplifies estimation based on (short-)stacking, which leverages multiple base learners to increase robustness to the underlying data generating process.

References

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.

ddml_ate

Estimators of Average Treatment Effects.

Description

Estimators of the average treatment effect and the average treatment effect on the treated.

Usage

```
ddml_ate(
 у,
 D,
 Χ,
  learners,
  learners_DX = learners,
  sample_folds = 10,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 10,
  custom_ensemble_weights = NULL,
  custom_ensemble_weights_DX = custom_ensemble_weights,
  cluster_variable = seq_along(y),
  subsamples_byD = NULL,
  cv_subsamples_byD = NULL,
  trim = 0.01,
  silent = FALSE
)
ddml_att(
 у,
 D,
 Χ,
  learners,
  learners_DX = learners,
  sample_folds = 10,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 10,
  custom_ensemble_weights = NULL,
  custom_ensemble_weights_DX = custom_ensemble_weights,
  cluster_variable = seq_along(y),
```

```
subsamples_byD = NULL,
cv_subsamples_byD = NULL,
trim = 0.01,
silent = FALSE
)
```

Arguments

y The outcome variable.

D The binary endogenous variable of interest.

X A (sparse) matrix of control variables.

learners

May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, learners is a list with two named elements:

- what The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to control variables in X that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X results in inclusion of all variables in X.

learners_DX

Optional argument to allow for different estimators of ${\cal E}[D|X].$ Setup is identical to learners.

sample_folds

Number of cross-fitting folds.

ensemble_type

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one.
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack

Boolean to use short-stacking.

cv_folds Number of custom_ensemble_weights

Number of folds used for cross-validation in ensemble construction.

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

custom_ensemble_weights_DX

Optional argument to allow for different custom ensemble weights for learners_DX. Setup is identical to custom_ensemble_weights. Note: custom_ensemble_weights and custom_ensemble_weights_DX must have the same number of columns.

cluster_variable

A vector of cluster indices.

subsamples_byD List of two lists corresponding to the two treatment levels. Each list contains vectors with sample indices for cross-fitting.

cv_subsamples_byD

List of two lists, each corresponding to one of the two treatment levels. Each of the two lists contains lists, each corresponding to a subsample and contains vectors with subsample indices for cross-validation.

trim Number in (0, 1) for trimming the estimated propensity scores at trim and

1-trim.

silent Boolean to silence estimation updates.

Details

ddml_ate and ddml_att provide double/debiased machine learning estimators for the average treatment effect and the average treatment effect on the treated, respectively, in the interactive model given by

$$Y = g_0(D, X) + U,$$

where (Y, D, X, U) is a random vector such that supp $D = \{0, 1\}$, E[U|D, X] = 0, and $Pr(D = 1|X) \in (0, 1)$ with probability 1, and g_0 is an unknown nuisance function.

In this model, the average treatment effect is defined as

$$\theta_0^{\text{ATE}} \equiv E[g_0(1, X) - g_0(0, X)].$$

and the average treatment effect on the treated is defined as

$$\theta_0^{\text{ATT}} \equiv E[g_0(1, X) - g_0(0, X)|D = 1].$$

Value

ddml_ate and ddml_att return an object of S3 class ddml_ate and ddml_att, respectively. An object of class ddml_ate or ddml_att is a list containing the following components:

ate / att A vector with the average treatment effect / average treatment effect on the treated estimates.

weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

psi_a, psi_b Matrices needed for the computation of scores. Used in summary.ddml_ate() or summary.ddml_att().

oos_pred List of matrices, providing the reduced form predicted values.

learners,learners_DX,cluster_variable, subsamples_D0,subsamples_D1, cv_subsamples_list_D0,cv_subsamples Pass-through of selected user-provided arguments. See above.

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

See Also

```
summary.ddml_ate(), summary.ddml_att()
Other ddml: ddml_fpliv(), ddml_late(), ddml_pliv(), ddml_plm()
```

```
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age", "agefst", "black", "hisp", "othrace", "educ")]
# Estimate the average treatment effect using a single base learner, ridge.
ate_fit <- ddml_ate(y, D, X,</pre>
                     learners = list(what = mdl_glmnet,
                                     args = list(alpha = 0)),
                     sample_folds = 2,
                     silent = TRUE)
summary(ate_fit)
# Estimate the average treatment effect using short-stacking with base
      learners ols, lasso, and ridge. We can also use custom_ensemble_weights
      to estimate the ATE using every individual base learner.
weights_everylearner <- diag(1, 3)</pre>
colnames(weights_everylearner) <- c("mdl:ols", "mdl:lasso", "mdl:ridge")</pre>
ate_fit <- ddml_ate(y, D, X,
                     learners = list(list(fun = ols),
                                     list(fun = mdl_glmnet),
                                     list(fun = mdl_glmnet,
                                           args = list(alpha = 0))),
                     ensemble_type = 'nnls',
                     custom_ensemble_weights = weights_everylearner,
                     shortstack = TRUE,
                     sample_folds = 2,
                     silent = TRUE)
summary(ate_fit)
```

12 ddml_fpliv

ddml_fpliv

Estimator for the Flexible Partially Linear IV Model.

Description

Estimator for the flexible partially linear IV model.

Usage

```
ddml_fpliv(
 у,
 D,
  Ζ,
 Χ,
  learners,
  learners_DXZ = learners,
  learners_DX = learners,
  sample_folds = 10,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 10,
  enforce_LIE = TRUE,
  custom_ensemble_weights = NULL,
  custom_ensemble_weights_DXZ = custom_ensemble_weights,
  custom_ensemble_weights_DX = custom_ensemble_weights,
  cluster_variable = seq_along(y),
  subsamples = NULL,
  cv_subsamples_list = NULL,
  silent = FALSE
)
```

Arguments

y The outcome variable.

D A matrix of endogenous variables.

Z A (sparse) matrix of instruments.

X A (sparse) matrix of control variables.

learners Ma

May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, learners is a list with two named elements:

- what The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

ddml_fpliv 13

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to control variables in X that are passed to the base learner.
- assign_Z An optional vector of column indices corresponding to instruments in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

learners_DXZ, learners_DX

Optional arguments to allow for different estimators of E[D|X,Z], E[D|X]. Setup is identical to learners.

sample_folds Number of cross-fitting folds.

ensemble_type Ens

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one.
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack Boolean to use short-stacking.

cv_folds Number of folds used for cross-validation in ensemble construction.

enforce_LIE Indicator equal to 1 if the law of iterated expectations is enforced in the first stage.

custom_ensemble_weights

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

custom_ensemble_weights_DXZ, custom_ensemble_weights_DX

Optional arguments to allow for different custom ensemble weights for learners_DXZ,learners_DX. Setup is identical to custom_ensemble_weights. Note: custom_ensemble_weights and custom_ensemble_weights_DXZ,custom_ensemble_weights_DX must have the same number of columns.

cluster_variable

A vector of cluster indices.

subsamples List of vectors with sample indices for cross-fitting.

cv_subsamples_list

List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.

silent Boolean to silence estimation updates.

14 ddml_fpliv

Details

ddml_fpliv provides a double/debiased machine learning estimator for the parameter of interest θ_0 in the partially linear IV model given by

```
Y = \theta_0 D + g_0(X) + U,
```

where (Y, D, X, Z, U) is a random vector such that E[U|X, Z] = 0 and $E[Var(E[D|X, Z]|X)] \neq 0$, and g_0 is an unknown nuisance function.

Value

ddml_fpliv returns an object of S3 class ddml_fpliv. An object of class ddml_fpliv is a list containing the following components:

coef A vector with the θ_0 estimates.

weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

iv_fit Object of class ivreg from the IV regression of $Y - \hat{E}[Y|X]$ on $D - \hat{E}[D|X]$ using $\hat{E}[D|X,Z] - \hat{E}[D|X]$ as the instrument.

learners,learners_DX,learners_DXZ, cluster_variable,subsamples, cv_subsamples_list,ensemble_type Pass-through of selected user-provided arguments. See above.

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

See Also

```
summary.ddml_fpliv(), AER::ivreg()
Other ddml: ddml_ate(), ddml_late(), ddml_pliv(), ddml_plm()
```

```
args = list(alpha = 0)),
sample_folds = 2,
silent = TRUE)
summary(fpliv_fit)
```

ddml_late

Estimator of the Local Average Treatment Effect.

Description

Estimator of the local average treatment effect.

Usage

```
ddml_late(
 у,
 D,
  Ζ,
 Χ,
  learners,
  learners_DXZ = learners,
  learners_ZX = learners,
  sample_folds = 10,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 10,
  custom_ensemble_weights = NULL,
  custom_ensemble_weights_DXZ = custom_ensemble_weights,
  custom_ensemble_weights_ZX = custom_ensemble_weights,
  cluster_variable = seq_along(y),
  subsamples_byZ = NULL,
  cv_subsamples_byZ = NULL,
  trim = 0.01,
  silent = FALSE
)
```

Arguments

V	The outcome	e variable

D The binary endogenous variable of interest.

Z Binary instrumental variable.

X A (sparse) matrix of control variables.

learners May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation func-

tions. If a single learner is used, learners is a list with two named elements:

• what The base learner function. The function must be such that it predicts a named input y using a named input X.

• args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to control variables in X that are passed to the base learner.
- assign_Z An optional vector of column indices corresponding to instruments in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

learners_DXZ, learners_ZX

Optional arguments to allow for different estimators of E[D|X,Z], E[Z|X]. Setup is identical to learners.

sample_folds

Number of cross-fitting folds.

ensemble_type

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one.
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack

Boolean to use short-stacking.

cv_folds

Number of folds used for cross-validation in ensemble construction.

custom_ensemble_weights

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

custom_ensemble_weights_DXZ, custom_ensemble_weights_ZX

Optional arguments to allow for different custom ensemble weights for learners_DXZ,learners_ZX. Setup is identical to custom_ensemble_weights. Note: custom_ensemble_weights and custom_ensemble_weights_DXZ,custom_ensemble_weights_ZX must have the same number of columns.

cluster_variable

A vector of cluster indices.

subsamples_byZ List of two lists corresponding to the two instrument levels. Each list contains vectors with sample indices for cross-fitting.

cv_subsamples_byZ

List of two lists, each corresponding to one of the two instrument levels. Each of the two lists contains lists, each corresponding to a subsample and contains vectors with subsample indices for cross-validation.

trim

Number in (0, 1) for trimming the estimated propensity scores at trim and 1-trim.

silent

Boolean to silence estimation updates.

Details

ddml_late provides a double/debiased machine learning estimator for the local average treatment effect in the interactive model given by

$$Y = g_0(D, X) + U,$$

where (Y, D, X, Z, U) is a random vector such that supp $D = \text{supp } Z = \{0, 1\}$, E[U|X, Z] = 0, $E[Var(E[D|X, Z]|X)] \neq 0$, $\Pr(Z = 1|X) \in (0, 1)$ with probability 1, $p_0(1, X) \geq p_0(0, X)$ with probability 1 where $p_0(Z, X) \equiv \Pr(D = 1|Z, X)$, and g_0 is an unknown nuisance function.

In this model, the local average treatment effect is defined as

$$\theta_0^{\text{LATE}} \equiv E[g_0(1, X) - g_0(0, X) | p_0(1, X) > p(0, X)].$$

Value

ddml_late returns an object of S3 class ddml_late. An object of class ddml_late is a list containing the following components:

late A vector with the average treatment effect estimates.

weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

psi_a, psi_b Matrices needed for the computation of scores. Used in summary.ddml_late().

oos_pred List of matrices, providing the reduced form predicted values.

learners,learners_DXZ,learners_ZX, cluster_variable,subsamples_Z0, subsamples_Z1,cv_subsamples_list_Z0, Pass-through of selected user-provided arguments. See above.

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.

Imbens G, Angrist J (1004). "Identification and Estimation of Local Average Treatment Effects." Econometrica, 62(2), 467-475.

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

18 ddml_pliv

See Also

```
summary.ddml_late()
Other ddml: ddml_ate(), ddml_fpliv(), ddml_pliv(), ddml_plm()
```

Examples

```
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
Z = AE98[, "samesex"]
X = AE98[, c("age", "agefst", "black", "hisp", "othrace", "educ")]
# Estimate the local average treatment effect using a single base learner,
      ridge.
late_fit <- ddml_late(y, D, Z, X,</pre>
                       learners = list(what = mdl_glmnet,
                                       args = list(alpha = 0)),
                       sample_folds = 2,
                       silent = TRUE)
summary(late_fit)
# Estimate the local average treatment effect using short-stacking with base
      learners ols, lasso, and ridge. We can also use custom_ensemble_weights
      to estimate the ATE using every individual base learner.
weights_everylearner <- diag(1, 3)</pre>
colnames(weights_everylearner) <- c("mdl:ols", "mdl:lasso", "mdl:ridge")</pre>
late_fit <- ddml_late(y, D, Z, X,</pre>
                       learners = list(list(fun = ols),
                                       list(fun = mdl_glmnet),
                                       list(fun = mdl_glmnet,
                                             args = list(alpha = 0))),
                       ensemble_type = 'nnls',
                       custom_ensemble_weights = weights_everylearner,
                       shortstack = TRUE,
                       sample_folds = 2,
                       silent = TRUE)
summary(late_fit)
```

ddml_pliv

Estimator for the Partially Linear IV Model.

Description

Estimator for the partially linear IV model.

Usage

```
ddml_pliv(
   y,
```

ddml_pliv 19

```
D,
  Ζ,
  Χ,
  learners,
  learners_DX = learners,
  learners_ZX = learners,
  sample_folds = 10,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 10,
  custom_ensemble_weights = NULL,
  custom_ensemble_weights_DX = custom_ensemble_weights,
  custom_ensemble_weights_ZX = custom_ensemble_weights,
  cluster_variable = seq_along(y),
  subsamples = NULL,
  cv_subsamples_list = NULL,
  silent = FALSE
)
```

Arguments

y The outcome variable.

D A matrix of endogenous variables.

Z A matrix of instruments.

X A (sparse) matrix of control variables.

learners

May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, learners is a list with two named elements:

- what The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to control variables in X that are passed to the base learner.
- assign_Z An optional vector of column indices corresponding to instruments in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

learners_DX, learners_ZX

Optional arguments to allow for different base learners for estimation of E[D|X], E[Z|X]. Setup is identical to learners.

20 ddml_pliv

sample_folds

Number of cross-fitting folds.

ensemble_type

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack

Boolean to use short-stacking.

cv_folds

Number of folds used for cross-validation in ensemble construction.

custom_ensemble_weights

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

custom_ensemble_weights_DX, custom_ensemble_weights_ZX

Optional arguments to allow for different custom ensemble weights for learners_DX,learners_ZX. Setup is identical to custom_ensemble_weights. Note: custom_ensemble_weights and custom_ensemble_weights_DX,custom_ensemble_weights_ZX must have the same number of columns.

cluster_variable

A vector of cluster indices.

subsamples

List of vectors with sample indices for cross-fitting.

cv_subsamples_list

List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.

silent

Boolean to silence estimation updates.

Details

ddml_pliv provides a double/debiased machine learning estimator for the parameter of interest θ_0 in the partially linear IV model given by

$$Y = \theta_0 D + g_0(X) + U,$$

where (Y, D, X, Z, U) is a random vector such that E[Cov(U, Z|X)] = 0 and $E[Cov(D, Z|X)] \neq 0$, and g_0 is an unknown nuisance function.

Value

ddml_pliv returns an object of S3 class ddml_pliv. An object of class ddml_pliv is a list containing the following components:

coef A vector with the θ_0 estimates.

ddml_plm 21

weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

```
iv_fit Object of class ivreg from the IV regression of Y - \hat{E}[Y|X] on D - \hat{E}[D|X] using Z - \hat{E}[Z|X] as the instrument. See also AER::ivreg() for details.
```

learners,learners_DX,learners_ZX, cluster_variable, subsamples, cv_subsamples_list,ensemble_type Pass-through of selected user-provided arguments. See above.

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York.

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

See Also

```
summary.ddml_pliv(), AER::ivreg()
Other ddml: ddml_ate(), ddml_fpliv(), ddml_late(), ddml_plm()
```

Examples

ddml_plm

Estimator for the Partially Linear Model.

Description

Estimator for the partially linear model.

22 ddml_plm

Usage

```
ddml_plm(
 у,
 D,
 Χ,
  learners,
  learners_DX = learners,
  sample_folds = 10,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 10,
  custom_ensemble_weights = NULL,
  custom_ensemble_weights_DX = custom_ensemble_weights,
  cluster_variable = seq_along(y),
  subsamples = NULL,
  cv_subsamples_list = NULL,
  silent = FALSE
)
```

Arguments

y The outcome variable.

D A matrix of endogenous variables.

X A (sparse) matrix of control variables.

learners

May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, learners is a list with two named elements:

- what The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to control variables in X that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X results in inclusion of all variables in X.

learners_DX

Optional argument to allow for different estimators of ${\cal E}[D|X].$ Setup is identical to learners.

sample_folds

Number of cross-fitting folds.

ensemble_type

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one.
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack

Boolean to use short-stacking.

cv_folds Number of custom_ensemble_weights

Number of folds used for cross-validation in ensemble construction.

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

custom_ensemble_weights_DX

Optional argument to allow for different custom ensemble weights for learners_DX. Setup is identical to custom_ensemble_weights. Note: custom_ensemble_weights and custom_ensemble_weights_DX must have the same number of columns.

cluster_variable

A vector of cluster indices.

subsamples

List of vectors with sample indices for cross-fitting.

cv_subsamples_list

List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.

silent

Boolean to silence estimation updates.

Details

ddml_plm provides a double/debiased machine learning estimator for the parameter of interest θ_0 in the partially linear model given by

$$Y = \theta_0 D + g_0(X) + U,$$

where (Y, D, X, U) is a random vector such that E[Cov(U, D|X)] = 0 and $E[Var(D|X)] \neq 0$, and g_0 is an unknown nuisance function.

Value

ddml_plm returns an object of S3 class ddml_plm. An object of class ddml_plm is a list containing the following components:

coef A vector with the θ_0 estimates.

weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

ols_fit Object of class 1m from the second stage regression of $Y - \hat{E}[Y|X]$ on $D - \hat{E}[D|X]$.

learners,learners_DX,cluster_variable, subsamples, cv_subsamples_list, ensemble_type Pass-through of selected user-provided arguments. See above.

24 ddml_plm

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

See Also

```
summary.ddml_plm()
Other ddml: ddml_ate(), ddml_fpliv(), ddml_late(), ddml_pliv()
```

```
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age", "agefst", "black", "hisp", "othrace", "educ")]
# Estimate the partially linear model using a single base learner, ridge.
plm_fit <- ddml_plm(y, D, X,</pre>
                     learners = list(what = mdl_glmnet,
                                     args = list(alpha = 0)),
                     sample_folds = 2,
                     silent = TRUE)
summary(plm_fit)
# Estimate the partially linear model using short-stacking with base learners
      ols, lasso, and ridge. We can also use custom_ensemble_weights
      to estimate the ATE using every individual base learner.
weights_everylearner <- diag(1, 3)</pre>
colnames(weights_everylearner) <- c("mdl:ols", "mdl:lasso", "mdl:ridge")</pre>
plm_fit <- ddml_plm(y, D, X,</pre>
                     learners = list(list(fun = ols),
                                     list(fun = mdl_glmnet),
                                     list(fun = mdl_glmnet,
                                           args = list(alpha = 0))),
                     ensemble_type = 'nnls',
                     custom_ensemble_weights = weights_everylearner,
                     shortstack = TRUE,
                     sample_folds = 2,
                     silent = TRUE)
summary(plm_fit)
```

mdl_glm 25

```
mdl_glm
```

Wrapper for stats::glm().

Description

```
Simple wrapper for stats::glm().
```

Usage

```
mdl_glm(y, X, ...)
```

Arguments

y The outcome variable.

X The feature matrix.

... Additional arguments passed to glm. See stats::glm() for a complete list of arguments.

Value

mdl_glm returns an object of S3 class mdl_glm as a simple mask of the return object of stats::glm().

See Also

```
stats::glm()
Other ml_wrapper: mdl_glmnet(), mdl_ranger(), mdl_xgboost(), ols()
```

Examples

 mdl_glmnet

Wrapper for glmnet::glmnet().

Description

```
Simple wrapper for glmnet::glmnet() and glmnet::cv.glmnet().
```

Usage

```
mdl_glmnet(y, X, cv = TRUE, ...)
```

26 mdl_ranger

Arguments

у	The outcome variable.
Χ	The (sparse) feature matrix.
cv	Boolean to indicate use of lasso with cross-validated penalty.
• • •	Additional arguments passed to glmnet. See glmnet::glmnet() and glmnet::cv.glmnet() for a complete list of arguments.

Value

mdl_glmnet returns an object of S3 class mdl_glmnet as a simple mask of the return object of glmnet::glmnet() or glmnet::cv.glmnet().

References

Friedman J, Hastie T, Tibshirani R (2010). "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software, 33(1), 1–22.

Simon N, Friedman J, Hastie T, Tibshirani R (2011). "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent." Journal of Statistical Software, 39(5), 1–13.

See Also

```
glmnet::glmnet(),glmnet::cv.glmnet()
Other ml_wrapper: mdl_glm(), mdl_ranger(), mdl_xgboost(), ols()
```

Examples

```
glmnet_fit <- mdl_glmnet(rnorm(100), matrix(rnorm(1000), 100, 10))
class(glmnet_fit)</pre>
```

mdl_ranger

Wrapper for ranger::ranger().

Description

Simple wrapper for ranger::ranger(). Supports regression (default) and probability forests (set probability = TRUE).

Usage

```
mdl_ranger(y, X, ...)
```

Arguments

y The outcome variable.
X The feature matrix.

... Additional arguments passed to ranger. See ranger::ranger() for a complete list of arguments.

mdl_xgboost 27

Value

mdl_ranger returns an object of S3 class ranger as a simple mask of the return object of ranger::ranger().

References

Wright M N, Ziegler A (2017). "ranger: A fast implementation of random forests for high dimensional data in C++ and R." Journal of Statistical Software 77(1), 1-17.

See Also

```
ranger::ranger()
Other ml_wrapper: mdl_glmnet(), mdl_glm(), mdl_xgboost(), ols()
```

Examples

```
ranger_fit <- mdl_ranger(rnorm(100), matrix(rnorm(1000), 100, 10))
class(ranger_fit)</pre>
```

mdl_xgboost

Wrapper for xgboost::xgboost().

Description

Simple wrapper for xgboost::xgboost() with some changes to the default arguments.

Usage

```
mdl_xgboost(y, X, nrounds = 500, verbose = 0, ...)
```

Arguments

y The outcome variable.

X The (sparse) feature matrix.

nrounds max number of boosting iterations.

verbose If 0, xgboost will stay silent. If 1, it will print information about performance. If

2, some additional information will be printed out. Note that setting verbose > 0 automatically engages the cb.print.evaluation(period=1) callback func-

tion.

... Additional arguments passed to xgboost. See xgboost::xgboost() for a com-

plete list of arguments.

Value

mdl_xgboost returns an object of S3 class mdl_xgboost as a simple mask to the return object of xgboost::xgboost().

28 ols

References

Chen T, Guestrin C (2011). "Xgboost: A Scalable Tree Boosting System." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.

See Also

```
xgboost::xgboost()
Other ml_wrapper: mdl_glmnet(), mdl_glm(), mdl_ranger(), ols()
```

Examples

ols

Ordinary least squares.

Description

Simple implementation of ordinary least squares that computes with sparse feature matrices.

Usage

```
ols(y, X, const = TRUE, w = NULL)
```

Arguments

y The outcome variable.

X The feature matrix.

const Boolean equal to TRUE if a constant should be included.

w A vector of weights for weighted least squares.

Value

ols returns an object of S3 class ols. An object of class ols is a list containing the following components:

```
coef A vector with the regression coefficients.
y, X, const, w Pass-through of the user-provided arguments. See above.
```

See Also

```
Other ml_wrapper: mdl_glmnet(), mdl_glm(), mdl_ranger(), mdl_xgboost()
```

```
ols_fit <- ols(rnorm(100), cbind(rnorm(100), rnorm(100)), const = TRUE)
ols_fit$coef</pre>
```

```
print.summary.ddml_ate
```

Print Methods for Treatment Effect Estimators.

Description

Print methods for treatment effect estimators.

Usage

```
## $3 method for class 'summary.ddml_ate'
print(x, digits = 3, ...)
## $3 method for class 'summary.ddml_att'
print(x, digits = 3, ...)
## $3 method for class 'summary.ddml_late'
print(x, digits = 3, ...)
```

Arguments

Value

NULL.

```
print.summary.ddml_fpliv
```

Print Methods for Treatment Effect Estimators.

Description

Print methods for treatment effect estimators.

Usage

```
## S3 method for class 'summary.ddml_fpliv'
print(x, digits = 3, ...)
## S3 method for class 'summary.ddml_pliv'
print(x, digits = 3, ...)
## S3 method for class 'summary.ddml_plm'
print(x, digits = 3, ...)
```

Arguments

... Currently unused.

Value

NULL.

shortstacking 31

shortstacking

Predictions using Short-Stacking.

Description

Predictions using short-stacking.

Usage

```
shortstacking(
   y,
   X,
   Z = NULL,
   learners,
   sample_folds = 2,
   ensemble_type = "average",
   custom_ensemble_weights = NULL,
   compute_insample_predictions = FALSE,
   subsamples = NULL,
   silent = FALSE,
   progress = NULL,
   auxiliary_X = NULL,
   shortstack_y = y
)
```

Arguments

y The outcome variable.

X A (sparse) matrix of predictive variables.

Z Optional additional (sparse) matrix of predictive variables.

learners

May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the predictor. If a single learner is used, learners is a list with two named elements:

- what The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

- fun The base learner function. The function must be such that it predicts a named input y using a named input X.
- args Optional arguments to be passed to fun.
- assign_X An optional vector of column indices corresponding to predictive variables in X that are passed to the base learner.
- assign_Z An optional vector of column indices corresponding to predictive in Z that are passed to the base learner.

32 shortstacking

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

sample_folds

Number of cross-fitting folds.

ensemble_type

Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:

- "nnls" Non-negative least squares.
- "nnls1" Non-negative least squares with the constraint that all weights sum to one.
- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

custom_ensemble_weights

A numerical matrix with user-specified ensemble weights. Each column corresponds to a custom ensemble specification, each row corresponds to a base learner in learners (in chronological order). Optional column names are used to name the estimation results corresponding the custom ensemble specification.

compute_insample_predictions

Indicator equal to 1 if in-sample predictions should also be computed.

subsamples List of vectors with sample indices for cross-fitting.

silent Boolean to silence estimation updates.

progress String to print before learner and cv fold progress.

auxiliary_X An optional list of matrices of length sample_folds, each containing additional

observations to calculate predictions for.

shortstack_y Optional vector of the outcome variable to form short-stacking predictions for.

Base learners are always trained on y.

Value

shortstack returns a list containing the following components:

oos_fitted A matrix of out-of-sample predictions, each column corresponding to an ensemble type (in chronological order).

weights An array, providing the weight assigned to each base learner (in chronological order) by the ensemble procedures.

is_fitted When compute_insample_predictions = T. a list of matrices with in-sample predictions by sample fold.

auxiliary_fitted When auxiliary_X is not NULL, a list of matrices with additional predictions.

oos_fitted_bylearner A matrix of out-of-sample predictions, each column corresponding to a base learner (in chronological order).

is_fitted_bylearner When compute_insample_predictions = T, a list of matrices with insample predictions by sample fold.

summary.ddml_ate 33

auxiliary_fitted_bylearner When auxiliary_X is not NULL, a list of matrices with additional predictions for each learner.

Note that unlike crosspred, shortstack always computes out-of-sample predictions for each base learner (at no additional computational cost).

References

Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397

Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.

See Also

Other utilities: crosspred(), crossval()

Examples

```
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
X = AE98[, c("morekids", "age", "agefst", "black", "hisp", "othrace", "educ")]
# Compute predictions using shortstacking with base learners ols and lasso.
      Two stacking approaches are simultaneously computed: Equally
#
      weighted (ensemble_type = "average") and MSPE-minimizing with weights
#
      in the unit simplex (ensemble_type = "nnls1"). Predictions for each
      learner are also calculated.
shortstack_res <- shortstacking(y, X,</pre>
                                 learners = list(list(fun = ols),
                                                 list(fun = mdl_glmnet)),
                                 ensemble_type = c("average",
                                                   "nnls1",
                                                   "singlebest"),
                                 sample_folds = 2,
                                 silent = TRUE)
dim(shortstack_res$oos_fitted) # = length(y) by length(ensemble_type)
dim(shortstack_res$oos_fitted_bylearner) # = length(y) by length(learners)
```

summary.ddml_ate

Inference Methods for Treatment Effect Estimators.

Description

Inference methods for treatment effect estimators. By default, standard errors are heteroskedasiticty-robust. If the ddml estimator was computed using a cluster_variable, the standard errors are also cluster-robust by default.

summary.ddml_fpliv

Usage

```
## S3 method for class 'ddml_ate'
summary(object, ...)
## S3 method for class 'ddml_att'
summary(object, ...)
## S3 method for class 'ddml_late'
summary(object, ...)
```

Arguments

```
object An object of class ddml_ate, ddml_att, and ddml_late, as fitted by ddml_ate(), ddml_att(), and ddml_late(), respectively.

... Currently unused.
```

Value

A matrix with inference results.

Examples

summary.ddml_fpliv

Inference Methods for Partially Linear Estimators.

Description

Inference methods for partially linear estimators. Simple wrapper for sandwich::vcovHC() and sandwich::vcovCL(). Default standard errors are heteroskedasiticty-robust. If the ddml estimator was computed using a cluster_variable, the standard errors are also cluster-robust by default.

summary.ddml_fpliv 35

Usage

```
## S3 method for class 'ddml_fpliv'
summary(object, ...)
## S3 method for class 'ddml_pliv'
summary(object, ...)
## S3 method for class 'ddml_plm'
summary(object, ...)
```

Arguments

```
object An object of class ddml_plm, ddml_pliv, or ddml_fpliv as fitted by ddml_plm(), ddml_pliv(), and ddml_fpliv(), respectively.

Additional arguments passed to vcovHC and vcovCL. See sandwich::vcovHC() and sandwich::vcovCL() for a complete list of arguments.
```

Value

An array with inference results for each ensemble_type.

References

Zeileis A (2004). "Econometric Computing with HC and HAC Covariance Matrix Estimators." Journal of Statistical Software, 11(10), 1-17.

Zeileis A (2006). "Object-Oriented Computation of Sandwich Estimators." Journal of Statistical Software, 16(9), 1-16.

Zeileis A, Köll S, Graham N (2020). "Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R." Journal of Statistical Software, 95(1), 1-36.

See Also

```
sandwich::vcovHC(), sandwich::vcovCL()
```

Index

* datasets	glmnet::glmnet(), 25, 26
AE98, 2 * ddml ddml_ate, 8 ddml_fpliv, 12 ddml_late, 15 ddml_pliv, 18	mdl_glm, 25, 26-28 mdl_glmnet, 25, 25, 27, 28 mdl_ranger, 25, 26, 26, 28 mdl_xgboost, 25-27, 27, 28 ols, 25-28, 28
<pre>ddml_plm, 21 * ml_wrapper mdl_glm, 25 mdl_glmnet, 25 mdl_ranger, 26 mdl_xgboost, 27 ols, 28 * utilities crosspred, 3 crossval, 6 shortstacking, 31</pre>	<pre>print.summary.ddml_ate, 29 print.summary.ddml_att</pre>
AE98, 2 AER::ivreg(), 14, 21 crosspred, 3, 7, 33 crossval, 5, 6, 33 ddml, 7 ddml_ate, 8, 14, 18, 21, 24 ddml_ate(), 34 ddml_att(ddml_ate), 8 ddml_att(), 34 ddml_att(), 34 ddml_fpliv, 11, 12, 18, 21, 24	<pre>ranger::ranger(), 26, 27 sandwich::vcovCL(), 34, 35 sandwich::vcovHC(), 34, 35 shortstacking, 5, 7, 31 stats::glm(), 25 summary.ddml_ate, 33 summary.ddml_ate(), 10, 11, 29 summary.ddml_att (summary.ddml_ate), 33 summary.ddml_att(), 10, 11, 29 summary.ddml_fpliv(), 14, 30 summary.ddml_fpliv(), 14, 30 summary.ddml_late(summary.ddml_ate), 33</pre>
ml_fpliv(), 35 ml_late, 11, 14, 15, 21, 24 ml_late(), 34 ml_pliv, 11, 14, 18, 18, 24 ml_pliv(), 35 ml_plm, 11, 14, 18, 21, 21 ml_plm(), 35 mnet::cv.glmnet(), 25, 26	<pre>summary.ddml_late (summary.ddml_ate), 33 summary.ddml_late(), 17, 18, 29 summary.ddml_pliv (summary.ddml_fpliv),</pre>