
Package ‘crossvalidationCP’
July 23, 2025

Title Cross-Validation for Change-Point Regression

Version 1.1

Depends R (>= 3.3.0)

Imports changepoint (>= 2.0), fpopw(>= 1.1), wbs (>= 1.4), stats

Suggests testthat (>= 2.0.0)

Description Implements the cross-validation methodol-
ogy from Pein and Shah (2021) <doi:10.48550/arXiv.2112.03220>. Can be customised by provid-
ing different cross-validation criteria, estimators for the change-point locations and local parame-
ters, and freely chosen folds. Pre-implemented estimators and criteria are available. It also in-
cludes our own implementation of the COPPS procedure <doi:10.1214/19-AOS1814>.

License GPL-3

NeedsCompilation no

Author Pein Florian [aut, cre]

Maintainer Pein Florian <f.pein@lancaster.ac.uk>

Repository CRAN

Date/Publication 2023-05-22 18:30:02 UTC

Contents

crossvalidationCP-package . 2
convertSingleParam . 4
COPPS . 5
criteria . 7
crossvalidationCP . 9
estimators . 12
VfoldCV . 14

Index 17

1

https://doi.org/10.48550/arXiv.2112.03220
https://doi.org/10.1214/19-AOS1814

2 crossvalidationCP-package

crossvalidationCP-package

Cross-validation for change-point regression

Description

Implements the cross-validation methodology from Pein and Shah (2021). The approach can be
customised by providing cross-validation criteria, estimators for the change-point locations and
local parameters, and freely chosen folds. Pre-implemented estimators and criteria are available. It
also includes our own implementation of the COPPS procedure Zou et al. (2020). By default, 5-fold
cross-validation with ordered folds, absolute error loss, and least squares estimation for estimating
the change-point locations is used.

Details

The main function is crossvalidationCP. It selects among a list of parameters the one with the
smallest cross-validation criterion for a given method. The user can freely choose the folds, the
local estimator and the criterion. Several pre-implemented estimators and criteria are available.
Estimators have to allow a list of parameters at the same time. One can use convertSingleParam
to convert a function allowing only a single parameter to a function that allows a list of parameters.

A ssimpler, but more limited access is given by the functions VfoldCV, COPPS, CV1 and CVmod.
VfoldCV performs V-fold cross-validation, where the tuning parameter is directly the number of
change-points. COPPS implements the COPPS procedure Zou et al. (2020), i.e. 2-fold cross-
validation with Order-Preserved Sample-Splitting and the tuning parameter being again the num-
ber of change-points. CV1 and CVmod do the same, but with absolute error loss and the modified
quadratic error loss, see (15) and (16) in Pein and Shah (2021), instead of quadratic error loss.

Note that COPPS can be problematic when larger changes occur at odd locations. For a detailed
discussion, why standard quadratic error loss can lead to misestimation, see Section 2 in Pein and
Shah (2021). By default, we recommend to use absolute error loss and 5-fold cross-validation as
offered by VfoldCV.

So far only univariate data is supported, but support for multivariate data is planned.

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

Zou, C., Wang, G., and Li, R. (2020) Consistent selection of the number of change-points via
sample-splitting. The Annals of Statistics, 48(1), 413–439.

See Also

crossvalidationCP, estimators, criteria, convertSingleParam, VfoldCV, COPPS, CV1, CVmod

crossvalidationCP-package 3

Examples

call with default parameters:
5-fold cross-validation with absolute error loss, least squares estimation,
and possible parameters being 0 to 5 change-points
Y <- rnorm(100)
(ret <- crossvalidationCP(Y = Y))
a simpler, but more limited access to it is offered by VfoldCV()
identical(VfoldCV(Y = Y), ret)

more interesting data and more detailed output
set.seed(1L)
Y <- c(rnorm(50), rnorm(50, 5), rnorm(50), rnorm(50, 5))
VfoldCV(Y = Y, output = "detailed")
finds the correct change-points at 50, 100, 150
(plus the start and end points 0 and 200)

reducing the maximal number of change-points to 2
VfoldCV(Y = Y, Kmax = 2)

crossvalidationCP is more flexible and allows a list of parameters
here only 1 or 2 change-points are allowed
crossvalidationCP(Y = Y, param = as.list(1:2))

reducing the number of folds to 3
ret <- VfoldCV(Y = Y, V = 3L, output = "detailed")
the same but with explicitly specified folds
identical(crossvalidationCP(Y = Y, folds = list(seq(1, 200, 3), seq(2, 200, 3), seq(3, 200, 3)),

output = "detailed"), ret)

2-fold cross-validation with Order-Preserved Sample-Splitting
ret <- crossvalidationCP(Y = Y, folds = "COPPS", output = "detailed")

a simpler access to it is offered by CV1()
identical(CV1(Y = Y, output = "detailed"), ret)

different criterion: quadratic error loss
ret <- crossvalidationCP(Y = Y, folds = "COPPS", output = "detailed", criterion = criterionL2loss)

same as COPPS procedure; as offered by COPPS()
identical(COPPS(Y = Y, output = "detailed"), ret)

COPPS potentially fails to provide a good selection when large changes occur at odd locations
Example 1 in (Pein and Shah, 2021), see Section 2.2 in this paper for more details
set.seed(1)
exampleY <- rnorm(102, c(rep(10, 46), rep(0, 5), rep(30, 51)))
misses one change-point
crossvalidationCP(Y = exampleY, folds = "COPPS", criterion = criterionL2loss)

correct number of change-points when modified criterion (or absolute error loss) is used
(ret <- crossvalidationCP(Y = exampleY, folds = "COPPS", criterion = criterionMod))

a simpler access to it is offered by CVmod()

4 convertSingleParam

identical(CVmod(Y = exampleY), ret)

manually given criterion; identical to criterionL1loss()
testCriterion <- function(testset, estset, value = NULL, ...) {

if (!is.null(value)) {
return(sum(abs(testset - value)))

}

sum(abs(testset - mean(estset)))
}
identical(crossvalidationCP(Y = Y, criterion = testCriterion, output = "detailed"),

crossvalidationCP(Y = Y, output = "detailed"))

PELT as a local estimator instead of least squares estimation
param must contain parameters that are acceptable for the given estimator
crossvalidationCP(Y = Y, estimator = pelt, output = "detailed",

param = list("SIC", "MBIC", 3 * log(length(Y))))

argument minseglen of pelt specified in ...
crossvalidationCP(Y = Y, estimator = pelt, output = "detailed",

param = list("SIC", "MBIC", 3 * log(length(Y))), minseglen = 60)

convertSingleParam Provides estimators that allows list of parameters

Description

Converts estimators allowing single parameters to estimators allowing a list of parameters. The
resulting function can be passed to the argument estimator in the cross-validation functions, see
See Also.

Usage

convertSingleParam(estimator)

Arguments

estimator the function to be converted, i.e. a function providing a local estimate. The
function must have the arguments Y, param and ..., where Y will be the ob-
servations, and param a single parameter of arbitrary type. Hence lists can
be used when multiple parameter of different types are needed. It has to return
either a vector with the estimated change-points or a list containing the named
entries cps and value. In this case cps has to be a numeric vector with the
estimated change-points as before and value has to be a list of length one entry
longer than cps giving the locally estimated values. An example is given below.

Value

a function that can be passed to the argument estimator in the cross-validation functions, see the
functions listed in See Also

COPPS 5

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

See Also

crossvalidationCP, VfoldCV, COPPS, CV1, CVmod

Examples

wrapper around pelt to demonstrate an estimator that allows a single parameter only
singleParamEstimator <- function(Y, param, minseglen = 1, ...) {

if (is.numeric(param)) {
ret <- changepoint::cpt.mean(data = Y, penalty = "Manual", pen.value = param, method = "PELT",

minseglen = minseglen)
} else {
ret <- changepoint::cpt.mean(data = Y, penalty = param, method = "PELT", minseglen = minseglen)
}

list(cps = ret@cpts[-length(ret@cpts)], value = as.list(ret@param.est$mean))
}
conversion to an estimator that is suitable for crossvalidationCP() etc.
estimatorMultiParam <- convertSingleParam(singleParamEstimator)
crossvalidationCP(rnorm(100), estimator = estimatorMultiParam, param = list("SIC", "MBIC"))

COPPS Cross-validation with Order-Preserved Sample-Splitting

Description

Tuning parameters are selected by a generalised COPPS procedure. All functions use Order-Preserved
Sample-Splitting, meaning that the folds will be the odd and even indexed observations. The three
functions differ in which cross-validation criterion they are using. COPPS is the original COPPS pro-
cedure Zou et al. (2020), i.e. uses quadratic error loss. CV1 and CVmod use absolute error loss and
the modified quadratic error loss, respectively.

Usage

COPPS(Y, param = 5L, estimator = leastSquares,
output = c("param", "fit", "detailed"), ...)

CV1(Y, param = 5L, estimator = leastSquares,
output = c("param", "fit", "detailed"), ...)

CVmod(Y, param = 5L, estimator = leastSquares,
output = c("param", "fit", "detailed"), ...)

6 COPPS

Arguments

Y the observations, can be any data type that supports the function length and
the operator [] and can be passed to estimator and the cross-validation
criterion, e.g. a numeric vector or a list. Support for matrices, i.e. for
multivariate data, is planned but not implemented so far

param a list giving the possible tuning parameters. Alternatively, a single integer
which will be interpreted as the maximal number of change-points and converted
to as.list(0:param)

estimator a function providing a local estimate. For pre-implemented estimators see esti-
mators. The function must have the arguments Y, param and ..., where Y will
be a subset of the observations, and param and ... will be the corresponding ar-
guments of the called function. Note that ... will be passed to estimator and
the cross-validation criterion. The return value must be either a list of
length length(param) with each entry containing the estimated change-point
locations for the given entry in param or a list containing the named entries cps
and value. In this case cps has to be a list of the estimated change-points as
before and value has to be a list of the locally estimated values for each entry in
param, i.e. each list entry has to be a list itself of length one entry longer than the
corresponding entry in cps. The function convertSingleParam offers the con-
version of an estimator allowing a single parameter into an estimator allowing
multiple parameters

output a string specifying the output, either "param", "fit" or "detailed". For details
what they mean see Value

... additional parameters that are passed to estimator and the cross-validation
criterion

Value

if output == "param", the selected tuning parameter, i.e. an entry from param. If output == "fit",
a list with the entries param, giving the selected tuning parameter, and fit. The named entry fit is
a list giving the returned fit obtained by applying estimator to the whole data Y with the selected
tuning parameter. The returned value is transformed to a list with an entry cps giving the estimated
change-points and, if provided by estimator, an entry value giving the estimated local values. If
output == "detailed", the same as for output == "fit", but additionally the entries CP, CVodd,
and CVeven giving the calculated cross-validation criteria for all parameter entries. CVodd and
CVeven are the criteria when the odd / even observations are in the test set, respectively. CP is the
sum of those two.

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

Zou, C., Wang, G., and Li, R. (2020) Consistent selection of the number of change-points via
sample-splitting. The Annals of Statistics, 48(1), 413–439.

See Also

estimators, criteria, convertSingleParam

criteria 7

Examples

call with default parameters:
2-folds cross-validation with ordereded folds, absolute error loss,
least squares estimation, and possible parameters being 0 to 5 change-points
CV1(Y = rnorm(100))
the same, but with modified error loss
CVmod(Y = rnorm(100))
the same, but with quadratic error loss, indentical to COPPS procedure
COPPS(Y = rnorm(100))

more interesting data and more detailed output
set.seed(1L)
Y <- c(rnorm(50), rnorm(50, 5), rnorm(50), rnorm(50, 5))
CV1(Y = Y, output = "detailed")
finds the correct change-points at 50, 100, 150
(plus the start and end points 0 and 200)

list of parameters, only allowing 1 or 2 change-points
CVmod(Y = Y, param = as.list(1:2))

COPPS potentially fails to provide a good selection when large changes occur at odd locations
Example 1 in (Pein and Shah, 2021), see Section 2.2 in this paper for more details
set.seed(1)
exampleY <- rnorm(102, c(rep(10, 46), rep(0, 5), rep(30, 51)))
misses one change-point
COPPS(Y = exampleY)

correct number of change-points when modified criterion (or absolute error loss) is used
CVmod(Y = exampleY)

PELT as a local estimator instead of least squares estimation
param must contain parameters that are acceptable for the given estimator
CV1(Y = Y, estimator = pelt, output = "detailed", param = list("SIC", "MBIC", 3 * log(length(Y))))

argument minseglen of pelt specified in ...
CVmod(Y = Y, estimator = pelt, output = "detailed", param = list("SIC", "MBIC", 3 * log(length(Y))),

minseglen = 30)

criteria Pre-implemented cross-validation criteria

Description

criterionL1loss, criterionMod and criterionL2loss compute the cross-validation criterion
with L1-loss, the modified criterion and the criterion with L2-loss for univariate data, see (15),
(16), and (6) in Pein and Shah (2021), respectively. If value is given (i.e. value =! NULL), then
value replaces the empirical means. All criteria can be passed to the argument criterion in the
cross-validation functions, see the functions listed in See Also.

8 criteria

Usage

criterionL1loss(testset, estset, value = NULL, ...)
criterionMod(testset, estset, value = NULL, ...)
criterionL2loss(testset, estset, value = NULL, ...)

Arguments

testset a numeric vector giving the observations in the test set / fold. For criterionMod,
if length(testset) == 1L, NaN will be returned, see Details

estset a numeric vector giving the observations in the estimation set

value a single numeric giving the local value on the segment or NULL. If NULL the value
will be mean(estset)

... unused

Details

criterionMod requires that the minimal segment length is at least 2. So far the only pre-implemented
estimators that allows for such an option are pelt and binseg, where one can specify minseglen
in

Value

a single numeric

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

See Also

crossvalidationCP, VfoldCV, COPPS, CV1, CVmod

Examples

all functions can be called directly, e.g.
Y <- rnorm(100)
criterionL1loss(testset = Y[seq(1, 100, 2)], estset = Y[seq(2, 100, 2)])

but their main purpose is to serve as the criterion in the cross-validation functions, e.g.
crossvalidationCP(rnorm(100), criterion = criterionL1loss)

crossvalidationCP 9

crossvalidationCP Cross-validation in change-point regression

Description

Generic function for cross-validation to select tuning parameters in change-point regression. It
selects among a list of parameters the one with the smallest cross-validation criterion for a given
method. The cross-validation criterion, the estimator, and the the folds can be specified by the user.

Usage

crossvalidationCP(Y, param = 5L, folds = 5L, estimator = leastSquares,
criterion = criterionL1loss,
output = c("param", "fit", "detailed"), ...)

Arguments

Y the observations, can be any data type that supports the function length and the
operator [] and can be passed to estimator and criterion, e.g. a numeric
vector or a list. Support for matrices, i.e. for multivariate data, is planned but
not implemented so far

param a list giving the possible tuning parameters. Alternatively, a single integer
which will be interpreted as the maximal number of change-points and converted
to as.list(0:param). All values have to be acceptable values for the specified
estimator

folds either a list, a single integer or the string "COPPS" specifying the folds. If a
list, each entry should be an integer vector with values between 1 and length(Y)
giving the indices of the observations in the fold. A single integer specifies the
number of folds and ordered folds are automatically created, i.e. fold i will be
seq(i, length(Y), folds). "COPPS" means that a generalised COPPS proce-
dure Zou et al. (2020) will be used, i.e. 2-fold cross-validation with Order-
Preserved Sample-Splitting, meaning that the folds will be the odd and even in-
dexed observations. Note that observations will be given in reverse order to the
cross-validation criterion when the odd-indexed observations are in the test set.
This allows criteria such as the modified criterion, where for the odd-indexed
the first and for the even-indexed the last observation is removed

estimator a function providing a local estimate. For pre-implemented estimators see esti-
mators. The function must have the arguments Y, param and ..., where Y will
be a subset of the observations, and param and ... will be the corresponding
arguments of the called function. Note that ... will be passed to estimator
and criterion. The return value must be either a list of length length(param)
with each entry containing the estimated change-point locations for the given
entry in param or a list containing the named entries cps and value. In this case
cps has to be a list of the estimated change-points as before and value has to be
a list of the locally estimated values for each entry in param, i.e. each list entry
has to be a list itself of length one entry longer than the corresponding entry in

10 crossvalidationCP

cps. The function convertSingleParam offers the conversion of an estimator
allowing a single parameter into an estimator allowing multiple parameters

criterion a function providing the cross-validation criterion. For pre-implemented crite-
ria see criteria. The function must have the arguments testset, estset and
value. testset and estset are the observations of one segment that are in
the test and estimation set, respectively. value is the local parameter on the
segment if provided by estimator, otherwise NULL. Additionally, ... is pos-
sible and potentially necessary to absorb arguments, since the argument ...
of crossvalidationCP will be passed to estimator and criterion. It must
return a single numeric. All return values will be summed accordingly and
which.min will be called on the vector to determine the parameter with the
smallest criterion, hence some NaN values etc. are allowed

output a string specifying the output, either "param", "fit" or "detailed". For details
what they mean see Value

... additional parameters that are passed to estimator and criterion

Value

if output == "param", the selected tuning parameter, i.e. an entry from param. If output == "fit",
a list with the entries param, giving the selected tuning parameter, and fit. The named entry fit is
a list giving the returned fit obtained by applying estimator to the whole data Y with the selected
tuning parameter. The retured value is transformed to a list with an entry cps giving the estimated
change-points and, if provided by estimator, an entry value giving the estimated local values. If
output == "detailed", the same as for output == "fit", but additionally an entry CP giving all
calculated cross-validation criteria. Those values are summed over all folds

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

Zou, C., Wang, G., and Li, R. (2020) Consistent selection of the number of change-points via
sample-splitting. The Annals of Statistics, 48(1), 413–439.

See Also

estimators, criteria, convertSingleParam, VfoldCV, COPPS, CV1, CVmod

Examples

call with default parameters:
5-fold cross-validation with absolute error loss, least squares estimation,
and possible parameters being 0 to 5 change-points
a simpler access to it is offered by VfoldCV()
crossvalidationCP(Y = rnorm(100))

more interesting data and more detailed output
set.seed(1L)
Y <- c(rnorm(50), rnorm(50, 5), rnorm(50), rnorm(50, 5))
crossvalidationCP(Y = Y, output = "detailed")

crossvalidationCP 11

finds the correct change-points at 50, 100, 150
(plus the start and end points 0 and 200)

list of parameters, only allowing 1 or 2 change-points
crossvalidationCP(Y = Y, param = as.list(1:2))

reducing the number of folds to 3
ret <- crossvalidationCP(Y = Y, folds = 3L, output = "detailed")
the same but with explicitly specified folds
identical(crossvalidationCP(Y = Y, folds = list(seq(1, 200, 3), seq(2, 200, 3), seq(3, 200, 3)),

output = "detailed"), ret)

2-fold cross-validation with Order-Preserved Sample-Splitting
ret <- crossvalidationCP(Y = Y, folds = "COPPS", output = "detailed")

a simpler access to it is offered by CV1()
identical(CV1(Y = Y, output = "detailed"), ret)

different criterion: quadratic error loss
ret <- crossvalidationCP(Y = Y, folds = "COPPS", output = "detailed", criterion = criterionL2loss)

same as COPPS procedure; as offered by COPPS()
identical(COPPS(Y = Y, output = "detailed"), ret)

COPPS potentially fails to provide a good selection when large changes occur at odd locations
Example 1 in (Pein and Shah, 2021), see Section 2.2 in this paper for more details
set.seed(1)
exampleY <- rnorm(102, c(rep(10, 46), rep(0, 5), rep(30, 51)))
misses one change-point
crossvalidationCP(Y = exampleY, folds = "COPPS", criterion = criterionL2loss)

correct number of change-points when modified criterion (or absolute error loss) is used
(ret <- crossvalidationCP(Y = exampleY, folds = "COPPS", criterion = criterionMod))

a simpler access to it is offered by CVmod()
identical(CVmod(Y = exampleY), ret)

manually given criterion; identical to criterionL1loss()
testCriterion <- function(testset, estset, value = NULL, ...) {

if (!is.null(value)) {
return(sum(abs(testset - value)))

}

sum(abs(testset - mean(estset)))
}
identical(crossvalidationCP(Y = Y, criterion = testCriterion, output = "detailed"),

crossvalidationCP(Y = Y, output = "detailed"))

PELT as a local estimator instead of least squares estimation
param must contain parameters that are acceptable for the given estimator
crossvalidationCP(Y = Y, estimator = pelt, output = "detailed",

param = list("SIC", "MBIC", 3 * log(length(Y))))

12 estimators

argument minseglen of pelt specified in ...
crossvalidationCP(Y = Y, estimator = pelt, output = "detailed",

param = list("SIC", "MBIC", 3 * log(length(Y))), minseglen = 60)

estimators Pre-implemented estimators

Description

Pre-implemented change-point estimators that can be passed to the argument estimator in the
cross-validation functions, see the functions listed in See Also.

Usage

leastSquares(Y, param, ...)
pelt(Y, param, ...)
binseg(Y, param, ...)
wbs(Y, param, ...)

Arguments

Y a numeric vector giving the observations

param a list giving the possible tuning parameters. See Details to see which tuning
parameters are allowed for which function

... additional arguments, see Details to see which arguments are allowed for which
function

Details

leastSquares implements least squares estimation by using the segment neighbourhoods algo-
rithm with functional pruning from Rigaill (20015), see also Auger and Lawrence (1989) for the
original segment neighbourhoods algorithm. It calls Fpsn. Each list entry in param has to be a
single integer giving the number of change-points.

optimalPartitioning is outdated. It will give the same results as leastSquares, but is slower. It
is part of the package for backwards compatibility only.

pelt implements PELT (Killick et al., 2012), i.e. penalised maximum likelihood estimation com-
puted by a pruned dynamic program. For each list entry in param it calls cpt.mean with method =
"PELT" and penalty = param[[i]] or when param[[i]] is a numeric with penalty = "Manual"
and pen.value = param[[i]]. Hence, each entry in param must be a single numeric or an argu-
ment that can be passed to penalty. Additionally minseglen can be specified in ..., by default
minseglen = 1.

binseg implements binary segmentation (Vostrikova, 1981). The call is the same as for pelt, but
with method = "BinSeg". Additionally, the maximal number of change-points Q can be specified
in ..., by default Q = 5. Alternatively, each list entry of param can be a list itself containing the
named entries penalty and Q. Note that this estimator differs from binary segmentation in Zou et al.
(2020), it requires a penalty instead of a given number of change-points. Warnings that Q is chosen

estimators 13

too small are suppressed when Q is given in param, but not when it is a global parameter specified
in ... or Q = 5 by default.

wbs implements wild binary segmentation (Fryzlewicz, 2014). It calls changepoints with th.const
= param, hence param has to be a list of positive scalars. Additionally, ... will be passed.

Value

For leastSquares and wbs a list of length length(param) with each entry containing the estimated
change-point locations for the given entry in param. For the other functions a list containing the
named entries cps and value, with cps a list of the estimated change-points as before and value a
list of the locally estimated values for each entry in param, i.e. each list entry is a list itself of length
one entry longer than the corresponding entry in cps.

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

Rigaill, G. (2015) A pruned dynamic programming algorithm to recover the best segmentations
with 1 to Kmax change-points. Journal de la Societe Francaise de Statistique 156(4), 180–205.

Auger, I. E., Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neigh-
borhoods. Bulletin of Mathematical Biology, 51(1), 39–54.

Killick, R., Fearnhead, P., Eckley, I. A. (2012) Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500), 1590–1598.

Vostrikova, L. Y. (1981). Detecting ’disorder’ in multidimensional random processes. Soviet Math-
ematics Doklady, 24, 55–59.

Fryzlewicz, P. (2014) Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243–2281.

Zou, C., Wang, G., and Li, R. (2020). Consistent selection of the number of change-points via
sample-splitting. The Annals of Statistics, 48(1), 413–439.

See Also

crossvalidationCP, VfoldCV, COPPS, CV1, CVmod

Examples

all functions can be called directly, e.g.
leastSquares(Y = rnorm(100), param = 2)

but their main purpose is to serve as a local estimator in the cross-validation functions, e.g.
crossvalidationCP(rnorm(100), estimator = leastSquares)

param must contain values that are suitable for the given estimator
crossvalidationCP(rnorm(100), estimator = pelt, param = list("SIC", "MBIC"))

14 VfoldCV

VfoldCV V-fold cross-validation

Description

Selects the number of change-points by minimizing a V-fold cross-validation criterion. The crite-
rion, the estimator, and the number of folds can be specified by the user.

Usage

VfoldCV(Y, V = 5L, Kmax = 8L, adaptiveKmax = TRUE, tolKmax = 3L, estimator = leastSquares,
criterion = criterionL1loss, output = c("param", "fit", "detailed"), ...)

Arguments

Y the observations, can be any data type that supports the function length and the
operator [] and can be passed to estimator and criterion, e.g. a numeric
vector or a list. Support for matrices, i.e. for multivariate data, is planned but
not implemented so far

V a single integer giving the number of folds. Ordered folds will automatically be
created, i.e. fold i will be seq(i, length(Y), folds)

Kmax a single integer giving maximal number of change-points

adaptiveKmax a single logical indicating whether Kmax should be chosen adaptively. If true
Kmax will be double if the estimated number of change-points is not at least
Kmax - tolKmax

tolKmax a single integer specifiying how much the estimated number of change-points
have to be smaller than Kmax

estimator a function providing a local estimate. For pre-implemented estimators see esti-
mators. The function must have the arguments Y, param and ..., where Y will
be a subset of the observations, param will be list(0:Kmax), and ... will be
the argument ... of VfoldCV. Note that ... will be passed to estimator and
criterion. The return value must be either a list of length length(param) with
each entry containing the estimated change-point locations for the given entry in
param or a list containing the named entries cps and value. In this case cps has
to be a list of the estimated change-points as before and value has to be a list
of the locally estimated values for each entry in param, i.e. each list entry has
to be a list itself of length one entry longer than the corresponding entry in cps.
The function convertSingleParam offers the conversion of an estimator allow-
ing a single parameter into an estimator allowing multiple parameters. From
the currently pre-implemented estimators only leastSquares accepts param ==
list(0:Kmax). Estimators that allow param to differ from list(0:Kmax) can
be used in crossvalidationCP

criterion a function providing the cross-validation criterion. For pre-implemented criteria
see criteria. The function must have the arguments testset, estset and value.
testset and estset are the observations of one segment that are in the test

VfoldCV 15

and estimation set, respectively. value is the local parameter on the segment
if provided by estimator, otherwise NULL. Additionally, ... is possible and
potentially necessary to absorb arguments, since the argument ... of VfoldCV
will be passed to estimator and criterion. It must return a single numeric.
All return values will be summed accordingly and which.min will be called on
the vector to determine the parameter with the smallest criterion. Hence some
NaN values etc. are allowed

output a string specifying the output, either "param", "fit" or "detailed". For details
what they mean see Value

... additional parameters that are passed to estimator and criterion

Value

if output == "param", the selected number of change-points, i.e. an integer between 0 and Kmax.
If output == "fit", a list with the entries param, giving the selected number of change-points, and
fit. The named entry fit is a list giving the returned fit obtained by applying estimator to the
whole data Y with the selected tuning parameter. The returned value is transformed to a list with
an entry cps giving the estimated change-points and, if provided by estimator, an entry value
giving the estimated local values. If output == "detailed", the same as for output == "fit", but
additionally an entry CP giving all calculated cross-validation criteria. Those values are summed
over all folds

References

Pein, F., and Shah, R. D. (2021) Cross-validation for change-point regression: pitfalls and solutions.
arXiv:2112.03220.

See Also

estimators, criteria, convertSingleParam

Examples

call with default parameters:
5-fold cross-validation with absolute error loss, least squares estimation,
and 0 to 5 change-points
VfoldCV(Y = rnorm(100))

more interesting data and more detailed output
set.seed(1L)
Y <- c(rnorm(50), rnorm(50, 5), rnorm(50), rnorm(50, 5))
VfoldCV(Y = Y, output = "detailed")
finds the correct change-points at 50, 100, 150
(plus the start and end points 0 and 200)

reducing the number of folds to 3
VfoldCV(Y = Y, V = 3L, output = "detailed")

reducing the maximal number of change-points to 2
VfoldCV(Y = Y, Kmax = 2)

16 VfoldCV

different criterion: modified error loss
VfoldCV(Y = Y, output = "detailed", criterion = criterionMod)

manually given criterion; identical to criterionL1loss()
testCriterion <- function(testset, estset, value = NULL, ...) {

if (!is.null(value)) {
return(sum(abs(testset - value)))

}

sum(abs(testset - mean(estset)))
}
identical(VfoldCV(Y = Y, criterion = testCriterion, output = "detailed"),

VfoldCV(Y = Y, output = "detailed"))

Index

∗ nonparametric
convertSingleParam, 4
COPPS, 5
criteria, 7
crossvalidationCP, 9
crossvalidationCP-package, 2
estimators, 12
VfoldCV, 14

∗ package
crossvalidationCP-package, 2

[], 6, 9, 14

absolute error loss, 2, 5

binseg, 8
binseg (estimators), 12

changepoints, 13
convertSingleParam, 2, 4, 6, 10, 14, 15
COPPS, 2, 5, 5, 8, 10, 13
cpt.mean, 12
criteria, 2, 6, 7, 10, 14, 15
criterion (criteria), 7
criterionL1loss (criteria), 7
criterionL2loss (criteria), 7
criterionMod (criteria), 7
crossvalidationCP, 2, 5, 8, 9, 13, 14
crossvalidationCP-package, 2
CV1, 2, 5, 8, 10, 13
CV1 (COPPS), 5
CVmod, 2, 5, 8, 10, 13
CVmod (COPPS), 5

estimators, 2, 6, 9, 10, 12, 14, 15

Fpsn, 12

leastSquares, 14
leastSquares (estimators), 12
length, 6, 9, 14
list, 6, 9, 12

lists, 4

matrices, 6, 9, 14
modified criterion, 9
modified quadratic error loss, 2, 5

optimalPartitioning (estimators), 12

pelt, 8
pelt (estimators), 12

quadratic error loss, 2, 5

VfoldCV, 2, 5, 8, 10, 13, 14

wbs (estimators), 12
which.min, 10, 15

17

	crossvalidationCP-package
	convertSingleParam
	COPPS
	criteria
	crossvalidationCP
	estimators
	VfoldCV
	Index

