Title: | Change-Point Detection by Sample-Splitting Methods |
Version: | 0.0.3 |
Description: | Implements multiple change searching algorithms for a variety of frequently considered parametric change-point models. In particular, it integrates a criterion proposed by Zou, Wang and Li (2020) <doi:10.1214/19-AOS1814> to select the number of change-points in a data-driven fashion. Moreover, it also provides interfaces for user-customized change-point models with one's own cost function and parameter estimation routine. It is easy to get started with the cpss.* set of functions by accessing their documentation pages (e.g., ?cpss). |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.2.0 |
LinkingTo: | Rcpp, RcppArmadillo |
Imports: | Rcpp, magrittr, methods, stats, mvtnorm, Rfast, tibble, dplyr, tidyr, rlang, ggplot2, gridExtra |
Suggests: | MASS |
URL: | https://github.com/ghwang-nk/cpss |
BugReports: | https://github.com/ghwang-nk/cpss/issues |
Depends: | R (≥ 2.10) |
Maintainer: | Guanghui Wang <ghwang.nk@gmail.com> |
NeedsCompilation: | yes |
Packaged: | 2022-08-21 13:48:17 UTC; work |
Author: | Guanghui Wang [aut, cre], Changliang Zou [aut] |
Repository: | CRAN |
Date/Publication: | 2022-08-22 09:00:16 UTC |
Pipe operator
Description
See magrittr::%>%
for details.
Usage
lhs %>% rhs
Generic functions and methods: SC
Description
Generic functions and methods: SC
Usage
SC(x)
SC(x) <- value
## S4 method for signature 'cpss'
SC(x)
## S4 replacement method for signature 'cpss'
SC(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: SC_vals
Description
Generic functions and methods: SC_vals
Usage
SC_vals(x)
SC_vals(x) <- value
## S4 method for signature 'cpss'
SC_vals(x)
## S4 replacement method for signature 'cpss'
SC_vals(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: S_vals
Description
Generic functions and methods: S_vals
Usage
S_vals(x)
S_vals(x) <- value
## S4 method for signature 'cpss'
S_vals(x)
## S4 replacement method for signature 'cpss'
S_vals(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: algo
Description
Generic functions and methods: algo
Usage
algo(x)
algo(x) <- value
## S4 method for signature 'cpss'
algo(x)
## S4 replacement method for signature 'cpss'
algo(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: algo_param_dim
Description
Generic functions and methods: algo_param_dim
Usage
algo_param_dim(x)
algo_param_dim(x) <- value
## S4 method for signature 'cpss'
algo_param_dim(x)
## S4 replacement method for signature 'cpss'
algo_param_dim(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
coef method
Description
coef method
Usage
## S4 method for signature 'cpss'
coef(object)
Arguments
object |
object from cpss |
cpss |
cpss class |
Generic functions and methods: cps
Description
Generic functions and methods: cps
Usage
cps(x)
cps(x) <- value
## S4 method for signature 'cpss'
cps(x)
## S4 replacement method for signature 'cpss'
cps(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
cpss: Change-Point Detection by Sample-Splitting Methods
Description
Implements multiple change searching algorithms for a variety of frequently considered parametric change-point models. In particular, it integrates a criterion proposed by Zou, Wang and Li (2020) doi:10.1214/19-AOS1814 to select the number of change-points in a data-driven fashion. Moreover, it also provides interfaces for user-customized change-point models with one's own cost function and parameter estimation routine.
Getting started
Easy to get started with the cpss.* set of functions by accessing their documentation pages
library(cpss)
?cpss.mean
?cpss.var
?cpss.meanvar
?cpss.glm
?cpss.lm
?cpss.em
?cpss.custom
cpss: an S4 class which collects data and information required for further change-point analyses and summaries
Description
cpss: an S4 class which collects data and information required for further change-point analyses and summaries
Slots
dat
ANY.
mdl
character.
algo
character.
algo_param_dim
numeric.
SC
character.
ncps
integer.
pelt_pen
numeric.
cps
numeric.
params
list.
S_vals
numeric.
SC_vals
matrix.
call
list.
update_inputs
list.
Detecting changes in uers-customized models
Description
Detecting changes in uers-customized models
Usage
cpss.custom(
dataset,
n,
g_subdat,
g_param,
g_cost,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2,
model = NULL,
g_smry = NULL,
easy_cost = NULL,
param.opt = NULL
)
Arguments
dataset |
an |
n |
an integer indicating the sample size of the data |
g_subdat |
a customized R function of two arguments |
g_param |
a customized R function of two arguments |
g_cost |
a customized R function of two arguments |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
model |
a character string indicating the considered change model. |
g_smry |
a customized R function of two arguments |
easy_cost |
a customized R function of three arguments |
param.opt |
an |
Value
cpss.custom
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries.
dat
data set
mdl
considered change-point model
algo
change-point searching algorithm
algo_param_dim
user-specified upper bound of the number of true change-points if
algorithm = "SN"/"BS"/"WBS"
, or user-specified candidate values of the penalty only ifalgorithm = "PELT"
SC
model selection criterion
ncps
estimated number of change-points
pelt_pen
selected value of the penalty only if
algorithm = "PELT"
cps
a vector of estimated locations of change-points
params
a list object, each member is a list containing estimated parameters in the associated data segment
S_vals
a numeric vector of candidate model dimensions in terms of a sequence of numbers of change-points or values of the penalty
SC_vals
a numeric matrix, each column records the values of the criterion based on the validation data split under the corresponding model dimension (
S_vals
), and each row represents a splitting at each time
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500): 1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
Examples
library("cpss")
g_subdat_l1 <- function(dat, indices) {
dat[indices]
}
g_param_l1 <- function(dat, param.opt = NULL) {
return(median(dat))
}
g_cost_l1 <- function(dat, param) {
return(sum(abs(dat - param)))
}
res <- cpss.custom(
dataset = well, n = length(well),
g_subdat = g_subdat_l1, g_param = g_param_l1, g_cost = g_cost_l1,
ncps_max = 11
)
summary(res)
plot(well)
abline(v = res@cps, col = "red")
Detecting changes in exponential family
Description
Detecting changes in exponential family
Usage
cpss.em(
dataset,
family,
size = NULL,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
dataset |
a numeric matrix of dimension |
family |
a character string specifying the underlying distribution. In the current version, detecting changes in binomial (" |
size |
an integer indicating the number of trials only if |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.em
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
cpss.meanvar
cpss.mean
cpss.var
Examples
library("cpss")
set.seed(666)
n <- 1000
tau <- c(100, 300, 700, 900)
tau_ext <- c(0, tau, n)
theta <- c(1, 0.2, 1, 0.2, 1)
seg_len <- diff(c(0, tau, n))
y <- unlist(lapply(seq(1, length(tau) + 1), function(k) {
rexp(seg_len[k], theta[k])
}))
res <- cpss.em(
y, family = "exp", algorithm = "WBS", ncps_max = 10,
criterion = "MS", times = 10
)
cps(res)
# [1] 100 299 705 901
Detecting changes in GLMs
Description
Detecting changes in GLMs
Usage
cpss.glm(
formula,
family,
data = NULL,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
formula |
a |
family |
a description of the error distribution and link function to be used in the model, which can be a character string naming a family function or a family function. |
data |
an optional data frame containing the variables in the model. |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.glm
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
set.seed(666)
n <- 200
size <- rpois(n, 20 - 1) + 1
tau <- c(75, 100, 175)
tau_ext <- c(0, tau, n)
be <- list(c(0, 0.5), c(0, -0.5), c(0.5, -0.5), c(-0.5, -0.5))
seg_len <- diff(c(0, tau, n))
x <- rnorm(n)
eta <- lapply(seq(1, length(tau) + 1), function(k) {
be[[k]][1] + be[[k]][2] * x[(tau_ext[k] + 1):tau_ext[k + 1]]
})
eta <- do.call(c, eta)
p <- 1 / (1 + exp(-eta))
y <- rbinom(n, size = size, prob = p)
pelt_pen_val <- (log(n))^seq(0.5, 2, by = 0.1)
res <- cpss.glm(
formula = cbind(y, size - y) ~ x, family = binomial(),
algorithm = "PELT", pelt_pen_val = pelt_pen_val, ncps_max = 10
)
summary(res)
# 75 105 175
coef(res)
# [1,] 0.02540872 0.08389551 0.5284425 -0.4980768
# [2,] 0.57222684 -0.45430385 -0.5203319 -0.4581678
Detecting changes in linear models
Description
Detecting changes in linear models
Usage
cpss.lm(
formula,
data = NULL,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
formula |
a |
data |
an optional data frame containing the variables in the model. |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.lm
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
set.seed(666)
n <- 400
tau <- c(80, 200, 300)
tau_ext <- c(0, tau, n)
be <- list(c(0, 1), c(1, 0.5), c(0, 1), c(-1, 0.5))
seg_len <- diff(c(0, tau, n))
x <- rnorm(n)
mu <- lapply(seq(1, length(tau) + 1), function(k) {
be[[k]][1] + be[[k]][2] * x[(tau_ext[k] + 1):tau_ext[k + 1]]
})
mu <- do.call(c, mu)
sig <- unlist(lapply(seq(1, length(tau) + 1), function(k) {
rep(be[[k]][2], seg_len[k])
}))
y <- rnorm(n, mu, sig)
res <- cpss.lm(
formula = y ~ x,
algorithm = "BS", ncps_max = 10
)
summary(res)
# 80 202 291
coef(res)
# $coef
# [,1] [,2] [,3] [,4]
# [1,] -0.00188792 1.0457718 -0.03963209 -0.9444813
# [2,] 0.91061557 0.6291965 1.20694409 0.4410036
#
# $sigma
# [1] 0.8732233 0.4753216 0.9566516 0.4782329
Detecting changes in mean
Description
Detecting changes in mean
Usage
cpss.mean(
dataset,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2,
Sigma = NULL
)
Arguments
dataset |
a numeric matrix of dimension |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Sigma |
if a numeric matrix (or constant) is supplied, it will be taken as the value of the common covariance (or variance). By default it is
|
Value
cpss.mean
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500): 1590–1598. Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
set.seed(666)
n <- 2048
tau <- c(205, 267, 308, 472, 512, 820, 902, 1332, 1557, 1598, 1659)
seg_len <- diff(c(0, tau, n))
mu <- rep(c(0, 14.64, -3.66, 7.32, -7.32, 10.98, -4.39, 3.29, 19.03, 7.68, 15.37, 0), seg_len)
ep <- 7 * rnorm(n)
y <- mu + ep
res <- cpss.mean(y, algorithm = "SN", ncps_max = 20)
summary(res)
# 205 267 307 471 512 820 897 1332 1557 1601 1659
plot(res, type = "scatter")
plot(res, type = "path")
out <- update(res, dim_update = 12)
out@cps
# 205 267 307 471 512 820 897 1332 1557 1601 1659 1769
# coef(out)
Detecting changes in mean and (co)variance
Description
Detecting changes in mean and (co)variance
Usage
cpss.meanvar(
dataset,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2
)
Arguments
dataset |
a numeric matrix of dimension |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
Value
cpss.meanvar
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598. Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
if (!requireNamespace("MASS", quietly = TRUE)) {
stop("Please install the package \"MASS\".")
}
set.seed(666)
n <- 1000
tau <- c(200, 400, 600, 800)
mu <- list(rep(0, 2), rep(1, 2), rep(1, 2), rep(0, 2), rep(0, 2))
Sigma <- list(diag(2), diag(2), matrix(c(1,-1,-1, 4), 2), matrix(c(1, 0.5, 0.5, 1), 2), diag(2))
seg_len <- diff(c(0, tau, n))
y <- lapply(seq(1, length(tau) + 1), function(k) {
MASS::mvrnorm(n = seg_len[k], mu = mu[[k]], Sigma = Sigma[[k]])
})
y <- do.call(rbind, y)
res <- cpss.meanvar(y, algorithm = "BS", dist_min = 20)
cps(res)
# [1] 211 402 598 804
plot(res, type = "coef")
Detecting changes in (co)variance
Description
Detecting changes in (co)variance
Usage
cpss.var(
dataset,
algorithm = "BS",
dist_min = floor(log(n)),
ncps_max = ceiling(n^0.4),
pelt_pen_val = NULL,
pelt_K = 0,
wbs_nintervals = 500,
criterion = "CV",
times = 2,
mu = NULL
)
Arguments
dataset |
a numeric matrix of dimension |
algorithm |
a character string specifying the change-point searching algorithm, one of the following choices: "SN" (segment neighborhood), "BS" (binary segmentation), "WBS" (wild binary segmentation) and "PELT" (pruned exact linear time) algorithms. |
dist_min |
an integer specifying minimum searching distance (length of feasible segments). |
ncps_max |
an integer specifying an upper bound of the number of true change-points. |
pelt_pen_val |
a numeric vector specifying candidate values of the penalty only if |
pelt_K |
a numeric value for pruning adjustment only if |
wbs_nintervals |
an integer specifying the number of random intervals drawn only if |
criterion |
a character string specifying the model selection criterion, "CV" ("cross-validation") or "MS" ("multiple-splitting"). |
times |
an integer specifying how many times of sample-splitting should be performed; It should be 2 if |
mu |
If a numeric vector or constant is supplied, it will be taken as the value of the common mean. By default it is |
Value
cpss.var
returns an object of an S4 class, called "cpss
", which collects data and information required for further change-point analyses and summaries. See cpss.custom
.
References
Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500): 1590–1598. Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6): 2243–2281.
See Also
Examples
library("cpss")
if (!requireNamespace("MASS", quietly = TRUE)) {
stop("Please install the package \"MASS\".")
}
set.seed(666)
n <- 1000
tau <- c(200, 500, 750)
mu <- list(rep(0, 2), rep(0, 2), rep(0, 2), rep(0, 2))
Sigma <- list(diag(2), matrix(c(1, 0, 0, 4), 2), matrix(c(1, -0.5, -0.5, 4), 2), diag(2))
seg_len <- diff(c(0, tau, n))
y <- lapply(seq(1, length(tau) + 1), function(k) {
MASS::mvrnorm(n = seg_len[k], mu = mu[[k]], Sigma = Sigma[[k]])
})
y <- do.call(rbind, y)
res <- cpss.var(y, algorithm = "BS", dist_min = 20)
cps(res)
# [1] 215 515 751
Generic functions and methods: dat
Description
Generic functions and methods: dat
Usage
dat(x)
dat(x) <- value
## S4 method for signature 'cpss'
dat(x)
## S4 replacement method for signature 'cpss'
dat(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
cpss |
cpss class |
Generic functions and methods: mdl
Description
Generic functions and methods: mdl
Usage
mdl(x)
mdl(x) <- value
## S4 method for signature 'cpss'
mdl(x)
## S4 replacement method for signature 'cpss'
mdl(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: ncps
Description
Generic functions and methods: ncps
Usage
ncps(x)
ncps(x) <- value
## S4 method for signature 'cpss'
ncps(x)
## S4 replacement method for signature 'cpss'
ncps(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: params
Description
Generic functions and methods: params
Usage
params(x)
params(x) <- value
## S4 method for signature 'cpss'
params(x)
## S4 replacement method for signature 'cpss'
params(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Generic functions and methods: pelt_pen
Description
Generic functions and methods: pelt_pen
Usage
pelt_pen(x)
pelt_pen(x) <- value
## S4 method for signature 'cpss'
pelt_pen(x)
## S4 replacement method for signature 'cpss'
pelt_pen(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
plot method
Description
plot method
Usage
## S4 method for signature 'cpss'
plot(obj, type, x = c(), y = c(), ...)
Arguments
obj |
object from cpss |
type |
type of visualization |
x |
x |
y |
y |
... |
... |
cpss |
cpss class |
summary method
Description
summary method
Usage
## S4 method for signature 'cpss'
summary(object)
Arguments
object |
object from cpss |
cpss |
cpss class |
update method
Description
update method
Usage
## S4 method for signature 'cpss'
update(object, dim_update)
Arguments
object |
object from cpss |
dim_update |
model dimension to update |
cpss |
cpss class |
Generic functions and methods: update_inputs
Description
Generic functions and methods: update_inputs
Usage
update_inputs(x)
update_inputs(x) <- value
## S4 method for signature 'cpss'
update_inputs(x)
## S4 replacement method for signature 'cpss'
update_inputs(x) <- value
Arguments
x |
object from cpss |
value |
value assigned to x |
Well-log data
Description
Measurements of the nuclear magnetic response of underground rocks.
Usage
well
Format
A vector of 4,050 measurements:
- well
Measurements.