Package 'cotram'

July 22, 2025

Title Count Transformation Models

```
Version 0.5-2
Date 2024-09-18
Description Count transformation models featuring
      parameters interpretable as discrete hazard ratios, odds ratios,
      reverse-time discrete hazard ratios, or transformed expectations.
      An appropriate data transformation for a count outcome and
      regression coefficients are simultaneously estimated by maximising
      the exact discrete log-likelihood using the computational framework
      provided in package 'mlt', technical details are given in
      Siegfried & Hothorn (2020) < DOI:10.1111/2041-210X.13383 >.
      The package also contains an experimental implementation of
      multivariate count transformation models with an application
      to multi-species distribution models <DOI:10.48550/arXiv.2201.13095>.
Depends R (>= 3.5.0), tram (>= 1.0-0), mlt (>= 1.4-7)
Imports variables (>= 1.0-2), basefun (>= 1.0-5), alabama, Matrix,
      methods, survival, utils, qrng
Suggests TH.data, knitr, lattice, colorspace, multcomp, mvtnorm,
      numDeriv
VignetteBuilder knitr
URL http://ctm.R-forge.R-project.org
Encoding UTF-8
License GPL-2
NeedsCompilation no
Author Sandra Siegfried [aut, cre] (ORCID:
       <https://orcid.org/0000-0002-7312-1001>),
      Luisa Barbanti [aut] (ORCID: <a href="https://orcid.org/0000-0001-5352-5802">https://orcid.org/0000-0001-5352-5802</a>),
      Torsten Hothorn [aut] (ORCID: <a href="https://orcid.org/0000-0001-8301-0471">https://orcid.org/0000-0001-8301-0471</a>)
Maintainer Sandra Siegfried < sandra.siegfried@alumni.uzh.ch>
Repository CRAN
Date/Publication 2024-09-18 09:40:02 UTC
```

2 confband

Contents

Index																					8
	spiders	 •		 •	•	 •	•	•		 •	•	•	•	 •	•		•	•	•	 •	7
	cotram-methods																				
	cotram																				
	confband																				2

confband

Confidence Bands

Description

Confidence bands for transformation, distribution, survivor or cumulative hazard functions

Usage

Arguments

object	an object of class cotram.
newdata	a data frame of observations.
level	the confidence level.
type	the function to compute the confidence band for.
smooth	logical; if TRUE a smoothed function of type is returned.
q	quantiles at which to evaluate the model.
	number of grid points the function is evaluated at (in the absence of ${\sf q}$ and smooth = TRUE).
	number of grid points the function is evaluated at when using the quantile obtained for K grid points (in the absence of q and $smooth = TRUE$).
	additional arguments to confint.glht.

Details

The function is evaluated at the count response or at K grid points and simultaneous confidence intervals are then interpolated in order to construct the band.

Value

For each row in newdata the function and corresponding confidence band evaluated at the count response (or K or cheat grid points) is returned.

cotram 3

Examples

cotram

Count Transformation Models

Description

Likelihood-based count transformation models for fully parameterised discrete conditional distribution functions. The link function governing the interpretation of the predictor can be chosen and results in discrete hazard ratios, odds ratios, reverse time hazard ratios or conditional expectation of transformed counts.

Usage

Arguments

formula an object of class "formula": a symbolic description of the model structure to

be fitted. The details of model specification are given under $\ensuremath{\text{tram}}$ and in the

package vignette.

data an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the

variables are taken from environment(formula).

method character specifying the choice of the link function, mapping the transformation

function into probabilities. Available choices include the logit, complementary log-log, log-log or probit link. The different link functions govern the interpretation of the linear predictor. Details of the interpretation can be found in the

package vignette.

4 cotram

prob	probability giving the quantile of the response defining the upper limit of the support of a smooth Bernstein polynomial (with the lower limit being set to 0). If a vector of two probabilities is specified, the corresponding quantiles of the response define the lower and upper limit of the support, respectively. Note, that the support is rounded to integer values.
log_first	logical; if TRUE, a Bernstein polynomial is defined on the log-scale for $(y+1)$.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
weights	an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. If present, the weighted log-likelihood is maximised.
offset	this can be used to specify an _a priori_ known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases.
cluster	optional factor with a cluster ID employed for computing clustered covariances.
na.action	a function which indicates what should happen when the data contain NAs. The default is set to ${\tt na.omit.}$
	additional arguments to tram.

Details

Likelihood-based estimation of a fully parameterised conditional discrete distribution function for count data, while ensuring interpretability of the linear predictors. The models are defined with a negative shift term relating positive predictors to larger values of the conditional mean. For the model with logistic or cloglog link exp(-coef()) is the multiplicative change of discrete oddsratios or hazard ratios. For the model with loglog link exp(coef()) is the multiplicative change of the reverse time hazard ratios. Applying a transformation model with probit link coef() gives the conditional expectation of the transformed counts, with transformation function estimated from data.

Value

An object of class cotram and tram, with corresponding coef, vcov, logLik, summary, print, plot and predict methods.

References

Sandra Siegfried, Torsten Hothorn (2020), Count Transformation Models, *Methods in Ecology and Evolution*, **11**(7), 818–827, doi:10.1111/2041210X.13383.

Torsten Hothorn, Lisa Möst, Peter Bühlmann (2018), Most Likely Transformations, *Scandinavian Journal of Statistics*, **45**(1), 110–134, doi:10.1111/sjos.12291.

Torsten Hothorn (2020), Most Likely Transformations: The mlt Package, *Journal of Statistical Software*, **92**(1), 1–68, doi:10.18637/jss.v092.i01.

cotram-methods 5

Examples

```
op <- options(digits = 2)
data("birds", package = "TH.data")
cotram(SG5 ~ AOT + AFS + GST + DBH + DWC + LOG, data = birds)
options(op)</pre>
```

cotram-methods

Methods for Count Transformation Models

Description

Methods for objects inheriting from class cotram

Usage

```
## S3 method for class 'cotram'
predict(object, newdata = model.frame(object),
        type = c("lp", "trafo", "distribution", "survivor", "density",
                 "logdensity", "hazard", "loghazard", "cumhazard",
                 "logcumhazard", "odds", "logodds", "quantile"),
        smooth = FALSE, q = NULL, K = 20, prob = 1:(10-1)/10, ...)
## S3 method for class 'cotram'
plot(x, newdata, type = c("distribution", "survivor", "density",
                          "logdensity", "cumhazard", "quantile", "trafo"),
        confidence = c("none", "band"), level = 0.95,
        smooth = FALSE, q = NULL, K = 20, cheat = K, prob = 1:(10-1)/10,
        col = "black", fill = "lightgrey",
       lty = 1, lwd = 1, add = FALSE, ...)
## S3 method for class 'cotram'
as.mlt(object)
## S3 method for class 'cotram'
logLik(object, parm = coef(as.mlt(object), fixed = FALSE), newdata, ...)
```

Arguments

object, x a fitted linear count transformation model inheriting from class cotram.

an optional data frame of observations.

parm model parameters.

type type of prediction, current options include linear predictors ("lp", of x variables in the formula y ~ x), transformation functions ("trafo") or distribution functions on the scale of the cdf ("distribution"), survivor function, density function, log-density function, cumulative hazard function or quantile function.

confidence whether to plot a confidence band (see confband).

6 cotram-methods

level	the confidence level.
smooth	logical; if TRUE a smoothed function of type is returned.
q	quantiles at which to evaluate the model.
prob	probabilities for the evaluation of the quantile function (type = "quantile").
K	number of grid points the function is evaluated at (for smooth = TRUE and in absence of ${\bf q}$).
cheat	number of grid points the function is evaluated at when using the quantile obtained for K grid points (in the absence of q and smooth = $TRUE$).
col	color for the lines to plot.
fill	color for the confidence band.
lty	line type for the lines to plot.
lwd	line width.
add	logical; indicating if a new plot shall be generated (the default).
	additional arguments to the underlying methods for predict.

Details

predict and plot can be used to inspect the model on different scales.

See Also

```
predict.cotram, confband.cotram, tram-methods, mlt-methods, plot.ctm
```

Examples

```
op <- options(digits = 4)</pre>
data("birds", package = "TH.data")
### fit count transformation model with cloglog link
m_birds <- cotram(SG5 ~ AOT + AFS + GST + DBH + DWC + LOG, data = birds,</pre>
                  method = "cloglog")
logLik(m_birds)
### classical likelihood inference
summary(m_birds)
### coefficients of the linear predictor (discrete hazard ratios)
exp(-coef(m_birds))
### compute predicted median along with 10% and 90% quantile for the first
### three observations
nd <- birds[1:3,]
round(predict(m_birds, newdata = nd, type = "quantile", prob = c(.1, .5, .9),
              smooth = TRUE), 3)
### plot the predicted distribution for these observations
plot(m_birds, newdata = nd, type = "distribution",
```

spiders 7

```
col = c("skyblue", "grey", "seagreen"))
options(op)
```

spiders

Bavarian Forest Spider Data

Description

Abundance of six spider species on 190 plots in the Bavarian Forest National Park

Usage

```
data("spiders")
```

Format

A data frame with 190 observations on the following 9 variables.

Plot experimental plot id

Elevation elevation of the plot

Canopy_openess openess of canopy at plot

Pardosa_ferruginea number of Pardosa ferruginea observed

Harpactea_lepida number of Harpactea lepida observed

Callobius_claustrarius number of Callobius claustrarius observed

Coelotes_terrestris number of Coelotes terrestris observed

Pardosa_lugubris number of Pardosa lugubris observed

Pardosa_riparia number of Pardosa riparia observed

Details

To untangle effects of dead-wood addition and canopy openness on non-saproxylic epigeal arthropods, Seibold et al (2016) exposed different amounts of logs and branches on 190 0.1-ha plots located in sunny or shady mixed montane forests and sampled epigeal arthropods over three years. The data contain abundances of six spider species for all 190 plots, along with plot elevation and canopy openess.

Source

Sebastian Seibold, Claus Bässler, Petr Baldrian, Lena Reinhard, Simon Thorn, Michael D. Ulyshen, Ingmar Weiß and Jörg Müller (2016). Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. *Biological Conservation*, **204**, 181–188, doi:10.1016/j.biocon.2016.09.031.

Index

```
\ast datasets
    spiders, 7
* \ models \\
    cotram, 3
* regression
    cotram, 3
as.mlt.cotram(cotram-methods), 5
confband, 2, 5
\verb|confband.cotram|, 6
\verb|confint.glht|, 2
cotram, 2, 3
cotram-methods, 5
logLik.cotram(cotram-methods), 5
plot.cotram(cotram-methods), 5
plot.ctm, 6
predict.cotram, 6
predict.cotram(cotram-methods), 5
spiders, 7
tram, 3, 4
```