Type: | Package |
Title: | Correlated Weighted Hochberg |
Version: | 0.2.0 |
Description: | Perform additional multiple testing procedure methods to p.adjust(), such as weighted Hochberg (Tamhane, A. C., & Liu, L., 2008) <doi:10.1093/biomet/asn018>, ICC adjusted Bonferroni method (Shi, Q., Pavey, E. S., & Carter, R. E., 2012) <doi:10.1002/pst.1514> and a new correlation corrected weighted Hochberg for correlated endpoints. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | dplyr, glue, magrittr, Matrix, tibble |
NeedsCompilation: | no |
Packaged: | 2024-07-30 20:18:09 UTC; huanxinw |
Author: | Xin-Wei Huang |
Maintainer: | Xin-Wei Huang <xinweihuangstat@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-08-02 12:50:03 UTC |
corrMCT: Correlated Weighted Hochberg
Description
Perform additional multiple testing procedure methods to p.adjust(), such as weighted Hochberg (Tamhane, A. C., & Liu, L., 2008) doi:10.1093/biomet/asn018, ICC adjusted Bonferroni method (Shi, Q., Pavey, E. S., & Carter, R. E., 2012) doi:10.1002/pst.1514 and a new correlation corrected weighted Hochberg for correlated endpoints.
Author(s)
Maintainer: Xin-Wei Huang xinweihuangstat@gmail.com (ORCID)
Other contributors:
Jia Hua [contributor]
Bhramori Banerjee [contributor]
Xuelong Wang [contributor]
Qing Li [contributor]
Merck & Co., Inc [copyright holder, funder]
Pipe operator
Description
See magrittr::%>%
for details.
Usage
lhs %>% rhs
Arguments
lhs |
A value or the magrittr placeholder. |
rhs |
A function call using the magrittr semantics. |
Value
The result of calling rhs(lhs)
.
Weighted Hochberg method
Description
WHC
performs the weighted Hochberg method proposed by Tamhane and Liu (2008).
Usage
WHC(p, w, alpha = 0.05)
Arguments
p |
A numeric vector. A length |
w |
A numeric vector. Any non-negative real numbers to denote the
importance of the endpoints. Length must be equal to |
alpha |
A real number. |
Value
A table contains p-values, weights, adjusted critical values, significance
References
Tamhane, A. C., & Liu, L. (2008). On weighted Hochberg procedures. Biometrika, 95(2), 279-294.
Examples
m <- 5
WHC(
p = runif(m),
w = runif(m)
)
ICC adjusted Bonferroni method
Description
corr.Bonferroni
performs the ICC adjusted Bonferroni method proposed by
Shi, Pavey, and Carter(2012). Power law approximation by r
is tricky, suggested
options was listed in the paper.
Usage
corr.Bonferroni(p, ICC, r = 0, alpha = 0.05)
Arguments
p |
A numeric vector. A length |
ICC |
A number. Intraclass correlation correction factor, a real number between (0, 1). |
r |
A number. Tuning parameter for g** between (0, 1). Default |
alpha |
A real number. |
Value
A numeric vector of adjusted p-values.
References
Shi, Q., Pavey, E. S., & Carter, R. E. (2012). Bonferroniābased correction factor for multiple, correlated endpoints. Pharmaceutical statistics, 11(4), 300-309.
Examples
m <- 10
corr.Bonferroni(
p = runif(m),
ICC = 0.3
)
Correlation adjusted weighted Hochberg method
Description
A new method implement correlation correction based on weighted Hochberg. An ACF is applied for weight reduction to conserve alpha. Details see Huang et al. (2024+). A correlation structure with too many zero leads the method reduce to weighted Hochberg.
Usage
corr.WHC(p, w, corr.mat, a = 0.5, b = 0.6, penalty = NULL, alpha = 0.05)
Arguments
p |
A numeric vector. A length |
w |
A numeric vector. Any non-negative real numbers to denote the
importance of the endpoints. Length must be equal to |
corr.mat |
A matrix. The dimension must be |
a |
A numeric number. |
b |
A numeric number. |
penalty |
A function. User can define their own penalty function.
The basic rule is the function must be monotone decreasing from 0 to 1,
and range from 1 to |
alpha |
A real number. |
Value
A table contains p-values, weights, adjusted critical values, significance
References
Huang, X. -W., Hua, J., Banerjee, B., Wang, X., Li, Q. (2024+). Correlated weighted Hochberg procedure. In-preparation.
Examples
m <- 5
corr.WHC(
p = runif(m),
w = runif(m),
corr.mat = cor(matrix(runif(10*m), ncol = m))
)
AR(1) correlation matrix
Description
An easy function to generate a AR(1) correlation matrix.
Usage
corrmat_AR1(m, rho)
Arguments
m |
An integer. Dimension of the correlation matrix. |
rho |
A number. Correlation coefficient between |
Value
A correlation matrix
Examples
corrmat_AR1(
m = 3,
rho = 0.2
)
Compound symmetric correlation matrix
Description
An easy function to generate a compound symmetric correlation matrix
Usage
corrmat_CS(m, rho)
Arguments
m |
An integer. Dimension of the correlation matrix. |
rho |
A number. Correlation coefficient between |
Value
A correlation matrix
Examples
corrmat_CS(
m = 3,
rho = 0.2
)
Block design correlation matrix
Description
An easy function to generate a block design correlation matrix. Each diagonal
element R_i
is a compound symmetric matrix with dimension
d_i \times d_i
. Correlation coefficient in each block is \rho_i
.
All the off-diagonal elements are 0
.
Usage
corrmat_block(d, rho)
Arguments
d |
An integer vector. Length |
rho |
A numeric vector. A length |
Value
A correlation matrix
Examples
corrmat_block(
d = c(2,3,4),
rho = c(0.1, 0.3, 0.5)
)
Block AR(1) design correlation matrix
Description
An easy function to generate a block AR(1) design correlation matrix. Each diagonal
element R_i
is an AR(1) correlation matrix with dimension
d_i \times d_i
. Correlation coefficient in each block is \rho_i
.
All the off-diagonal elements are 0
.
Usage
corrmat_blockAR1(d, rho)
Arguments
d |
An integer vector. Length |
rho |
A numeric vector. A length |
Value
A correlation matrix
Examples
corrmat_blockAR1(
d = c(2,3,4),
rho = c(0.1, 0.3, 0.5)
)