collinear Automated Multicollinearity Management

DOI CRAN status CRAN_Download_Badge R-CMD-check

Summary

The R package collinear provides a comprehensive toolkit for smart multicollinearity management in datasets with mixed variable types. The main function, collinear(), integrates five core components:

These methods, except target encoding are also fully integrated into the tidymodels implementation step_collinear().

The package also provides diagnostic functions (cor_df(), vif_df(), collinear_stats()) to help users assess multicollinearity in their data before and after filtering.

Install

The package collinear can be installed from CRAN.

install.packages("collinear")

The development version can be installed from GitHub.

remotes::install_github(
  repo = "blasbenito/collinear", 
  ref = "development"
  )

Previous versions are in the archive_xxx branches of the GitHub repository.

remotes::install_github(
  repo = "blasbenito/collinear", 
  ref = "archive_v2.0.0"
  )

Getting Started

Setup

Most functions in the collinear package support parallelization and progress bars via future and progressr. Parallelization, however, is only advantageous for large datasets including categorical predictors.

library(collinear)
library(future)
library(progressr)

future::plan(
  future::multisession,
  workers = future::availableCores() - 1
  )

#does not work in Rmarkdown
#progressr::handlers(global = TRUE)

Example Data

The example dataframe vi_smol has several response variables and a large set of predictors. Here we focus on the numeric response vi_numeric, and the complete set of numeric and categorical predictors, stored in the vector vi_predictors.

data(vi_smol, vi_predictors)
nrow(vi_smol)
#> [1] 610
length(vi_predictors)
#> [1] 58

Multicollinearity Analysis

The package provides several functions to assess multicollinearity.

The functions cor_df() and vif_df() generate dataframes with the pairwise correlations and VIF scores of the predictors, while the functions cor_stats(), vif_stats() (used below) and collinear_stats() generate descriptive multicollinearity statistics. Notice that the function takes a while to execute because computing correlations for the categorical variables in vi_predictors is computationally expensive.

collinear::vif_stats(
  df = vi_smol,
  predictors = vi_predictors,
  quiet = TRUE
)
#> Warning: 
#> collinear::vif_stats()
#> └── collinear::vif_df()
#>     └── collinear::cor_matrix()
#>         └── collinear::cor_df(): 11 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#>   method     statistic     value
#> 1    vif             n   58.0000
#> 2    vif       minimum -194.5080
#> 3    vif quantile_0.05  -11.2993
#> 4    vif quantile_0.25    0.4528
#> 5    vif          mean   67.8998
#> 6    vif        median   25.2999
#> 7    vif quantile_0.75   90.3970
#> 8    vif quantile_0.95  316.6229
#> 9    vif       maximum  629.6362

The quantile 0.75 returned by vif_stats() indicates that 25% of the predictors have a VIF score higher than 6.5. This suggests substantial redundancy in the set of predictors.

Multicollinearity Filtering

To reduce multicollinearity in vi_smol we apply collinear() with a minimal setup.

x <- collinear::collinear(
  df = vi_smol,
  response = "vi_numeric",
  predictors = vi_predictors
)
#> 
#> collinear::collinear()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#>  - koppen_zone
#>  - koppen_group
#>  - koppen_description
#>  - biogeo_ecoregion
#>  - biogeo_biome
#>  - biogeo_realm
#>  - country_name
#>  - continent
#>  - region
#>  - subregion
#> 
#> collinear::collinear()
#> └── collinear::cor_df(): 11 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#> 
#> collinear::collinear(): setting 'max_cor' to 0.6842.
#> 
#> collinear::collinear(): setting 'max_vif' to 6.5269.
#> 
#> collinear::collinear()
#> └── collinear::preference_order()
#>     └── collinear::f_auto(): selected function 'f_numeric_rf()' to compute preference order.
#> 
#> collinear::collinear()
#> └── collinear::collinear_select()
#>     └── collinear::vif(): some VIF values exceeded 1M and were set to Inf.
#> 
#> collinear::collinear(): selected predictors: 
#>  - rainfall_mean
#>  - swi_mean
#>  - evapotranspiration_max
#>  - evapotranspiration_range
#>  - swi_min
#>  - soil_soc
#>  - humidity_range
#>  - topo_elevation
#>  - cloud_cover_range
#>  - continent
#>  - soil_sand
#>  - topo_diversity
#>  - topo_slope

The function returns an object of class collinear_output, that has its own print() and summary() methods.

x
#> Result
#> ===================
#>  - response: vi_numeric
#>    --------------------
#> 
#>  + df:
#>    - rows: 610
#>    - cols: 14
#> 
#>  + preference order:
#>    + df:
#>      - rows: 58
#>      - cols: 6
#>    + preference:
#>      - rainfall_mean
#>      - growing_season_rainfall
#>      - growing_season_length
#>      - swi_mean
#>      - aridity_index
#>    + f: f_numeric_rf
#> 
#>  + selection:
#>    - rainfall_mean
#>    - swi_mean
#>    - evapotranspiration_max
#>    - evapotranspiration_range
#>    - swi_min
#>    - ... (8 ommited)
#> 
#>  + formulas:
#>    - linear: vi_numeric ~ rainfall_mean + swi_mean + evapotranspiration_max + evapotranspiration_range + swi_min + ... (8 terms omitted) 
#>    - smooth: vi_numeric ~ s(rainfall_mean) + s(swi_mean) + s(evapotranspiration_max) + s(evapotranspiration_range) + s(swi_min) + ... (8 terms omitted)

The object df contains the response and the selected predictors.

colnames(x$vi_numeric$df)
#>  [1] "vi_numeric"               "rainfall_mean"           
#>  [3] "swi_mean"                 "evapotranspiration_max"  
#>  [5] "evapotranspiration_range" "swi_min"                 
#>  [7] "soil_soc"                 "humidity_range"          
#>  [9] "topo_elevation"           "cloud_cover_range"       
#> [11] "continent"                "soil_sand"               
#> [13] "topo_diversity"           "topo_slope"

The object preference_order contains the ranking of predictors. It is computed by the function preference_order() by assessing the association between the response and the predictors. In this case, it fits univariate models between the response and each predictor using f_numeric_rf, and returns the R-squared of the observations vs the model predictions. This ranking ensures that the most important predictors are protected during multicollinearity filtering.

head(x$vi_numeric$preference_order)
#>     response               predictor            f    metric  score rank
#> 1 vi_numeric           rainfall_mean f_numeric_rf R-squared 0.8835    1
#> 2 vi_numeric growing_season_rainfall f_numeric_rf R-squared 0.8731    2
#> 3 vi_numeric   growing_season_length f_numeric_rf R-squared 0.8644    3
#> 4 vi_numeric                swi_mean f_numeric_rf R-squared 0.8333    4
#> 5 vi_numeric           aridity_index f_numeric_rf R-squared 0.8279    5
#> 6 vi_numeric             koppen_zone f_numeric_rf R-squared 0.8174    6

The object selection contains non-collinear predictors chosen by taking into account their pairwise correlation and VIF against all other predictors, and their position in the ranking above.

x$vi_numeric$selection
#>  [1] "rainfall_mean"            "swi_mean"                
#>  [3] "evapotranspiration_max"   "evapotranspiration_range"
#>  [5] "swi_min"                  "soil_soc"                
#>  [7] "humidity_range"           "topo_elevation"          
#>  [9] "cloud_cover_range"        "continent"               
#> [11] "soil_sand"                "topo_diversity"          
#> [13] "topo_slope"              
#> attr(,"validated")
#> [1] TRUE

We can check that this selection of predictors shows low multicollinearity by running the function vif_df() on them.

collinear::vif_df(
  df = x$vi_numeric$df,
  predictors = x$vi_numeric$selection
)
#>        vif                predictor
#> 1   4.7203        cloud_cover_range
#> 2   3.3447                continent
#> 3   3.1112   evapotranspiration_max
#> 4   3.0627 evapotranspiration_range
#> 5   2.3856           humidity_range
#> 6   2.0747            rainfall_mean
#> 7   1.9928                soil_sand
#> 8   1.7690                 soil_soc
#> 9   1.6346                 swi_mean
#> 10  1.5984                  swi_min
#> 11  1.3531           topo_diversity
#> 12  0.9320           topo_elevation
#> 13 -0.2235               topo_slope

All VIF scores are below 2.5, collinear() did a good job here!

Finally, collinear() also returns modeling formulas to help kick start exploratory modelling.

x$vi_numeric$formulas
#> $linear
#> vi_numeric ~ rainfall_mean + swi_mean + evapotranspiration_max + 
#>     evapotranspiration_range + swi_min + soil_soc + humidity_range + 
#>     topo_elevation + cloud_cover_range + continent + soil_sand + 
#>     topo_diversity + topo_slope
#> <environment: 0x5adb1977e4b0>
#> 
#> $smooth
#> vi_numeric ~ s(rainfall_mean) + s(swi_mean) + s(evapotranspiration_max) + 
#>     s(evapotranspiration_range) + s(swi_min) + s(soil_soc) + 
#>     s(humidity_range) + s(topo_elevation) + s(cloud_cover_range) + 
#>     continent + s(soil_sand) + s(topo_diversity) + s(topo_slope)
#> <environment: 0x5adb1977e4b0>

The function returns linear formulas for numeric outcomes, and classification formulas for categorical outcomes.

Model Fitting

The output of collinear() can be used right away to fit exploratory models, as shown below.

m <- lm(
  formula = x$vi_numeric$formulas$linear, 
  data = x$vi_numeric$df,
  na.action = na.omit
  )

summary(m)
#> 
#> Call:
#> lm(formula = x$vi_numeric$formulas$linear, data = x$vi_numeric$df, 
#>     na.action = na.omit)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.42639 -0.04274  0.00107  0.04804  0.24228 
#> 
#> Coefficients:
#>                            Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)               3.027e-01  4.557e-02   6.644 6.97e-11 ***
#> rainfall_mean             4.183e-05  7.152e-06   5.849 8.22e-09 ***
#> swi_mean                  6.997e-03  4.415e-04  15.850  < 2e-16 ***
#> evapotranspiration_max   -1.206e-03  1.694e-04  -7.117 3.22e-12 ***
#> evapotranspiration_range -1.763e-04  1.396e-04  -1.263 0.207122    
#> swi_min                  -2.473e-03  6.162e-04  -4.013 6.77e-05 ***
#> soil_soc                 -4.845e-04  1.944e-04  -2.492 0.012964 *  
#> humidity_range           -1.042e-03  6.301e-04  -1.654 0.098731 .  
#> topo_elevation           -3.991e-05  7.280e-06  -5.481 6.27e-08 ***
#> cloud_cover_range         5.109e-04  3.588e-04   1.424 0.155005    
#> continentAsia            -2.847e-02  1.227e-02  -2.320 0.020687 *  
#> continentEurope           3.893e-02  1.895e-02   2.054 0.040412 *  
#> continentNorth America    6.304e-02  1.525e-02   4.134 4.08e-05 ***
#> continentOceania          4.555e-02  1.478e-02   3.083 0.002146 ** 
#> continentSouth America    5.547e-02  1.242e-02   4.466 9.54e-06 ***
#> soil_sand                 5.123e-04  2.821e-04   1.816 0.069887 .  
#> topo_diversity            3.318e-03  8.973e-04   3.698 0.000238 ***
#> topo_slope                4.209e-03  1.392e-03   3.024 0.002600 ** 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.08237 on 589 degrees of freedom
#>   (3 observations deleted due to missingness)
#> Multiple R-squared:  0.8515, Adjusted R-squared:  0.8473 
#> F-statistic: 198.7 on 17 and 589 DF,  p-value: < 2.2e-16

Integration with tidymodels

The function step_collinear() wraps collinear() to facilitate its usage in tidymodels recipes. Please notice that step_collinear() does not perform target encoding, as combining this functionality with multicollinearity filtering does not fit well with how recipes works.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(recipes)
#> 
#> Attaching package: 'recipes'
#> The following object is masked from 'package:stats':
#> 
#>     step
library(parsnip)
library(workflows)

# model formula
vi_formula <- collinear::model_formula(
  df = vi_smol,
  response = "vi_numeric",
  predictors = vi_predictors
)

# recipe
vi_recipe <- recipes::recipe(
  formula = vi_formula,
  data = vi_smol
  ) |>
  #multicollinearity filtering
  collinear::step_collinear(
    recipes::all_predictors()
  )

#linear model
vi_model <- parsnip::rand_forest() |>
  parsnip::set_engine("ranger", importance = "permutation") |>
  parsnip::set_mode("regression")

#create and fit workflow
vi_model <- parsnip::linear_reg() |>
  parsnip::set_engine("lm")

# create and fit workflow
vi_workflow <- workflows::workflow() |>
  workflows::add_recipe(vi_recipe) |>
  workflows::add_model(vi_model) |>
  workflows::fit(data = vi_smol)
#> Warning: 
#> collinear::collinear()
#> └── collinear::cor_df(): 11 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.

vi_workflow
#> ══ Workflow [trained] ══════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: linear_reg()
#> 
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> 1 Recipe Step
#> 
#> • step_collinear()
#> 
#> ── Model ───────────────────────────────────────────────────────────────────────
#> 
#> Call:
#> stats::lm(formula = ..y ~ ., data = data)
#> 
#> Coefficients:
#>              (Intercept)             rainfall_mean                  swi_mean  
#>                3.027e-01                 4.183e-05                 6.997e-03  
#>   evapotranspiration_max  evapotranspiration_range                   swi_min  
#>               -1.206e-03                -1.763e-04                -2.473e-03  
#>                 soil_soc            humidity_range            topo_elevation  
#>               -4.845e-04                -1.042e-03                -3.991e-05  
#>        cloud_cover_range             continentAsia           continentEurope  
#>                5.109e-04                -2.847e-02                 3.893e-02  
#>   continentNorth America          continentOceania    continentSouth America  
#>                6.304e-02                 4.555e-02                 5.547e-02  
#>                soil_sand            topo_diversity                topo_slope  
#>                5.123e-04                 3.318e-03                 4.209e-03

Citation

If you find this package useful, please cite it as:

Blas M. Benito (2025). collinear: R Package for Automated Multicollinearity Management. Version 3.0.0. doi: 10.5281/zenodo.17843578

Getting help

If you encounter bugs or issues with the documentation, please file a issue on GitHub.