
Package ‘cleanTS’
July 22, 2025

Type Package

Title Testbench for Univariate Time Series Cleaning

Version 0.1.2

Description A reliable and efficient tool for cleaning univariate time
series data. It implements reliable and efficient procedures for
automating the process of cleaning univariate time series data.
The package provides integration with already developed and deployed
tools for missing value imputation and outlier detection. It also
provides a way of visualizing large time-series data in different
resolutions.

License GPL (>= 3)

URL https://github.com/Mayur1009/cleanTS

BugReports https://github.com/Mayur1009/cleanTS/issues

Imports data.table, gganimate, ggplot2, ggtext, transformr, glue,
imputeTestbench, imputeTS, lubridate, shiny, stringr, tibble

Suggests rmarkdown, gifski (>= 1.4.3), timetk, spelling

Encoding UTF-8

RoxygenNote 7.2.3

Language en-US

NeedsCompilation no

Author Mayur Shende [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1738-2573>),

Neeraj Bokde [aut] (ORCID: <https://orcid.org/0000-0002-3493-9302>),
Andrés E. Feijóo-Lorenzo [aut] (ORCID:

<https://orcid.org/0000-0003-3172-7037>)

Maintainer Mayur Shende <mayur.k.shende@gmail.com>

Repository CRAN

Date/Publication 2023-07-06 07:33:10 UTC

1

https://github.com/Mayur1009/cleanTS
https://github.com/Mayur1009/cleanTS/issues
https://orcid.org/0000-0002-1738-2573
https://orcid.org/0000-0002-3493-9302
https://orcid.org/0000-0003-3172-7037

2 animate_interval

Contents
animate_interval . 2
check_input . 3
cleanTS . 4
detect_outliers . 6
duplicate_timestamps . 6
find_dif . 7
gen.animation . 7
gen.report . 8
impute . 9
interact_plot . 9
mergecsv . 10
missing_timestamps . 11
print.cleanTS . 11

Index 13

animate_interval Generate animated plot

Description

animate_interval() creates an animated plot using a cleanTS object and a interval.

Usage

animate_interval(obj, interval)

Arguments

obj A cleanTS object.

interval A numeric or character, specifying the viewing interval.

Details

First, the data is split according to the interval argument passed to the function. If it is a numeric
value, the cleaned data is split into dataframes containing interval observations. It can also be a
string, like 1 week, 3 months, 14 days, etc. In this case, the data is split according to the interval
given, using the timestamp column. Then an animation is created using the spliited data, with
the help of gganimate package. The animate_interval() function returns a list containing the
gganim object used to generate the animation and the number of states in the data. The animation
can be generated using the gen.animation() function and saved using the anim_save() function.
The plots in the animation also contain a short summary, containing the statistical information and
the number of missing values, outliers, missing timestamps, and duplicate timestamps in the data
shown in that frame of animation.

check_input 3

Value

A list containing:

• animation: A gganim object.

• nstates: The number of states in the animation.

Examples

Not run:
Create a `gganim` using `animate_interval()` function
a <- animate_interval(cts, "10 year")

cts -> `cleanTS` object created using `cleanTS()`.

End(Not run)

check_input Check input data

Description

This function is used to check and verify the input data given as input. The package needs a
univariate time series as input. This function keeps the first 2 columns, first is renamed as time
and second is renamed as value. If the optional time and value arguments are provided then they
are used to determine the relevant columns in the data.

Usage

check_input(df, dt_format, time, value)

Arguments

df A data frame containing the input data. If it contains more than two columns
then specify the names of time and value columns using the time and value
arguments.

dt_format Format of timestamps used in the data. It uses lubridate formats as mentioned
here.

time The name of column in provided data to be used as time column.

value The name of column in provided data, to be used as value(observations) column.

Value

Data containing 2 columns, time and value. Time column is converted to POSIX object and value
to numeric.

https://lubridate.tidyverse.org/reference/parse_date_time.html#details

4 cleanTS

cleanTS Clean univariate time-series data

Description

cleanTS()is the main function of the package which creates a cleanTS object. It performs all
the different data cleaning tasks, such as converting the timestamps to proper format, imputation
of missing values, handling outliers, etc. It is a wrapper function that calls all the other internal
functions to performs different data cleaning tasks.

Usage

cleanTS(
data,
date_format,
imp_methods = c("na_interpolation", "na_locf", "na_ma", "na_kalman"),
time = NULL,
value = NULL,
replace_outliers = TRUE

)

Arguments

data A data frame containing the input data. By default, it considers that the first
column to contain the timestamps and the second column contains the observa-
tions.If that is not the case or if it contains more than two columns then specify
the names of time and value columns using the time and value arguments.

date_format Format of timestamps used in the data. It uses lubridate formats as mentioned
here. More than one formats can be using a vectors of strings.

imp_methods The imputation methods to be used.

time Optional, the name of column in provided data to be used as time column.

value Optional, the name of column in provided data, to be used as value column.
replace_outliers

Boolean, if TRUE then the outliers found will be removed and imputed using the
given imputation methods.

Details

The first task is to check the input time series data for structural and data type-related errors. Since
the functions need univariate time series data, the input data is checked for the number of columns.
By default, the first column is considered to be the time column, and the second column to be
the observations. Alternatively, if the time and value arguments are given, then those columns
are used. The time column is converted to a POSIX object. The value column is converted to a
numeric type. The column names are also changed to time and value. All the data is converted to
a data.table object. This data is then passed to other functions to check for missing and duplicate
timestamps. If duplicate timestamps are found, then the observation values are checked. If the

https://lubridate.tidyverse.org/reference/parse_date_time.html#details

cleanTS 5

observations are the same, then only one copy of that observation is kept. But if the observations
are different, then it is not possible to find the correct one, so the observation is set to NA. This data
is the passed to a function for finding and handling missing observations. The methods given in
the imp_methods argument are compared and selected. The MCAR and MAR values are handled
seperately. After the best methods are found, imputation is performed using those methods. The
user can also pass user-defined functions for comparison. The user-defined function should follow
the structure as the default functions. It should take a numeric vector containing missing values
as input, and return a numeric vector of the same length without missing values as output. Once
the missing values are handled the data is checked for outliers. If the replace_outliers parameter
is set to TRUE in the cleanTS() function, then the outliers are replaced by NA and imputed using
the procedure mentioned for imputing missing values. Then it creates a cleanTS object which
contains the cleaned data, missing timestamps, duplicate timestamps, imputation methods, MCAR
imputation error, MAR imputation error, outliers, and if the outliers are replaced then imputation
errors for those imputations are also included. The cleanTS object is returned by the function.

Value

A cleanTS object which contains:

• Cleaned data

• Missing timestamps

• Duplicate timestamps

• Imputation errors

• Outliers

• Outlier imputation errors

Examples

Not run:
Convert sunspots.month to dataframe
data <- timetk::tk_tbl(sunspot.month)
print(data)

Randomly insert missing values to simulate missing value imputation
set.seed(10)
ind <- sample(nrow(data), 100)
data$value[ind] <- NA

Perform cleaning
cts <- cleanTS(data, date_format = "my", time = "index", value = "value")
print(cts)

End(Not run)

6 duplicate_timestamps

detect_outliers Find outliers in the data

Description

This function detects outliers/anomalies in the data. If the replace_outlier argument is set to
TRUE, then the outliers are removed and imputed using the provided imputation methods.

Usage

detect_outliers(dt, replace_outlier, imp_methods)

Arguments

dt A data.table.
replace_outlier

Boolean, defaults to TRUE. Specify if the outliers are to be removed and imputed.

imp_methods The imputation methods to be used.

Value

The outliers found in the data. If the outliers are replaced, then the imputation errors are also
returned.

duplicate_timestamps Duplicate Timestamps

Description

This function finds and removes the duplicate timestamps in the time columns of the data.

Usage

duplicate_timestamps(dt)

Arguments

dt Input data

Value

A list of data.table without duplicate timestamps and the duplicate timestamps.

find_dif 7

find_dif Helper function to find the time difference between two given times-
tamps.

Description

Helper function to find the time difference between two given timestamps.

Usage

find_dif(time1, time2)

Arguments

time1 POSIXt or Date object.

time2 POSIXt or Date object.

Value

String, specifying the time interval between time1 and time2. It contains a integer and the unit, for
e.g., 5 weeks, 6 months, 14 hours, etc.

gen.animation Generate animation

Description

This function takes the list outputted by animate_interval() and generates a GIF animation. It is
a simple wrapper around the gganimate::animate() function with some defaults. The generated
GIF can be saved using the anim_save() function. By default, in the animate() function only 50
states in the data are shown. So, to avoid this gen.animation() defines the default value for the
number of frames. Also, the duration argument has a default value equal to the number of states,
making the animation slower. More arguments can be passed, which are then passed to animate(),
like, height, width, fps, renderer, etc.

Usage

gen.animation(anim, nframes = 2 * anim$nstates, duration = anim$nstate, ...)

Arguments

anim List outputted by the animate_interval() function containing a gganim object
and the number of states in the animation.

nframes Number of frames. Defaults to double the number of states in the animation.

duration The duration of animation. Defaults to the number of states in the animation.

... Extra arguments passed to gganimate::animate().

8 gen.report

Value

Does not return any value.

Examples

Not run:
a <- animate_interval(cts, "10 year")

Generate animation using `gen.animation()`
if(interactive()){

gen.animation(a, height = 700, width = 900)
}

Save animation using `anim_save()`
anim_save("filename.gif")

End(Not run)

gen.report Generate a report.

Description

gen.report() generates a report of the entire process, the changes made to the original data and
details about the impurities found in the data.

Usage

gen.report(obj)

Arguments

obj A cleanTS object.

Value

Does not return any value.

Examples

Not run:
Perform cleaning
cts <- cleanTS(data, date_format = "my", time = "index", value = "value")

gen.report(cts)

End(Not run)

impute 9

impute Handle missing values in the data

Description

This function handles missing values in the data. It compares various imputation methods and finds
the best one for imputation.

Usage

impute(dt, methods)

Arguments

dt A data.table.
methods The imputation methods to be used.

Value

A data.table with missing data imputed, and the imputation errors.

interact_plot Create interactive plot

Description

Interactive plot is similar to the animated plot, but gives the used some control over the animation.
It runs a shinyApp instead of creating a GIF.

Usage

interact_plot(obj, interval)

Arguments

obj A cleanTS object.
interval A numeric or character, specifying the viewing interval.

Details

The problem with an animated plot is that the user does not have any control over the animation.
There is not play or pause functionality so that the user can observe any desired frame. This can
be achieved by adding interactivity to the plot. The interact_plot() function creates and runs
a shiny widget locally on the machine. It takes the cleanTS object and splits the cleaned data
according to the interval argument, similar to the animate interval() function. It then creates
a shiny widget which shows the plot for the current state and gives a slider used to change the state.
Unlike animate_interval() it provides a global report containing information about complete
data, and a state report giving information about the current state shown in the plot.

10 mergecsv

Value

Does not return any value.

Examples

Not run:
if(interactive()){

Using the same data used in `cleanTS()` function example.
interact_plot(cts, interval = "1 week")

}

End(Not run)

mergecsv Merge Multiple CSV files

Description

mergecsv() takes a folder containing CSV files and merges them into a single data.table. It is
assumed that the first column of all the CSVs contains the timestamps.

Usage

mergecsv(path, formats)

Arguments

path Path to the folder.

formats Datetime formats.

Details

All these files are read and the first column is parsed to a proper DateTime object using the formats
given in the formats argu- ment. Then these dataframes are merged using the timestamp column as
a common column. The merged data frame returned by the function contains the first column as the
timestamps.

Value

Merged data.table.

missing_timestamps 11

missing_timestamps Missing timestamps

Description

This function finds and inserts the missing timestamps in the time columns of the data. The obser-
vations for the inserted timestamps are filled with NA.

Usage

missing_timestamps(dt)

Arguments

dt Input data

Value

A list of data.table with inserted missing timestamps and the missing timestamps.

print.cleanTS Print a cleanTS object

Description

Print method for cleanTS class.

Usage

S3 method for class 'cleanTS'
print(x, ...)

Arguments

x cleanTS object

... Other arguments

Value

Does not return any value.

12 print.cleanTS

Examples

Not run:
Using the same data as in `cleanTS()` function example.
cts <- cleanTS(data, "my")
print(cts)

End(Not run)

Index

animate_interval, 2

check_input, 3
cleanTS, 4

detect_outliers, 6
duplicate_timestamps, 6

find_dif, 7

gen.animation, 7
gen.report, 8

impute, 9
interact_plot, 9

mergecsv, 10
missing_timestamps, 11

print.cleanTS, 11

13

	animate_interval
	check_input
	cleanTS
	detect_outliers
	duplicate_timestamps
	find_dif
	gen.animation
	gen.report
	impute
	interact_plot
	mergecsv
	missing_timestamps
	print.cleanTS
	Index

