Type: | Package |
Date: | 2023-11-24 |
Title: | Consistent Perturbation of Statistical Frequency- And Magnitude Tables |
Version: | 1.0.2 |
Description: | Data from statistical agencies and other institutions often need to be protected before they can be published. This package can be used to perturb statistical tables in a consistent way. The main idea is to add - at the micro data level - a record key for each unit. Based on these keys, for any cell in a statistical table a cell key is computed as a function on the record keys contributing to a specific cell. Values that are added to the cell in order to perturb it are derived from a lookup-table that maps values of cell keys to specific perturbation values. The theoretical basis for the methods implemented can be found in Thompson, Broadfoot and Elazar (2013) https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf which was extended and enhanced by Giessing and Tent (2019) https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_Germany_Giessing_Tent_AD.pdf. |
Depends: | R(≥ 4.1), sdcHierarchies (≥ 0.19.3), data.table |
Imports: | rlang, methods, digest (≥ 0.6.23), sdcTable (≥ 0.32.2), ptable (≥ 1.0.0), cli, utils, yaml, parallel |
License: | GPL-2 |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Suggests: | testthat, knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Author: | Bernhard Meindl [aut, cre] |
Maintainer: | Bernhard Meindl <bernhard.meindl@statistik.gv.at> |
LazyData: | true |
LazyDataCompression: | xz |
BugReports: | https://github.com/sdcTools/userSupport/issues |
URL: | https://github.com/sdcTools/cellKey |
Packaged: | 2023-11-24 10:21:17 UTC; meindl |
Repository: | CRAN |
Date/Publication: | 2023-11-24 11:10:02 UTC |
R6 Class defining statistical tables that can be perturbed
Description
This class allows to define statistical tables and perturb both count and numerical variables.
Usage
ck_setup(x, rkey, dims, w = NULL, countvars = NULL, numvars = NULL)
Arguments
x |
an object coercible to a |
rkey |
either a column name within |
dims |
a list containing slots for each variable that should be
tabulated. Each slot consists should be created/modified using |
w |
(character) a scalar character referring to a variable in |
countvars |
(character) an optional vector containing names of binary (0/1 coded)
variables withing |
numvars |
(character) an optional vector of numerical variables that can later be tabulated. |
Details
Such objects are typically generated using ck_setup()
.
Value
A new cellkey_obj
object. Such objects (internally) contain the fully computed
statistical tables given input microdata (x
), the hierarchical definitionals (dims
) as
well as the remaining inputs. Intermediate results are stored internally and can only be
modified / accessed via the exported public methods described below.
Methods
Public methods
Method new()
Create a new table instance
Usage
ck_class$new(x, rkey, dims, w = NULL, countvars = NULL, numvars = NULL)
Arguments
x
an object coercible to a
data.frame
rkey
either a column name within
x
referring to a variable containing record keys or a single integer(ish) number >5
that referns to the number of digits for record keys that will be generated internally.dims
a list containing slots for each variable that should be tabulated. Each slot consists should be created/modified using
sdcHierarchies::hier_create()
,sdcHierarchies::hier_add()
and other functionality from packagesdcHierarchies
.w
(character) a scalar character referring to a variable in
x
holding sampling weights. Ifw
isNULL
(the default), all weights are assumed to be1
countvars
(character) an optional vector containing names of binary (0/1 coded) variables withing
x
that should be included in the problem instance. These variables can later be perturbed.numvars
(character) an optional vector of numerical variables that can later be tabulated.
Returns
A new cellkey_obj
object. Such objects (internally) contain the fully computed
statistical tables given input microdata (x
), the hierarchical definitionals (dims
) as
well as the remaining inputs. Intermediate results are stored internally and can only be
modified / accessed via the exported public methods described below.
Method perturb()
Perturb a count- or magnitude variable
Usage
ck_class$perturb(v)
Arguments
v
name(s) of count- or magnitude variables that should be perturbed.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. Updated data can be accessed using other exported
methods like $freqtab()
or $numtab()
.
Method freqtab()
Extract results from already perturbed count variables as a
data.table
Usage
ck_class$freqtab(v = NULL, path = NULL)
Arguments
v
a vector of variable names for count variables. If
NULL
(the default), the results are returned for all available count variables. For variables that have not yet perturbed, columnspuwc
andpwc
are filled withNA
.path
if not
NULL
, a scalar character defining a (relative or absolute) path to which the result table should be written. Acsv
file will be generated and, if specified,path
must have ".csv" as file-ending
Returns
This method returns a data.table
containing all combinations of the dimensional variables in
the first n columns. Additionally, the following columns are shown:
-
vname
: name of the perturbed variable -
uwc
: unweighted counts -
wc
: weighted counts -
puwc
: perturbed unweighted counts orNA
ifvname
was not yet perturbed -
pwc
: perturbed weighted counts orNA
ifvname
was not yet perturbed
Method numtab()
Extract results from already perturbed continuous variables
as a data.table
.
Usage
ck_class$numtab(v = NULL, mean_before_sum = FALSE, path = NULL)
Arguments
v
a vector of variable names of continuous variables. If
NULL
(the default), the results are returned for all available numeric variables.mean_before_sum
(logical); if
TRUE
, the perturbed values are adjusted by a factor((n+p))⁄n
with-
n
: the original weighted cell value -
p
: the perturbed cell value
This makes sense if the the accuracy of the variable mean is considered to be more important than accuracy of sums of the variable. The default value is
FALSE
(no adjustment is done)-
path
if not
NULL
, a scalar character defining a (relative or absolute) path to which the result table should be written. Acsv
file will be generated and, if specified,path
must have ".csv" as file-ending
Returns
This method returns a data.table
containing all combinations of the
dimensional variables in the first n columns. Additionally, the following
columns are shown:
-
vname
: name of the perturbed variable -
uws
: unweighted sum of the given variable -
ws
: weighted cellsum -
pws
: perturbed weighted sum of the given cell orNA
ifvname
has not not perturbed
Method measures_cnts()
Utility measures for perturbed count variables
Usage
ck_class$measures_cnts(v, exclude_zeros = TRUE)
Arguments
v
name of a count variable for which utility measures should be computed.
exclude_zeros
should empty (zero) cells in the original values be excluded when computing distance measures
Returns
This method returns a list
containing a set of utility
measures based on some distance functions. For a detailed description
of the computed measures, see ck_cnt_measures()
Method measures_nums()
Utility measures for continuous variables (not yet implemented)
Usage
ck_class$measures_nums(v)
Arguments
v
name of a continuous variable for which utility measures should be computed.
Returns
for (now) an empty list; In future versions of the package, the Method will return utility measures for perturbed magnitude tables.
Method allvars()
Names of variables that can be perturbed / tabulated
Usage
ck_class$allvars()
Returns
returns a list
with the following two elements:
-
cntvars
: character vector with names of available count variables for perturbation -
numvars
: character vector with names of available numerical variables for perturbation
Method cntvars()
Names of count variables that can be perturbed
Usage
ck_class$cntvars()
Returns
a character vector containing variable names
Method numvars()
Names of continuous variables that can be perturbed
Usage
ck_class$numvars()
Returns
a character vector containing variable names
Method hierarchy_info()
Information about hierarchies
Usage
ck_class$hierarchy_info()
Returns
a list
(for each dimensional variable) with
information on the hierarchies. This may be used to restrict output tables to
specific levels or codes. Each list element is a data.table
containing
the following variables:
-
code
: the name of a code within the hierarchy -
level
: number defining the level of the code; the higher the number, the lower the hierarchy with1
being the overall total -
is_leaf
: ifTRUE
, this code is a leaf node which means no other codes contribute to it -
parent
: name of the parent code
Method mod_cnts()
Modifications applied to count variables
Usage
ck_class$mod_cnts()
Returns
a data.table
containing modifications applied to count variables
Method mod_nums()
Modifications applied to numerical variables
Usage
ck_class$mod_nums()
Returns
a data.table
containing modifications applied to numerical variables
Method supp_freq()
Identify sensitive cells based on minimum frequency rule
Usage
ck_class$supp_freq(v, n, weighted = TRUE)
Arguments
v
a single variable name of a continuous variable (see method
numvars()
)n
a number defining the threshold. All cells
<= n
are considered as unsafe.weighted
if
TRUE
, the weighted number of contributors to a cell are compared to the threshold specified inn
(default); else the unweighted number of contributors is used.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other methods (e.g $perturb()
).
Method supp_val()
Identify sensitive cells based on weighted or unweighted cell value
Usage
ck_class$supp_val(v, n, weighted = TRUE)
Arguments
v
a single variable name of a continuous variable (see method
numvars()
)n
a number defining the threshold. All cells
<= n
are considered as unsafe.weighted
if
TRUE
, the weighted cell value of variablev
is compared to the threshold specified inn
(default); else the unweighted number is used.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other methods (e.g $perturb()
).
Method supp_cells()
Identify sensitive cells based on their names
Usage
ck_class$supp_cells(v, inp)
Arguments
v
a single variable name of a continuous variable (see method
numvars()
)inp
a
data.frame
where each colum represents a dimensional variable. Each row of this input is then used to compute the relevant cells to be identified as sensitive whereNA
-values are possible and used to match any characteristics of the dimensional variable.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other methods (e.g $perturb()
).
Method supp_p()
Identify sensitive cells based on the p%-rule rule. Please note that this rule can only be applied to positive-only variables.
Usage
ck_class$supp_p(v, p)
Arguments
v
a single variable name of a continuous variable (see method
numvars()
)p
a number defining a percentage between
1
and99
.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other methods (e.g $perturb()
).
Method supp_pq()
Identify sensitive cells based on the pq-rule. Please note that this rule can only be applied to positive-only variables.
Usage
ck_class$supp_pq(v, p, q)
Arguments
v
a single variable name of a continuous variable (see method
numvars()
)p
a number defining a percentage between
1
and99
.q
a number defining a percentage between
1
and99
. This value must be larger thanp
.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other methods (e.g $perturb()
).
Method supp_nk()
Identify sensitive cells based on the nk-dominance rule. Please note that this rule can only be applied to positive-only variables.
Usage
ck_class$supp_nk(v, n, k)
Arguments
v
a single variable name of a continuous variable (see method
numvars()
)n
an integerish number
>= 2
k
a number defining a percentage between
1
and99
. All cells to which the topn
contributers contribute more thank%
is considered unsafe
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other methods (e.g $perturb()
).
Method params_cnts_get()
Return perturbation parameters of count variables
Usage
ck_class$params_cnts_get()
Returns
a named list in which each list-element contains the active perturbation parameters for the specific count variable defined by the list-name.
Method params_cnts_set()
Set perturbation parameters for count variables
Usage
ck_class$params_cnts_set(val, v = NULL)
Arguments
val
a perturbation object created with
ck_params_cnts()
v
a character vector (or
NULL
). IfNULL
(the default), the perturbation parameters provided inval
are set for all count variables; otherwise one may specify the names of the count variables for which the parameters should be set.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other
methods (e.g $perturb()
).
Method reset_cntvars()
reset results and parameters for already perturbed count variables
Usage
ck_class$reset_cntvars(v = NULL)
Arguments
v
if
v
equalsNULL
(the default), the results are reset for all perturbed count variables; otherwise it is possible to specify the names of already perturbed count variables.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other
methods (e.g $perturb()
or $freqtab()
).
Method reset_numvars()
reset results and parameters for already perturbed numerical variables
Usage
ck_class$reset_numvars(v = NULL)
Arguments
v
if
v
equalsNULL
(the default), the results are reset for all perturbed numerical variables; otherwise it is possible to specify the names of already perturbed continuous variables.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other
methods (e.g $perturb()
or $numtab()
).
Method reset_allvars()
reset results and parameters for all already perturbed variables.
Usage
ck_class$reset_allvars()
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other
methods (e.g $perturb()
, $freqtab()
or $numtab()
).
Method params_nums_get()
Return perturbation parameters of continuous variables
Usage
ck_class$params_nums_get()
Returns
a named list in which each list-element contains the active perturbation parameters for the specific continuous variable defined by the list-name.
Method params_nums_set()
set perturbation parameters for continuous variables.
Usage
ck_class$params_nums_set(val, v = NULL)
Arguments
val
a perturbation object created with
ck_params_nums()
v
a character vector (or
NULL
); ifNULL
(the default), the perturbation parameters provided inval
are set for all continuous variables; otherwise one may specify the names of the numeric variables for which the parameters should be set.
Returns
A modified cellkey_obj
object in which private slots were
updated for side-effects. These updated values are used by other
methods (e.g $perturb()
).
Method summary()
some aggregated summary statistics about perturbed variables
Usage
ck_class$summary()
Returns
invisible NULL
Method print()
prints information about the current table
Usage
ck_class$print()
Returns
invisible NULL
Examples
x <- ck_create_testdata()
# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
x[, cnt_males := ifelse(sex == "male", 1, 0)]
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
# create record keys
x$rkey <- ck_generate_rkeys(dat = x)
# define required inputs
# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")
d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")
# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
x = x,
rkey = "rkey",
dims = list(sex = d_sex, age = d_age),
w = "sampling_weight",
countvars = countvars,
numvars = numvars)
# show some information about this table instance
tab$print() # identical with print(tab)
# information about the hierarchies
tab$hierarchy_info()
# which variables have been defined?
tab$allvars()
# count variables
tab$cntvars()
# continuous variables
tab$numvars()
# create perturbation parameters for "total" variable and
# write to yaml-file
# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
ptab = ptable::pt_ex_cnts(),
path = f_yaml)
# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)
tab$params_cnts_set(val = p_cnts1, v = "total")
# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
D = 8, V = 3, js = 2, create = FALSE)
p_cnts2 <- ck_params_cnts(ptab = para2)
# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
# perturb a variable
tab$perturb(v = "total")
# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")
# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)
# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)
# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)
p_nums1 <- ck_params_nums(
ptab = ptab1,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.30, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 3),
mu_c = 2,
same_key = FALSE,
use_zero_rkeys = FALSE,
path = f_yaml)
# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)
# for variables with positive and negative values
p_nums2 <- ck_params_nums(
ptab = ptab2,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.15, 0.02),
epsilon = c(1, 0.4, 0.15),
q = 3),
mu_c = 2,
same_key = FALSE)
# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
ptab = ptab3,
type = "mean",
mult_params = ck_simpleparams(p = 0.25),
mu_c = 2,
same_key = FALSE)
# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
tab$supp_pq(v = "income", p = 85, q = 90)
tab$supp_nk(v = "income", n = 2, k = 90)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
tab$supp_cells(
v = "income",
inp = data.frame(
sex = c("female", "female"),
"age" = c("age_group1", "age_group3")
)
)
# perturb variables
tab$perturb(v = c("income", "savings"))
# extract results
tab$numtab("income", mean_before_sum = TRUE)
tab$numtab("income", mean_before_sum = FALSE)
tab$numtab("savings")
# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")
# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
tab$perturb(v = "cnt_males")
# write results to a .csv file
tab$freqtab(
v = c("total", "cnt_males"),
path = file.path(tempdir(), "outtab.csv")
)
# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
# modifications for perturbed count variables
tab$mod_cnts()
# display a summary about utility measures
tab$summary()
Utility measures for perturbed counts
Description
This function computes utility/information loss measures based on two numeric vectors (original and perturbed)
Usage
ck_cnt_measures(orig, pert, exclude_zeros = TRUE)
Arguments
orig |
a numeric vector holding original values |
pert |
a numeric vector holding perturbed values |
exclude_zeros |
a scalar logical value; if |
Value
a list
containing the following elements:
-
overview
: adata.table
with the following three columns:-
noise
: amount of noise computed asorig
-pert
-
cnt
: number of cells perturbed with the value given in columnnoise
-
pct
: percentage of cells perturbed with the value given in columnnoise
-
-
measures
: adata.table
containing measures of the distribution of three different distances between original and perturbed values of the unweighted counts. Columnwhat
specifies the computed measure. The three distances considered are:-
d1
: absolute distance between original and masked values -
d2
: relative absolute distance between original and masked values -
d3
: absolute distance between square-roots of original and perturbed values
-
-
cumdistr_d1
,cumdistr_d2
andcumdistr_d3
: for each distanced1
,d2
andd3
, adata.table
with the following three columns:-
cat
: a specific value (ford1
) or interval (for distancesd2
andd3
) -
cnt
: number of records smaller or equal the value in columncat
for the given distance -
pct
: proportion of records smaller or equal the value in columncat
for the selected distance
-
-
false_zero
: number of cells that were perturbed to zero -
false_nonzero
: number of cells that were initially zero but have been perturbed to a number different from zero -
exclude_zeros
: were empty cells exluded from computation or not
Examples
orig <- c(1:10, 0, 0)
pert <- orig; pert[c(1, 5, 7)] <- c(0, 6, 9)
# ignore empty cells when computing measures `d1`, `d2`, `d3`
ck_cnt_measures(orig = orig, pert = pert, exclude_zeros = TRUE)
# use all cells
ck_cnt_measures(orig = orig, pert = pert, exclude_zeros = FALSE)
# for an application on a perturbed object, see ?cellkey_pkg
ck_create_testdata
Description
this function generates some test-data
Usage
ck_create_testdata()
Value
a data.frame
Examples
dat <- ck_create_testdata(); print(str(dat))
A real-world data set on persons
Description
820000 obervations in 5 Variables without sampling weights.
Format
ck_dat_hc92: a data frame with 820000 observations on the following 6 variables.
-
id
: a numeric identifier -
geo_m
: a character vector defining regions -
sex a
: character vector defining gender -
age_m
: a character vector containing age groups -
yae_h
: a character vector -
rkey
: a numeric vector holding record keys
References
https://ec.europa.eu/eurostat/cros/content/3-random-noise-cell-key-method_en
Examples
data(ck_dat_hc92)
head(ck_dat_hc92)
Set parameters required to perturb numeric variables using a flex function
Description
ck_flexparams()
allows to define a flex function that is used to lookup perturbation
magnitudes (percentages) used when perturbing continuous variables.
Usage
ck_flexparams(fp, p = c(0.25, 0.05), epsilon = 1, q = 3)
Arguments
fp |
(numeric scalar); at which point should the noise coefficient
function reaches its desired maximum (defined by the first element of |
p |
a numeric vector of length |
epsilon |
a numeric vector in descending order with all values |
q |
(numeric scalar); Parameter of the function; |
Details
details about the flex function can be found in Deliverable D4.2, Part I in SGA "Open Source tools for perturbative confidentiality methods"
Value
an object suitable as input for ck_params_nums()
.
See Also
ck_simpleparams()
, ck_params_nums()
Examples
x <- ck_create_testdata()
# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
x[, cnt_males := ifelse(sex == "male", 1, 0)]
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
# create record keys
x$rkey <- ck_generate_rkeys(dat = x)
# define required inputs
# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")
d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")
# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
x = x,
rkey = "rkey",
dims = list(sex = d_sex, age = d_age),
w = "sampling_weight",
countvars = countvars,
numvars = numvars)
# show some information about this table instance
tab$print() # identical with print(tab)
# information about the hierarchies
tab$hierarchy_info()
# which variables have been defined?
tab$allvars()
# count variables
tab$cntvars()
# continuous variables
tab$numvars()
# create perturbation parameters for "total" variable and
# write to yaml-file
# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
ptab = ptable::pt_ex_cnts(),
path = f_yaml)
# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)
tab$params_cnts_set(val = p_cnts1, v = "total")
# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
D = 8, V = 3, js = 2, create = FALSE)
p_cnts2 <- ck_params_cnts(ptab = para2)
# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
# perturb a variable
tab$perturb(v = "total")
# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")
# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)
# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)
# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)
p_nums1 <- ck_params_nums(
ptab = ptab1,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.30, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 3),
mu_c = 2,
same_key = FALSE,
use_zero_rkeys = FALSE,
path = f_yaml)
# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)
# for variables with positive and negative values
p_nums2 <- ck_params_nums(
ptab = ptab2,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.15, 0.02),
epsilon = c(1, 0.4, 0.15),
q = 3),
mu_c = 2,
same_key = FALSE)
# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
ptab = ptab3,
type = "mean",
mult_params = ck_simpleparams(p = 0.25),
mu_c = 2,
same_key = FALSE)
# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
tab$supp_pq(v = "income", p = 85, q = 90)
tab$supp_nk(v = "income", n = 2, k = 90)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
tab$supp_cells(
v = "income",
inp = data.frame(
sex = c("female", "female"),
"age" = c("age_group1", "age_group3")
)
)
# perturb variables
tab$perturb(v = c("income", "savings"))
# extract results
tab$numtab("income", mean_before_sum = TRUE)
tab$numtab("income", mean_before_sum = FALSE)
tab$numtab("savings")
# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")
# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
tab$perturb(v = "cnt_males")
# write results to a .csv file
tab$freqtab(
v = c("total", "cnt_males"),
path = file.path(tempdir(), "outtab.csv")
)
# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
# modifications for perturbed count variables
tab$mod_cnts()
# display a summary about utility measures
tab$summary()
Generate random record keys
Description
This function allows to create random record keys from a uniform distribution. If no seed is specified, a seed value is computed from the input data set to allow for reproducability depending on the input data set.
Usage
ck_generate_rkeys(dat, nr_digits = 8, seed = NULL)
Arguments
dat |
microdata used to generated hash for random seed |
nr_digits |
maximum number of digits in the record keys. The default setting ( |
seed |
if not |
Value
a numeric vector with nrow(dat)
record keys
Examples
dat <- ck_create_testdata()
dat$rkeys <- ck_generate_rkeys(dat = ck_create_testdata(), nr_digits = 8)
Create perturbation parameters for count variables
Description
This function allows to generate required perturbation parameters that are used to perturb count variables.
Usage
ck_params_cnts(ptab, path = NULL)
Arguments
ptab |
an object created with |
path |
a scalar character specifying a path to which the parameters created with this functions should be written to (in yaml format) |
Value
an object suitable as input to method $params_cnts_set()
for the perturbation
of counts and frequencies.
See Also
This function uses functionality from package
ptable
(https://github.com/sdcTools/ptable), expecially
ptable::create_ptable()
and
ptable::create_cnt_ptable()
. More detailed information on the parameters
is available from the respective help-pages of these functions.
Examples
x <- ck_create_testdata()
# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
x[, cnt_males := ifelse(sex == "male", 1, 0)]
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
# create record keys
x$rkey <- ck_generate_rkeys(dat = x)
# define required inputs
# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")
d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")
# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
x = x,
rkey = "rkey",
dims = list(sex = d_sex, age = d_age),
w = "sampling_weight",
countvars = countvars,
numvars = numvars)
# show some information about this table instance
tab$print() # identical with print(tab)
# information about the hierarchies
tab$hierarchy_info()
# which variables have been defined?
tab$allvars()
# count variables
tab$cntvars()
# continuous variables
tab$numvars()
# create perturbation parameters for "total" variable and
# write to yaml-file
# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
ptab = ptable::pt_ex_cnts(),
path = f_yaml)
# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)
tab$params_cnts_set(val = p_cnts1, v = "total")
# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
D = 8, V = 3, js = 2, create = FALSE)
p_cnts2 <- ck_params_cnts(ptab = para2)
# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
# perturb a variable
tab$perturb(v = "total")
# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")
# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)
# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)
# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)
p_nums1 <- ck_params_nums(
ptab = ptab1,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.30, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 3),
mu_c = 2,
same_key = FALSE,
use_zero_rkeys = FALSE,
path = f_yaml)
# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)
# for variables with positive and negative values
p_nums2 <- ck_params_nums(
ptab = ptab2,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.15, 0.02),
epsilon = c(1, 0.4, 0.15),
q = 3),
mu_c = 2,
same_key = FALSE)
# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
ptab = ptab3,
type = "mean",
mult_params = ck_simpleparams(p = 0.25),
mu_c = 2,
same_key = FALSE)
# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
tab$supp_pq(v = "income", p = 85, q = 90)
tab$supp_nk(v = "income", n = 2, k = 90)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
tab$supp_cells(
v = "income",
inp = data.frame(
sex = c("female", "female"),
"age" = c("age_group1", "age_group3")
)
)
# perturb variables
tab$perturb(v = c("income", "savings"))
# extract results
tab$numtab("income", mean_before_sum = TRUE)
tab$numtab("income", mean_before_sum = FALSE)
tab$numtab("savings")
# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")
# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
tab$perturb(v = "cnt_males")
# write results to a .csv file
tab$freqtab(
v = c("total", "cnt_males"),
path = file.path(tempdir(), "outtab.csv")
)
# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
# modifications for perturbed count variables
tab$mod_cnts()
# display a summary about utility measures
tab$summary()
Set perturbation parameters for continuous variables
Description
This function allows to define perturbation parameters used to perturb cells in magnitude tables.
Usage
ck_params_nums(
type = "top_contr",
top_k = NULL,
ptab,
mult_params,
mu_c = 0,
same_key = TRUE,
use_zero_rkeys = FALSE,
path = NULL
)
Arguments
type |
a character value defining the way to identify the
|
top_k |
it is ignored if |
ptab |
in this argument, one ore more perturbation tables are given as input. the following choices are possible:
[ptable::create_ptable())]: R:ptable::create_ptable())
|
mult_params |
an object derived with |
mu_c |
fixed extra protection amount ( |
same_key |
(logical) should original cell key ( |
use_zero_rkeys |
(logical) scalar defining if record keys of
units not contributing to a specific numeric variables should be
used ( |
path |
a scalar character specifying a path to which the parameters created with this functions should be written to (in yaml format) |
Value
an object suitable as input to method $params_nums_set()
for the
perturbation of continous variables.
See Also
Examples
# create a perturbation table using
# functionality from ptable-pkg; see help(pa = "ptable")
# this returns an extra ptable for very small cells
ptab <- ptable::pt_ex_nums(separation = TRUE)
# create parameters
ck_params_nums(
type = "top_contr",
top_k = 3,
ptab = ptab,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.20, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 2),
use_zero_rkeys = TRUE,
mu_c = 3)
Read perturbation parameters from yaml-files
Description
ck_read_yaml()
allows to create perturbation parameter inputs from yaml-files
that were previously created using ck_params_cnts()
or ck_params_nums()
.
Usage
ck_read_yaml(path)
Arguments
path |
a path to a yaml-input file |
Value
an object object suitable as input to method $params_nums_set()
for the perturbation
of continous variables in case path
was created using ck_params_nums()
or an object
suitable as input for $params_cnts_set()
for the perturbation
of counts and frequencies if the input file was generated using ck_params_cnts()
.
Examples
x <- ck_create_testdata()
# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
x[, cnt_males := ifelse(sex == "male", 1, 0)]
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
# create record keys
x$rkey <- ck_generate_rkeys(dat = x)
# define required inputs
# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")
d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")
# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
x = x,
rkey = "rkey",
dims = list(sex = d_sex, age = d_age),
w = "sampling_weight",
countvars = countvars,
numvars = numvars)
# show some information about this table instance
tab$print() # identical with print(tab)
# information about the hierarchies
tab$hierarchy_info()
# which variables have been defined?
tab$allvars()
# count variables
tab$cntvars()
# continuous variables
tab$numvars()
# create perturbation parameters for "total" variable and
# write to yaml-file
# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
ptab = ptable::pt_ex_cnts(),
path = f_yaml)
# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)
tab$params_cnts_set(val = p_cnts1, v = "total")
# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
D = 8, V = 3, js = 2, create = FALSE)
p_cnts2 <- ck_params_cnts(ptab = para2)
# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
# perturb a variable
tab$perturb(v = "total")
# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")
# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)
# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)
# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)
p_nums1 <- ck_params_nums(
ptab = ptab1,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.30, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 3),
mu_c = 2,
same_key = FALSE,
use_zero_rkeys = FALSE,
path = f_yaml)
# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)
# for variables with positive and negative values
p_nums2 <- ck_params_nums(
ptab = ptab2,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.15, 0.02),
epsilon = c(1, 0.4, 0.15),
q = 3),
mu_c = 2,
same_key = FALSE)
# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
ptab = ptab3,
type = "mean",
mult_params = ck_simpleparams(p = 0.25),
mu_c = 2,
same_key = FALSE)
# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
tab$supp_pq(v = "income", p = 85, q = 90)
tab$supp_nk(v = "income", n = 2, k = 90)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
tab$supp_cells(
v = "income",
inp = data.frame(
sex = c("female", "female"),
"age" = c("age_group1", "age_group3")
)
)
# perturb variables
tab$perturb(v = c("income", "savings"))
# extract results
tab$numtab("income", mean_before_sum = TRUE)
tab$numtab("income", mean_before_sum = FALSE)
tab$numtab("savings")
# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")
# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
tab$perturb(v = "cnt_males")
# write results to a .csv file
tab$freqtab(
v = c("total", "cnt_males"),
path = file.path(tempdir(), "outtab.csv")
)
# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
# modifications for perturbed count variables
tab$mod_cnts()
# display a summary about utility measures
tab$summary()
Set parameters required to perturb numeric variables using a simple approach
Description
ck_simpleparams()
allows to define parameters for a simple perturbation
approach based on a single magnitude parameter (m
). The values of epsilon
are used to "weight"
parameter m
in case type == "top_contr"
is set in
ck_params_nums()
.
Usage
ck_simpleparams(p, epsilon = 1)
Arguments
p |
a percentage value used as magnitude for perturbation |
epsilon |
a numeric vector in descending order with all values |
Details
details about the flex function can be found in Deliverable D4.2, Part I in SGA "Open Source tools for perturbative confidentiality methods"
Value
an object suitable as input for ck_params_nums()
.
See Also
ck_flexparams()
, ck_params_nums()
Examples
x <- ck_create_testdata()
# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
x[, cnt_males := ifelse(sex == "male", 1, 0)]
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
# create record keys
x$rkey <- ck_generate_rkeys(dat = x)
# define required inputs
# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")
d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")
# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
x = x,
rkey = "rkey",
dims = list(sex = d_sex, age = d_age),
w = "sampling_weight",
countvars = countvars,
numvars = numvars)
# show some information about this table instance
tab$print() # identical with print(tab)
# information about the hierarchies
tab$hierarchy_info()
# which variables have been defined?
tab$allvars()
# count variables
tab$cntvars()
# continuous variables
tab$numvars()
# create perturbation parameters for "total" variable and
# write to yaml-file
# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
ptab = ptable::pt_ex_cnts(),
path = f_yaml)
# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)
tab$params_cnts_set(val = p_cnts1, v = "total")
# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
D = 8, V = 3, js = 2, create = FALSE)
p_cnts2 <- ck_params_cnts(ptab = para2)
# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
# perturb a variable
tab$perturb(v = "total")
# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")
# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)
# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)
# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)
p_nums1 <- ck_params_nums(
ptab = ptab1,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.30, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 3),
mu_c = 2,
same_key = FALSE,
use_zero_rkeys = FALSE,
path = f_yaml)
# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)
# for variables with positive and negative values
p_nums2 <- ck_params_nums(
ptab = ptab2,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.15, 0.02),
epsilon = c(1, 0.4, 0.15),
q = 3),
mu_c = 2,
same_key = FALSE)
# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
ptab = ptab3,
type = "mean",
mult_params = ck_simpleparams(p = 0.25),
mu_c = 2,
same_key = FALSE)
# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
tab$supp_pq(v = "income", p = 85, q = 90)
tab$supp_nk(v = "income", n = 2, k = 90)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
tab$supp_cells(
v = "income",
inp = data.frame(
sex = c("female", "female"),
"age" = c("age_group1", "age_group3")
)
)
# perturb variables
tab$perturb(v = c("income", "savings"))
# extract results
tab$numtab("income", mean_before_sum = TRUE)
tab$numtab("income", mean_before_sum = FALSE)
tab$numtab("savings")
# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")
# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
tab$perturb(v = "cnt_males")
# write results to a .csv file
tab$freqtab(
v = c("total", "cnt_males"),
path = file.path(tempdir(), "outtab.csv")
)
# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
# modifications for perturbed count variables
tab$mod_cnts()
# display a summary about utility measures
tab$summary()
ck_vignette
Description
starts the package vignette that gets you started with the package
Usage
ck_vignette()
Value
a browser windows/tab with showing the vignette
Examples
## Not run:
ck_vignette()
## End(Not run)
A real-world data set on household income and expenditures
Description
4580 Obervations in 15 Variables; This dataset also contains sampling weights!
Format
testdata: a data frame with 4580 observations on the following 15 variables.
-
urbrur
: a numeric vector -
roof
: a numeric vector -
walls
: a numeric vector -
water
: a numeric vector -
electcon
: a numeric vector -
relat
: a numeric vector -
sex
: a numeric vector -
age
: a numeric vector -
hhcivil
: a numeric vector -
expend
: a numeric vector -
income
: a numeric vector -
savings
: a numeric vector -
ori_hid
: a numeric vector -
sampling_weight
: a numeric vector -
household_weights
: a numeric vector
References
The International Household Survey Network, www.ihsn.org
Examples
data(testdata)
head(testdata)