Title: | Causal Decomposition of Group Disparities |
Version: | 1.0.0 |
Description: | The framework of causal decomposition of group disparities developed by Yu and Elwert (2025) <doi:10.1214/24-AOAS1990>. This package implements the decomposition estimators that are based on efficient influence functions. For the nuisance functions of the estimators, both parametric and nonparametric options are provided, as well as manual options in case the default models are not satisfying. |
License: | MIT + file LICENSE |
URL: | https://github.com/ang-yu/cdgd |
BugReports: | https://github.com/ang-yu/cdgd/issues |
Depends: | R (≥ 4.0.0) |
Imports: | caret (≥ 6.0.0) |
Suggests: | gbm (≥ 2.1.8), nnet (≥ 7.3.0), ranger (≥ 0.14.1) |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-06-16 06:30:43 UTC; Ang |
Author: | Ang Yu |
Maintainer: | Ang Yu <ang_yu@outlook.com> |
Repository: | CRAN |
Date/Publication: | 2025-06-16 06:50:02 UTC |
Perform unconditional decomposition with nuisance functions estimated beforehand
Description
This function gives the user full control over the estimation of the nuisance functions. For the unconditional decomposition, three nuisance functions (YgivenGX.Pred_D0, YgivenGX.Pred_D1, and DgivenGX.Pred) need to be estimated. The nuisance functions should be estimated using cross-fitting if Donsker class is not assumed.
Usage
cdgd0_manual(
Y,
D,
G,
YgivenGX.Pred_D1,
YgivenGX.Pred_D0,
DgivenGX.Pred,
data,
alpha = 0.05,
weight = NULL
)
Arguments
Y |
Outcome. The name of a numeric variable. |
D |
Treatment status. The name of a binary numeric variable taking values of 0 and 1. |
G |
Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1. |
YgivenGX.Pred_D1 |
A numeric vector of predicted Y values given X, G, and D=1. Vector length=nrow(data). |
YgivenGX.Pred_D0 |
A numeric vector of predicted Y values given X, G, and D=0. Vector length=nrow(data). |
DgivenGX.Pred |
A numeric vector of predicted D values given X and G. Vector length=nrow(data). |
data |
A data frame. |
alpha |
1-alpha confidence interval. |
weight |
Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X and G. |
Value
A list of estimates.
Examples
# This example will take a minute to run.
data(exp_data)
Y="outcome"
D="treatment"
G="group_a"
X=c("Q","confounder")
data=exp_data
set.seed(1)
### estimate the nuisance functions with cross-fitting
sample1 <- sample(nrow(data), floor(nrow(data)/2), replace=FALSE)
sample2 <- setdiff(1:nrow(data), sample1)
### outcome regression model
message <- utils::capture.output( YgivenDGX.Model.sample1 <-
caret::train(stats::as.formula(paste(Y, paste(D,G,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample1,], method="ranger", trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=c(2,4),splitrule=c("variance"),min.node.size=c(50,100))) )
message <- utils::capture.output( YgivenDGX.Model.sample2 <-
caret::train(stats::as.formula(paste(Y, paste(D,G,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample2,], method="ranger", trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=c(2,4),splitrule=c("variance"),min.node.size=c(50,100))) )
### propensity score model
data[,D] <- as.factor(data[,D])
levels(data[,D]) <- c("D0","D1") # necessary for caret implementation of ranger
message <- utils::capture.output( DgivenGX.Model.sample1 <-
caret::train(stats::as.formula(paste(D, paste(G,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample1,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=c(1,2),splitrule=c("gini"),min.node.size=c(50,100))) )
message <- utils::capture.output( DgivenGX.Model.sample2 <-
caret::train(stats::as.formula(paste(D, paste(G,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample2,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=c(1,2),splitrule=c("gini"),min.node.size=c(50,100))) )
data[,D] <- as.numeric(data[,D])-1
### cross-fitted predictions
YgivenGX.Pred_D0 <- YgivenGX.Pred_D1 <- DgivenGX.Pred <- rep(NA, nrow(data))
pred_data <- data
pred_data[,D] <- 0
YgivenGX.Pred_D0[sample2] <- stats::predict(YgivenDGX.Model.sample1, newdata = pred_data[sample2,])
YgivenGX.Pred_D0[sample1] <- stats::predict(YgivenDGX.Model.sample2, newdata = pred_data[sample1,])
pred_data <- data
pred_data[,D] <- 1
YgivenGX.Pred_D1[sample2] <- stats::predict(YgivenDGX.Model.sample1, newdata = pred_data[sample2,])
YgivenGX.Pred_D1[sample1] <- stats::predict(YgivenDGX.Model.sample2, newdata = pred_data[sample1,])
pred_data <- data
DgivenGX.Pred[sample2] <- stats::predict(DgivenGX.Model.sample1,
newdata = pred_data[sample2,], type="prob")[,2]
DgivenGX.Pred[sample1] <- stats::predict(DgivenGX.Model.sample2,
newdata = pred_data[sample1,], type="prob")[,2]
results <- cdgd0_manual(Y=Y,D=D,G=G,
YgivenGX.Pred_D0=YgivenGX.Pred_D0,
YgivenGX.Pred_D1=YgivenGX.Pred_D1,
DgivenGX.Pred=DgivenGX.Pred,
data=data)
results
Perform unconditional decomposition via machine learning
Description
Perform unconditional decomposition via machine learning
Usage
cdgd0_ml(Y, D, G, X, data, algorithm, alpha = 0.05, trim = 0, weight = NULL)
Arguments
Y |
Outcome. The name of a numeric variable (can be binary and take values of 0 and 1). |
D |
Treatment status. The name of a binary numeric variable taking values of 0 and 1. |
G |
Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1. |
X |
Confounders. A vector of variables names. |
data |
A data frame. |
algorithm |
The ML algorithm for modelling. "nnet" for neural network, "ranger" for random forests, "gbm" for generalized boosted models. |
alpha |
1-alpha confidence interval. |
trim |
Threshold for trimming the propensity score. When trim=a, individuals with propensity scores lower than a or higher than 1-a will be dropped. |
weight |
Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X and G. |
Value
A list of estimates.
Examples
# This example will take a minute to run.
data(exp_data)
set.seed(1)
results <- cdgd0_ml(
Y="outcome",
D="treatment",
G="group_a",
X=c("Q","confounder"),
data=exp_data,
algorithm="gbm")
results[[1]]
Perform unconditional decomposition via parametric models
Description
Perform unconditional decomposition via parametric models
Usage
cdgd0_pa(Y, D, G, X, data, alpha = 0.05, trim = 0, weight = NULL)
Arguments
Y |
Outcome. The name of a numeric variable (can be binary and take values of 0 and 1). |
D |
Treatment status. The name of a binary numeric variable taking values of 0 and 1. |
G |
Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1. |
X |
Confounders. A vector of variable names. |
data |
A data frame. |
alpha |
1-alpha confidence interval. |
trim |
Threshold for trimming the propensity score. When trim=a, individuals with propensity scores lower than a or higher than 1-a will be dropped. |
weight |
Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X and G. |
Value
A list of estimates.
Examples
data(exp_data)
results <- cdgd0_pa(
Y="outcome",
D="treatment",
G="group_a",
X=c("Q","confounder"),
data=exp_data)
results[[1]]
Perform conditional decomposition with nuisance functions estimated beforehand
Description
This function gives user full control over the estimation of the nuisance functions. For the unconditional decomposition, ten nuisance functions need to be estimated. The nuisance functions should be estimated using cross-fitting if Donsker class is not assumed.
Usage
cdgd1_manual(
Y,
D,
G,
YgivenGXQ.Pred_D0,
YgivenGXQ.Pred_D1,
DgivenGXQ.Pred,
Y0givenQ.Pred_G0,
Y0givenQ.Pred_G1,
Y1givenQ.Pred_G0,
Y1givenQ.Pred_G1,
DgivenQ.Pred_G0,
DgivenQ.Pred_G1,
GgivenQ.Pred,
data,
alpha = 0.05,
weight = NULL
)
Arguments
Y |
Outcome. The name of a numeric variable. |
D |
Treatment status. The name of a binary numeric variable taking values of 0 and 1. |
G |
Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1. |
YgivenGXQ.Pred_D0 |
A numeric vector of predicted Y values given X, G, and D=0. Vector length=nrow(data). |
YgivenGXQ.Pred_D1 |
A numeric vector of predicted Y values given X, G, and D=1. Vector length=nrow(data). |
DgivenGXQ.Pred |
A numeric vector of predicted D values given X and G. Vector length=nrow(data). |
Y0givenQ.Pred_G0 |
A numeric vector of predicted Y(0) values given Q and G=0. Vector length=nrow(data). If there are sampling weights, this should be weighted in a specific way (see p.9 of the appendices of Yu and Elwert, 2025). |
Y0givenQ.Pred_G1 |
A numeric vector of predicted Y(0) values given Q and G=0. Vector length=nrow(data). Same as above. |
Y1givenQ.Pred_G0 |
A numeric vector of predicted Y(1) values given Q and G=0. Vector length=nrow(data). Same as above. |
Y1givenQ.Pred_G1 |
A numeric vector of predicted Y(1) values given Q and G=1. Vector length=nrow(data). Same as above. |
DgivenQ.Pred_G0 |
A numeric vector of predicted D values given Q and G=0. Vector length=nrow(data). Same as above. |
DgivenQ.Pred_G1 |
A numeric vector of predicted D values given Q and G=0. Vector length=nrow(data). Same as above. |
GgivenQ.Pred |
A numeric vector of predicted G values given Q. Vector length=nrow(data). |
data |
A data frame. |
alpha |
1-alpha confidence interval. |
weight |
Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X only (note that this is different from the unconditional decomposition). |
Value
A dataframe of estimates.
Examples
# This example will take a minute to run.
data(exp_data)
Y="outcome"
D="treatment"
G="group_a"
X="confounder"
Q="Q"
data=exp_data
set.seed(1)
### estimate the nuisance functions with cross-fitting
sample1 <- sample(nrow(data), floor(nrow(data)/2), replace=FALSE)
sample2 <- setdiff(1:nrow(data), sample1)
### outcome regression model
message <- utils::capture.output( YgivenDGXQ.Model.sample1 <-
caret::train(stats::as.formula(paste(Y, paste(D,G,Q,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample1,], method="ranger",
trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=c(2,4),splitrule=c("variance"),min.node.size=c(50,100))) )
message <- utils::capture.output( YgivenDGXQ.Model.sample2 <-
caret::train(stats::as.formula(paste(Y, paste(D,G,Q,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample2,], method="ranger",
trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=c(2,4),splitrule=c("variance"),min.node.size=c(50,100))) )
### propensity score model
data[,D] <- as.factor(data[,D])
levels(data[,D]) <- c("D0","D1") # necessary for caret implementation of ranger
message <- utils::capture.output( DgivenGXQ.Model.sample1 <-
caret::train(stats::as.formula(paste(D, paste(G,Q,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample1,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=c(1,2),splitrule=c("gini"),min.node.size=c(50,100))) )
message <- utils::capture.output( DgivenGXQ.Model.sample2 <-
caret::train(stats::as.formula(paste(D, paste(G,Q,paste(X,collapse="+"),sep="+"), sep="~")),
data=data[sample2,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=c(1,2),splitrule=c("gini"),min.node.size=c(50,100))) )
data[,D] <- as.numeric(data[,D])-1
### cross-fitted predictions
YgivenGXQ.Pred_D0 <- YgivenGXQ.Pred_D1 <- DgivenGXQ.Pred <- rep(NA, nrow(data))
pred_data <- data
pred_data[,D] <- 0
YgivenGXQ.Pred_D0[sample2] <- stats::predict(YgivenDGXQ.Model.sample1,
newdata = pred_data[sample2,])
YgivenGXQ.Pred_D0[sample1] <- stats::predict(YgivenDGXQ.Model.sample2,
newdata = pred_data[sample1,])
pred_data <- data
pred_data[,D] <- 1
YgivenGXQ.Pred_D1[sample2] <- stats::predict(YgivenDGXQ.Model.sample1,
newdata = pred_data[sample2,])
YgivenGXQ.Pred_D1[sample1] <- stats::predict(YgivenDGXQ.Model.sample2,
newdata = pred_data[sample1,])
pred_data <- data
DgivenGXQ.Pred[sample2] <- stats::predict(DgivenGXQ.Model.sample1,
newdata = pred_data[sample2,], type="prob")[,2]
DgivenGXQ.Pred[sample1] <- stats::predict(DgivenGXQ.Model.sample2,
newdata = pred_data[sample1,], type="prob")[,2]
### Estimate E(Y_d | Q,g)
YgivenGXQ.Pred_D1_ncf <- YgivenGXQ.Pred_D0_ncf <- DgivenGXQ.Pred_ncf <- rep(NA, nrow(data))
# ncf stands for non-cross-fitted
pred_data <- data
pred_data[,D] <- 1
YgivenGXQ.Pred_D1_ncf[sample1] <- stats::predict(YgivenDGXQ.Model.sample1,
newdata = pred_data[sample1,])
YgivenGXQ.Pred_D1_ncf[sample2] <- stats::predict(YgivenDGXQ.Model.sample2,
newdata = pred_data[sample2,])
pred_data <- data
pred_data[,D] <- 0
YgivenGXQ.Pred_D0_ncf[sample1] <- stats::predict(YgivenDGXQ.Model.sample1,
newdata = pred_data[sample1,])
YgivenGXQ.Pred_D0_ncf[sample2] <- stats::predict(YgivenDGXQ.Model.sample2,
newdata = pred_data[sample2,])
DgivenGXQ.Pred_ncf[sample1] <- stats::predict(DgivenGXQ.Model.sample1,
newdata = pred_data[sample1,], type="prob")[,2]
DgivenGXQ.Pred_ncf[sample2] <- stats::predict(DgivenGXQ.Model.sample2,
newdata = pred_data[sample2,], type="prob")[,2]
# IPOs for modelling E(Y_d | Q,g)
IPO_D0_ncf <- (1-data[,D])/(1-DgivenGXQ.Pred_ncf)/mean((1-data[,D])/(1-DgivenGXQ.Pred_ncf))*
(data[,Y]-YgivenGXQ.Pred_D0_ncf) + YgivenGXQ.Pred_D0_ncf
IPO_D1_ncf <- data[,D]/DgivenGXQ.Pred_ncf/mean(data[,D]/DgivenGXQ.Pred_ncf)*
(data[,Y]-YgivenGXQ.Pred_D1_ncf) + YgivenGXQ.Pred_D1_ncf
data_temp <- data[,c(G,Q)]
data_temp$IPO_D0_ncf <- IPO_D0_ncf
data_temp$IPO_D1_ncf <- IPO_D1_ncf
message <- utils::capture.output( Y0givenGQ.Model.sample1 <-
caret::train(stats::as.formula(paste("IPO_D0_ncf", paste(G,Q,sep="+"), sep="~")),
data=data_temp[sample1,], method="ranger",
trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=1,splitrule=c("variance"),min.node.size=c(25,50))) )
message <- utils::capture.output( Y0givenGQ.Model.sample2 <-
caret::train(stats::as.formula(paste("IPO_D0_ncf", paste(G,Q,sep="+"), sep="~")),
data=data_temp[sample2,], method="ranger",
trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=1,splitrule=c("variance"),min.node.size=c(25,50))) )
message <- utils::capture.output( Y1givenGQ.Model.sample1 <-
caret::train(stats::as.formula(paste("IPO_D1_ncf", paste(G,Q,sep="+"), sep="~")),
data=data_temp[sample1,], method="ranger",
trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=1,splitrule=c("variance"),min.node.size=c(25,50))) )
message <- utils::capture.output( Y1givenGQ.Model.sample2 <-
caret::train(stats::as.formula(paste("IPO_D1_ncf", paste(G,Q,sep="+"), sep="~")),
data=data_temp[sample2,], method="ranger",
trControl=caret::trainControl(method="cv"),
tuneGrid=expand.grid(mtry=1,splitrule=c("variance"),min.node.size=c(25,50))) )
Y0givenQ.Pred_G0 <- Y0givenQ.Pred_G1 <- Y1givenQ.Pred_G0 <- Y1givenQ.Pred_G1 <- rep(NA, nrow(data))
pred_data <- data
pred_data[,G] <- 1
# cross-fitting is used
Y0givenQ.Pred_G1[sample2] <- stats::predict(Y0givenGQ.Model.sample1, newdata = pred_data[sample2,])
Y0givenQ.Pred_G1[sample1] <- stats::predict(Y0givenGQ.Model.sample2, newdata = pred_data[sample1,])
Y1givenQ.Pred_G1[sample2] <- stats::predict(Y1givenGQ.Model.sample1, newdata = pred_data[sample2,])
Y1givenQ.Pred_G1[sample1] <- stats::predict(Y1givenGQ.Model.sample2, newdata = pred_data[sample1,])
pred_data <- data
pred_data[,G] <- 0
# cross-fitting is used
Y0givenQ.Pred_G0[sample2] <- stats::predict(Y0givenGQ.Model.sample1, newdata = pred_data[sample2,])
Y0givenQ.Pred_G0[sample1] <- stats::predict(Y0givenGQ.Model.sample2, newdata = pred_data[sample1,])
Y1givenQ.Pred_G0[sample2] <- stats::predict(Y1givenGQ.Model.sample1, newdata = pred_data[sample2,])
Y1givenQ.Pred_G0[sample1] <- stats::predict(Y1givenGQ.Model.sample2, newdata = pred_data[sample1,])
### Estimate E(D | Q,g')
data[,D] <- as.factor(data[,D])
levels(data[,D]) <- c("D0","D1") # necessary for caret implementation of ranger
message <- utils::capture.output( DgivenGQ.Model.sample1 <-
caret::train(stats::as.formula(paste(D, paste(G,Q,sep="+"), sep="~")),
data=data[sample1,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=1,splitrule=c("gini"),min.node.size=c(25,50))) )
message <- utils::capture.output( DgivenGQ.Model.sample2 <-
caret::train(stats::as.formula(paste(D, paste(G,Q,sep="+"), sep="~")),
data=data[sample2,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=1,splitrule=c("gini"),min.node.size=c(25,50))) )
data[,D] <- as.numeric(data[,D])-1
DgivenQ.Pred_G0 <- DgivenQ.Pred_G1 <- rep(NA, nrow(data))
pred_data <- data
pred_data[,G] <- 0
DgivenQ.Pred_G0[sample2] <- stats::predict(DgivenGQ.Model.sample1,
newdata = pred_data[sample2,], type="prob")[,2]
DgivenQ.Pred_G0[sample1] <- stats::predict(DgivenGQ.Model.sample2,
newdata = pred_data[sample1,], type="prob")[,2]
pred_data <- data
pred_data[,G] <- 1
DgivenQ.Pred_G1[sample2] <- stats::predict(DgivenGQ.Model.sample1,
newdata = pred_data[sample2,], type="prob")[,2]
DgivenQ.Pred_G1[sample1] <- stats::predict(DgivenGQ.Model.sample2,
newdata = pred_data[sample1,], type="prob")[,2]
### Estimate p_g(Q)=Pr(G=g | Q)
data[,G] <- as.factor(data[,G])
levels(data[,G]) <- c("G0","G1") # necessary for caret implementation of ranger
message <- utils::capture.output( GgivenQ.Model.sample1 <-
caret::train(stats::as.formula(paste(G, paste(Q,sep="+"), sep="~")),
data=data[sample1,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=1,splitrule=c("gini"),min.node.size=c(25,50))) )
message <- utils::capture.output( GgivenQ.Model.sample2 <-
caret::train(stats::as.formula(paste(G, paste(Q,sep="+"), sep="~")),
data=data[sample2,], method="ranger",
trControl=caret::trainControl(method="cv", classProbs=TRUE),
tuneGrid=expand.grid(mtry=1,splitrule=c("gini"),min.node.size=c(25,50))) )
data[,G] <- as.numeric(data[,G])-1
GgivenQ.Pred <- rep(NA, nrow(data))
GgivenQ.Pred[sample2] <- stats::predict(GgivenQ.Model.sample1,
newdata = data[sample2,], type="prob")[,2]
GgivenQ.Pred[sample1] <- stats::predict(GgivenQ.Model.sample2,
newdata = data[sample1,], type="prob")[,2]
results <- cdgd1_manual(Y=Y,D=D,G=G,
YgivenGXQ.Pred_D0=YgivenGXQ.Pred_D0,
YgivenGXQ.Pred_D1=YgivenGXQ.Pred_D1,
DgivenGXQ.Pred=DgivenGXQ.Pred,
Y0givenQ.Pred_G0=Y0givenQ.Pred_G0,
Y0givenQ.Pred_G1=Y0givenQ.Pred_G1,
Y1givenQ.Pred_G0=Y1givenQ.Pred_G0,
Y1givenQ.Pred_G1=Y1givenQ.Pred_G1,
DgivenQ.Pred_G0=DgivenQ.Pred_G0,
DgivenQ.Pred_G1=DgivenQ.Pred_G1,
GgivenQ.Pred=GgivenQ.Pred,
data,alpha=0.05)
results
Perform conditional decomposition via machine learning
Description
Perform conditional decomposition via machine learning
Usage
cdgd1_ml(
Y,
D,
G,
X,
Q,
data,
algorithm,
alpha = 0.05,
trim1 = 0,
trim2 = 0,
weight = NULL
)
Arguments
Y |
Outcome. The name of a numeric variable (can be binary and take values of 0 and 1). |
D |
Treatment status. The name of a binary numeric variable taking values of 0 and 1. |
G |
Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1. |
X |
Confounders. A vector of variables names. |
Q |
Conditional set. A vector of names of numeric variables. |
data |
A data frame. |
algorithm |
The ML algorithm for modelling. "nnet" for neural network, "ranger" for random forests, "gbm" for generalized boosted models. |
alpha |
1-alpha confidence interval. |
trim1 |
Threshold for trimming the propensity score. When trim1=a, individuals with propensity scores lower than a or higher than 1-a will be dropped. |
trim2 |
Threshold for trimming the G given Q predictions. When trim2=a, individuals with G given Q predictions lower than a or higher than 1-a will be dropped. |
weight |
Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X only (note that this is different from the unconditional decomposition). |
Value
A dataframe of estimates.
Examples
# This example will take a minute to run.
data(exp_data)
set.seed(1)
results <- cdgd1_ml(
Y="outcome",
D="treatment",
G="group_a",
X="confounder",
Q="Q",
data=exp_data,
algorithm="gbm")
results
Perform conditional decomposition via parametric models
Description
Perform conditional decomposition via parametric models
Usage
cdgd1_pa(
Y,
D,
G,
X,
Q,
data,
alpha = 0.05,
trim1 = 0,
trim2 = 0,
weight = NULL
)
Arguments
Y |
Outcome. The name of a numeric variable (can be binary and take values of 0 and 1). |
D |
Treatment status. The name of a binary numeric variable taking values of 0 and 1. |
G |
Advantaged group membership. The name of a binary numeric variable taking values of 0 and 1. |
X |
Confounders. A vector of variable names. |
Q |
Conditional set. A vector of variable names. |
data |
A data frame. |
alpha |
1-alpha confidence interval. |
trim1 |
Threshold for trimming the propensity score. When trim1=a, individuals with propensity scores lower than a or higher than 1-a will be dropped. |
trim2 |
Threshold for trimming the G given Q predictions. When trim2=a, individuals with G given Q predictions lower than a or higher than 1-a will be dropped. |
weight |
Sampling weights. The name of a numeric variable. If unspecified, equal weights are used. Technically, the weight should be a deterministic function of X only (note that this is different from the unconditional decomposition). |
Value
A dataframe of estimates.
Examples
data(exp_data)
results <- cdgd1_pa(
Y="outcome",
D="treatment",
G="group_a",
X="confounder",
Q="Q",
data=exp_data)
results
Simulated example data
Description
Simulated example data
Usage
data(exp_data)
Format
An object of class data.frame
with 1000 rows and 5 columns.