Type: | Package |
Title: | Continuous Biomarker Evaluation with Adjustment of Covariates |
Version: | 0.1.5 |
Author: | Ziyi Li |
Maintainer: | Ziyi Li <zli16@mdanderson.org> |
Description: | Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment". |
License: | GPL-2 |
Encoding: | UTF-8 |
Depends: | R (≥ 4.0), quantreg, RColorBrewer |
Suggests: | knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2021-03-31 20:16:31 UTC; zli16 |
Repository: | CRAN |
Date/Publication: | 2021-04-02 08:20:03 UTC |
Covariate-adjusted ROC
Description
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve.
Usage
caROC(diseaseData, controlData, userFormula, control_sensitivity = NULL,
control_specificity = NULL, mono_resp_method = "ROC",
whichSE = "sample", global_ROC_controlled_by = "sensitivity",
nbootstrap = 100, CI_alpha = 0.95, logit_CI = TRUE,
verbose = TRUE)
Arguments
diseaseData |
Data from patients including dependent (biomarker) and independent (covariates) variables. |
controlData |
Data from controls including dependent (biomarker) and independent (covariates) variables. |
userFormula |
A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2". |
control_sensitivity |
The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)). |
control_specificity |
The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)). |
mono_resp_method |
The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC". |
whichSE |
The method used to compute standard error. It should be one from the following: "sample", "bootstrap", meaning to calculate the standard error using sample-based approach or bootstrap. Default is "sample". |
global_ROC_controlled_by |
Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity". |
nbootstrap |
Number of boostrap iterations. Default is 100. |
CI_alpha |
Percentage of confidence interval. Default is 0.95. |
logit_CI |
Whether to apply logit-based confidence interval. Logit-transformed CI has been identified to be more robust near border area. |
verbose |
Whether to print out messages. Default value is true. |
Value
If control_sensitivity or control_specificity is provided, compute covariate-adjusted specificity (sensitivity) at controlled sensitivity (specificity) level.
Estimate |
Covariate-adjusted sensitivity/specificity. |
SE |
Estimated standard error. |
CI |
Estimated confidence intervals. |
If both control_sensitivity and control_specificity are null, compuate covariate-adjusted ROC curve.
sensitivity |
Estimated sensitivity. |
specificity |
Estimated specificity. |
mono_adj |
Monotonicity adjustment method. |
Author(s)
Ziyi.li <ziyi.li@emory.edu>
Examples
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
## calculate covariate-adjusted specificity at
## controlled sensitivity levels (0.2, 0.8, 0.9)
caROC(diseaseData,controlData,userFormula,
control_sensitivity = c(0.2,0.8, 0.9),
control_specificity = NULL,mono_resp_method = "ROC",
whichSE = "bootstrap",nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)
## calculate covariate-adjusted sensitivity at
## controlled specificity levels (0.2, 0.8, 0.9)
caROC(diseaseData,controlData,userFormula,
control_sensitivity = NULL,
control_specificity = c(0.7,0.8, 0.9),mono_resp_method = "none",
whichSE = "sample",nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)
## calculate the whole covariate-adjusted ROC curve
ROC1 <- caROC(diseaseData,controlData,userFormula = "M~Z",
mono_resp_method = "none")
ROC2 <- caROC(diseaseData,controlData,userFormula = "M~Z",
mono_resp_method = "ROC")
Get confidence band for covariate-adjusted ROC curve.
Description
Use this function to compute the confidence band for covariate-adjusted ROC curve, with or without monotonicity respecting methods.
Usage
caROC_CB(diseaseData, controlData, userFormula,
mono_resp_method, global_ROC_controlled_by = "sensitivity",
CB_alpha = 0.95, logit_CB = FALSE, nbootstrap = 100,
nbin = 100, verbose = FALSE)
Arguments
diseaseData |
Data from patients including dependent (biomarker) and independent (covariates) variables. |
controlData |
Data from controls including dependent (biomarker) and independent (covariates) variables. |
userFormula |
A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2". |
mono_resp_method |
The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC". |
global_ROC_controlled_by |
Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity". |
CB_alpha |
Percentage of confidence band. Default is 0.95. |
logit_CB |
Whether to use logit-transformed (then transform back) confidence band. Default is FALSE. |
nbootstrap |
Number of boostrap iterations. Default is 100. |
nbin |
Number of bins used for constructing confidence band. Default is 100. |
verbose |
Whether to print out messages during bootstrap. Default value is FALSE. |
Value
If global ROC is controlled by sensitivity, a list will be output including the following
Sensitivity |
Vector of sensitivities; |
Specificity_upper |
Upper confidence band for specificity estimations; |
Specificity_lower |
Lower confidence band for specificity estimations; |
global_ROC_controlled_by |
"sensitivity". |
If global ROC is controlled by Specificity, a list will be output including the following
Specificity |
Vector of specificity; |
Sensitivity_upper |
Upper confidence band for sensitivity estimations; |
Sensitivity_lower |
Lower confidence band for sensitivity estimations; |
global_ROC_controlled_by |
"specificity". |
Author(s)
Ziyi.li <ziyi.li@emory.edu>
Examples
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
### calculate confidence band by controlling sensitivity
### using different monotonicity respecting methods
ROC_CB1 <- caROC_CB(diseaseData,controlData,userFormula,
mono_resp_method = "none",
CB_alpha = 0.95,
nbin = 100,verbose = FALSE)
ROC_CB2 <- caROC_CB(diseaseData,controlData,userFormula,
mono_resp_method = "ROC",
CB_alpha = 0.95,
nbin = 100,verbose = FALSE)
Calculate covariate-adjusted threshold.
Description
This function is used to calculate covariate-adjusted threshold(s) at controlled sensitivity levels or specificity levels.
Usage
caThreshold(userFormula, new_covariates, diseaseData = NULL,
controlData = NULL, control_sensitivity = NULL,
control_specificity = NULL)
Arguments
userFormula |
A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2". |
new_covariates |
A data frame containing covariates for new data. For example, if my userFormula is "Y ~ Z1 + Z2", new_covariates could be data.frame(Z1 = rnorm(100), Z2 = rnorm(100)). |
diseaseData |
Data from patients including dependent (biomarker) and independent (covariates) variables. |
controlData |
Data from controls including dependent (biomarker) and independent (covariates) variables. |
control_sensitivity |
The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)). |
control_specificity |
The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)). |
Value
A vector of covariate-adjusted threshold for all subjects if a scalar sensitivity/specificity is given. A data matrix of covariate-adjusted thresholds for all subjects if a vector of sensitivity/specificity is given.
Author(s)
Ziyi Li <ziyi.li@emory.edu>
Examples
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
### generate new covariates
new_covariates <- data.frame(Z = rbinom(20, size = 1, prob = 0.5))
### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7, 0.8, 0.9
caThreshold(userFormula, new_covariates,
diseaseData = diseaseData,
controlData = NULL,
control_sensitivity = c(0.7,0.8,0.9),
control_specificity = NULL)
### calculate covariate-adjusted thresholds at controlled
### sensitivity level 0.7
caThreshold(userFormula,new_covariates,
diseaseData = diseaseData,
controlData = NULL,
control_sensitivity = 0.7,
control_specificity = NULL)
### calculate covariate-adjusted thresholds at controlled
### specificity level 0.7, 0.8, 0.9
caThreshold(userFormula,new_covariates,
diseaseData = NULL,
controlData = controlData,
control_sensitivity = NULL,
control_specificity = c(0.7,0.8,0.9))
### calculate covariate-adjusted thresholds at controlled
### specificity level 0.7
caThreshold(userFormula,new_covariates,
diseaseData = NULL,
controlData = controlData,
control_sensitivity = NULL,
control_specificity = 0.7)
Plot covariate-adjusted ROC.
Description
Function to plot the ROC curve generated from caROC().
Usage
plot_caROC(myROC, ...)
Arguments
myROC |
ROC output from caROC() function. |
... |
Arguments to tune generated plots. |
Details
This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".
Value
Plot the ROC curve.
Author(s)
Ziyi Li <zli16@mdanderson.org>
Examples
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
ROC1 <- caROC(diseaseData,controlData,userFormula,
mono_resp_method = "none")
ROC2 <- caROC(diseaseData,controlData,userFormula,
mono_resp_method = "ROC")
plot_caROC(ROC1)
plot_caROC(ROC2, col = "blue")
Plot confidence band of covariate-adjusted ROC.
Description
A function to plot the confidence band of covariate-adjusted ROC.
Usage
plot_caROC_CB(myROC_CB, add = TRUE, ...)
Arguments
myROC_CB |
Output from caROC_CB() function. |
add |
Whether to add confidence band to existing plot (TRUE) or draw a new one (FALSE). Default is TRUE. |
... |
Any parameters related with the plot. |
Value
No values will be return. This function is for plotting only.
Author(s)
Ziyi Li<ziyi.li@emory.edu>
Examples
library(caROC)
n1 = n0 = 100
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
formula = "M~Z"
ROC_CB1 <- caROC_CB(diseaseData,controlData,formula,
mono_resp_method = "none",
CB_alpha = 0.95,
nbin = 100,verbose = FALSE)
### plot confidence band individually
plot_caROC_CB(ROC_CB1, add = FALSE, lty = 2, col = "blue")
### plot confidence band together with the ROC curve
ROC1 <- caROC(diseaseData,controlData,formula,
mono_resp_method = "none", verbose = FALSE)
plot_caROC(ROC1)
plot_caROC_CB(ROC_CB1, add = TRUE, lty = 2, col = "blue")
Plot covariate-adjusted ROC for specific subpopulations.
Description
Function to plot the ROC curve generated from sscaROC().
Usage
plot_sscaROC(myROC, ...)
Arguments
myROC |
ROC output from sscaROC() function. |
... |
Arguments to tune generated plots. |
Details
This function can be used to plot other ROC curve, as long as the input contains two components "sensitivity" and "specificity".
Value
Plot the ROC curve.
Author(s)
Ziyi Li <zli16@mdanderson.org>
Examples
n1 = n0 = 1000
## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
myROC <- sscaROC(diseaseData,
controlData,
userFormula,
target_covariates,
global_ROC_controlled_by = "sensitivity",
mono_resp_method = "none")
plot_sscaROC(myROC, lwd = 1.6)
Plot confidence band of covariate-adjusted ROC in specific subpopulations.
Description
A function to plot the confidence band of covariate-adjusted ROC in specific subpopulations.
Usage
plot_sscaROC_CB(myROC_CB, add = TRUE, ...)
Arguments
myROC_CB |
Output from sscaROC_CB() function. |
add |
Whether to add confidence band to existing plot (TRUE) or draw a new one (FALSE). Default is TRUE. |
... |
Any parameters related with the plot. |
Value
No values will be return. This function is for plotting only.
Author(s)
Ziyi Li<zli16@mdanderson.org>
Examples
n1 = n0 = 500
## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
# example that takes more than a minute to run
myROC <- sscaROC(diseaseData,
controlData,
userFormula,
target_covariates,
global_ROC_controlled_by = "sensitivity",
mono_resp_method = "none")
# default nbootstrap is 100
# set nboostrap as 10 here to improve example speed
myROCband <- sscaROC_CB(diseaseData,
controlData,
userFormula,
mono_resp_method = "none",
target_covariates,
global_ROC_controlled_by = "sensitivity",
CB_alpha = 0.95,
logit_CB = FALSE,
nbootstrap = 10,
nbin = 100,
verbose = FALSE)
plot_sscaROC(myROC, lwd = 1.6)
plot_sscaROC_CB(myROCband, col = "purple", lty = 2)
Covariate-adjusted continuous biomarker evaluations for specific population.
Description
Provides evalution for continuous biomarkers at controlled sensitivity/specificity level, or ROC curve in specified sub-population.
Usage
sscaROC(diseaseData, controlData, userFormula, target_covariates,
control_sensitivity = NULL, control_specificity = NULL, mono_resp_method = "ROC",
whichSE = "sample", global_ROC_controlled_by = "sensitivity", nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE, verbose = TRUE)
Arguments
diseaseData |
Data from patients including dependent (biomarker) and independent (covariates) variables. |
controlData |
Data from controls including dependent (biomarker) and independent (covariates) variables. |
userFormula |
A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2". |
target_covariates |
Covariates of the interested sub-population. It could be a vector, e.g. c(1, 0.5, 0.8), or a matrix, e.g. target_covariates = matrix(c(1, 0.7, 0.9, 1, 0.8, 0.8), 2, 3, byrow = TRUE) |
control_sensitivity |
The level(s) of sensitivity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)). |
control_specificity |
The level(s) of specificity to be controlled at. Could be a scalar (e.g. 0.7) or a numeric vector (e.g. c(0.7, 0.8, 0.9)). |
mono_resp_method |
The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC". |
whichSE |
The method used to compute standard error. It should be one from the following: "sample", "bootstrap", meaning to calculate the standard error using sample-based approach or bootstrap. Default is "sample". |
global_ROC_controlled_by |
Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity". |
nbootstrap |
Number of boostrap iterations. Default is 100. |
CI_alpha |
Percentage of confidence interval. Default is 0.95. |
logit_CI |
Whether to apply logit-based confidence interval. Logit-transformed CI has been identified to be more robust near border area. |
verbose |
Whether to print out messages. Default value is true. |
Value
If control_sensitivity or control_specificity is provided, compute covariate-adjusted specificity (sensitivity) at controlled sensitivity (specificity) level.
Estimate |
Covariate-adjusted sensitivity/specificity. |
SE |
Estimated standard error. |
CI |
Estimated confidence intervals. |
If both control_sensitivity and control_specificity are null, compuate covariate-adjusted ROC curve.
sensitivity |
Estimated sensitivity. |
specificity |
Estimated specificity. |
mono_adj |
Monotonicity adjustment method. |
Author(s)
Ziyi.li <zli16@mdanderson.org>
Examples
n1 = n0 = 1000
## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
res <- sscaROC(diseaseData,controlData,
userFormula = userFormula,
control_sensitivity = c(0.2,0.8, 0.9),
target_covariates = target_covariates,
control_specificity = NULL,
mono_resp_method = "none",
whichSE = "sample",nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)
## bootstrap-based variance estimation
res <- sscaROC(diseaseData,controlData,
userFormula = userFormula,
control_sensitivity = c(0.2,0.8, 0.9),
target_covariates = target_covariates,
control_specificity = NULL,
mono_resp_method = "none",
whichSE = "bootstrap",nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)
## monotonization by ROC-based
res <- sscaROC(diseaseData,controlData,
userFormula = userFormula,
control_sensitivity = c(0.2,0.8, 0.9),
target_covariates = target_covariates,
control_specificity = NULL,
mono_resp_method = "ROC",
whichSE = "bootstrap",nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)
## control specificity
res <- sscaROC(diseaseData,controlData,
userFormula = userFormula,
control_sensitivity = NULL,
target_covariates = target_covariates,
control_specificity = c(0.2,0.8, 0.9),
mono_resp_method = "ROC",
whichSE = "bootstrap",nbootstrap = 100,
CI_alpha = 0.95, logit_CI = TRUE)
### get ROC curves
myROC <- sscaROC(diseaseData,
controlData,
userFormula,
target_covariates,
global_ROC_controlled_by = "sensitivity",
mono_resp_method = "none")
Get confidence band for covariate-adjusted ROC curve for specified sub-population.
Description
Use this function to compute the confidence band for covariate-adjusted ROC curve, with or without monotonicity respecting methods for sub-population.
Usage
sscaROC_CB(diseaseData, controlData, userFormula, mono_resp_method = "none",
target_covariates, global_ROC_controlled_by = "sensitivity", CB_alpha = 0.95,
logit_CB = FALSE, nbootstrap = 100, nbin = 100, verbose = FALSE)
Arguments
diseaseData |
Data from patients including dependent (biomarker) and independent (covariates) variables. |
controlData |
Data from controls including dependent (biomarker) and independent (covariates) variables. |
userFormula |
A character string to represent the function for covariate adjustment. For example, let Y denote biomarker, Z1 and Z2 denote two covariates. Then userFormula = "Y ~ Z1 + Z2". |
mono_resp_method |
The method used to restore monotonicity of the ROC curve or computed sensitivity/specificity value. It should one from the following: "none", "ROC". "none" is not applying any monotonicity respecting method. "ROC" is to apply ROC-based monotonicity respecting approach. Default value is "ROC". |
target_covariates |
Covariates of the interested sub-population. It could be a vector, e.g. c(1, 0.5, 0.8), or a matrix, e.g. target_covariates = matrix(c(1, 0.7, 0.9, 1, 0.8, 0.8), 2, 3, byrow = TRUE) |
global_ROC_controlled_by |
Whether sensitivity/specificity is used to control when computing global ROC. It should one from the following: "sensitivity", "specificity". Default is "sensitivity". |
CB_alpha |
Percentage of confidence band. Default is 0.95. |
logit_CB |
Whether to use logit-transformed (then transform back) confidence band. Default is FALSE. |
nbootstrap |
Number of boostrap iterations. Default is 100. |
nbin |
Number of bins used for constructing confidence band. Default is 100. |
verbose |
Whether to print out messages during bootstrap. Default value is FALSE. |
Value
If global ROC is controlled by sensitivity, a list will be output including the following
Sensitivity |
Vector of sensitivities; |
Specificity_upper |
Upper confidence band for specificity estimations; |
Specificity_lower |
Lower confidence band for specificity estimations; |
global_ROC_controlled_by |
"sensitivity". |
If global ROC is controlled by Specificity, a list will be output including the following
Specificity |
Vector of specificity; |
Sensitivity_upper |
Upper confidence band for sensitivity estimations; |
Sensitivity_lower |
Lower confidence band for sensitivity estimations; |
global_ROC_controlled_by |
"specificity". |
Author(s)
Ziyi.li <zli16@mdanderson.org>
Examples
n1 = n0 = 500
## generate data
Z_D1 <- rbinom(n1, size = 1, prob = 0.3)
Z_D2 <- rnorm(n1, 0.8, 1)
Z_C1 <- rbinom(n0, size = 1, prob = 0.7)
Z_C2 <- rnorm(n0, 0.8, 1)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C1 == 0) + Y_C_Z1 * (Z_C1 == 1) + Z_C2
M1 <- Y_D_Z0 * (Z_D1 == 0) + Y_D_Z1 * (Z_D1 == 1) + 1.5 * Z_D2
diseaseData <- data.frame(M = M1, Z1 = Z_D1, Z2 = Z_D2)
controlData <- data.frame(M = M0, Z1 = Z_C1, Z2 = Z_C2)
userFormula = "M~Z1+Z2"
target_covariates = c(1, 0.7, 0.9)
# default nbootstrap is 100
# set nboostrap as 10 here to improve example speed
myROCband <- sscaROC_CB(diseaseData,
controlData,
userFormula,
mono_resp_method = "none",
target_covariates,
global_ROC_controlled_by = "sensitivity",
CB_alpha = 0.95,
logit_CB = FALSE,
nbootstrap = 10,
nbin = 100,
verbose = FALSE)