
Package ‘binaryRL’
July 22, 2025

Version 0.9.0

Title Reinforcement Learning Tools for Two-Alternative Forced Choice
Tasks

Description Tools for building reinforcement learning (RL) models
specifically tailored for Two-Alternative Forced Choice (TAFC) tasks,
commonly employed in psychological research. These models build upon
the foundational principles of model-free reinforcement learning detailed in
Sutton and Barto (2018) <ISBN:9780262039246>. The package allows
for the intuitive definition of RL models using simple if-else
statements. Our approach to constructing and evaluating these
computational models is informed by the guidelines proposed in
Wilson & Collins (2019) <doi:10.7554/eLife.49547>. Example
datasets included with the package are sourced from the work of
Mason et al. (2024) <doi:10.3758/s13423-023-02415-x>.

Maintainer YuKi <hmz1969a@gmail.com>

URL https://yuki-961004.github.io/binaryRL/

BugReports https://github.com/yuki-961004/binaryRL/issues

License GPL-3

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.3.2

Depends R (>= 4.0.0)

Imports future, doFuture, foreach, doRNG, progressr

Suggests stats, GenSA, GA, DEoptim, pso, mlrMBO, mlr, ParamHelpers,
smoof, lhs, DiceKriging, rgenoud, cmaes, nloptr

NeedsCompilation no

Author YuKi [aut, cre] (ORCID: <https://orcid.org/0009-0000-1378-1318>)

Repository CRAN

Date/Publication 2025-07-08 13:20:02 UTC

1

https://doi.org/10.7554/eLife.49547
https://doi.org/10.3758/s13423-023-02415-x
https://yuki-961004.github.io/binaryRL/
https://github.com/yuki-961004/binaryRL/issues
https://orcid.org/0009-0000-1378-1318

2 fit_p

Contents
fit_p . 2
func_epsilon . 6
func_eta . 9
func_gamma . 12
func_pi . 15
func_tau . 17
Mason_2024_Exp1 . 20
Mason_2024_Exp2 . 21
optimize_para . 22
rcv_d . 24
recovery_data . 28
rpl_e . 31
RSTD . 33
run_m . 34
simulate_list . 40
summary.binaryRL . 42
TD . 42
Utility . 43

Index 45

fit_p Step 3: Optimizing parameters to fit real data

Description

This function is designed to fit the optimal parameters of black-box functions (models) to real-
world data. Provided that the black-box function adheres to the specified interface (demo: TD,
RSTD, Utility) , this function can employ the various optimization algorithms detailed below to
find the best- fitting parameters for your model.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from stats::optim)

• 2. Simulated Annealing (GenSA::GenSA)

• 3. Genetic Algorithm (GA::ga)

• 4. Differential Evolution (DEoptim::DEoptim)

• 5. Particle Swarm Optimization (pso::psoptim)

• 6. Bayesian Optimization (mlrMBO::mbo)

• 7. Covariance Matrix Adapting Evolutionary Strategy (cmaes::cma_es)

• 8. Nonlinear Optimization (nloptr::nloptr)

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/

fit_p 3

Usage

fit_p(
data,
id = NULL,
n_trials = NULL,
fit_model = list(TD, RSTD, Utility),
funcs = NULL,
model_name = c("TD", "RSTD", "Utility"),
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
nc = 1,
algorithm

)

Arguments

data [data.frame] This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [vector] Specifies the subject ID(s) for whom optimal parameters are to be fitted.
If you intend to fit all subjects within your dataset, it is strongly recommended
to use id = unique(data$Subject). This approach accounts for cases where
subject IDs in the dataset may not be simple numeric sequences (e.g., "1", "2",
"3", "4") or may contain string entries (e.g., "1", "2", "3", "004"). Using id =
1:4 could lead to errors if IDs are not sequentially numbered integers.
default: id = NULL

n_trials [integer] Represents the total number of trials a single subject experienced in
the experiment. If this parameter is kept at its default value of ‘NULL‘, the pro-
gram will automatically detect how many trials a subject experienced from the
provided data. This information is primarily used for calculating model fit statis-
tics such as AIC (Akaike Information Criterion) and BIC (Bayesian Information
Criterion).
default: n_trials = NULL

fit_model [list] A collection of functions applied to fit models to the data.

funcs [character] A character vector containing the names of all user-defined functions
required for the computation. When parallel computation is enabled (i.e., ‘nc >

4 fit_p

1‘), user-defined models and their custom functions might not be automatically
accessible within the parallel environment.
Therefore, if you have created your own reinforcement learning model that mod-
ifies the package’s default four default functions (default functions: util_func
= func_gamma, rate_func = func_eta, expl_func = func_epsilon bias_func
= func_pi prob_func = func_tau), you must explicitly provide the names of
your custom functions as a vector here.

model_name [list] The name of fit modals

lower [list] The lower bounds for model fit models

upper [list] The upper bounds for model fit models

initial_params [vector] Initial values for the free parameters that the optimization algorithm will
search from. These are primarily relevant when using algorithms that require
an explicit starting point, such as L-BFGS-B. If not specified, the function will
automatically generate initial values close to zero.
default: initial_params = NA.

initial_size [integer] This parameter corresponds to the population size in genetic algo-
rithms (GA). It specifies the number of initial candidate solutions that the algo-
rithm starts with for its evolutionary search. This parameter is only required for
optimization algorithms that operate on a population, such as ‘GA‘ or ‘DEop-
tim‘.
default: initial_size = 50.

iteration [integer] The number of iterations the optimization algorithm will perform when
searching for the best-fitting parameters during the fitting phase. A higher num-
ber of iterations may increase the likelihood of finding a global optimum but
also increases computation time.

seed [integer] Random seed. This ensures that the results are reproducible and remain
the same each time the function is run.
default: seed = 123

nc [integer] Number of cores to use for parallel processing. Since fitting optimal
parameters for each subject is an independent task, parallel computation can
significantly speed up the fitting process:

• ‘nc = 1‘: The fitting proceeds sequentially. Parameters for one subject are
fitted completely before moving to the next subject.

• ‘nc > 1‘: The fitting is performed in parallel across subjects. For example, if
‘nc = 4‘, the algorithm will simultaneously fit data for four subjects. Once
these are complete, it will proceed to fit the next batch of subjects (e.g.,
subjects 5-8), and so on, until all subjects are processed.

default: nc = 1

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘.
In addition, any algorithm from the ‘nloptr‘ package is also supported. If your
chosen ‘nloptr‘ algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.

fit_p 5

Value

The optimal parameters found by the algorithm for each subject, along with the model fit calculated
using these parameters. This is returned as an object of class binaryRL containing results for all
subjects with all models.

Note

The primary difference between ‘fit_p‘ and ‘rcv_d‘ lies in their data source: ‘fit_p‘ fits parameters
to real data, while ‘rcv_d‘ fits parameters to synthetic data generated by models. Many studies
inappropriately skip the ‘rcv_d‘ step.

Imagine ‘fit_p‘ as the actual boxing match, and ‘rcv_d‘ as the weigh-in. Boxers of different weight
classes shouldn’t compete directly.

Similarly, if a competing model lacks the ability of parameter or model recovering, even if your
proposed model outperforms it in ‘fit_p‘, it doesn’t necessarily make your proposed model a good
one.

Examples

Not run:
comparison <- binaryRL::fit_p(

data = binaryRL::Mason_2024_Exp2,
id = unique(binaryRL::Mason_2024_Exp2$Subject),

##---##
##----------------------------- black-box function ----------------------------##

#funcs = c("your_funcs"),
fit_model = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
model_name = c("TD", "RSTD", "Utility"),
lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
upper = list(c(1, 10), c(1, 1, 10), c(1, 1, 10)),

##----------------------------- interation number -----------------------------##
iteration = 10,

##-------------------------------- algorithms ---------------------------------##
nc = 1, # <nc > 1>: parallel computation across subjects
Base R Optimization
algorithm = "L-BFGS-B" # Gradient-Based (stats)

##---##
Specialized External Optimization
#algorithm = "GenSA" # Simulated Annealing (GenSA)
#algorithm = "GA" # Genetic Algorithm (GA)
#algorithm = "DEoptim" # Differential Evolution (DEoptim)
#algorithm = "PSO" # Particle Swarm Optimization (pso)
#algorithm = "Bayesian" # Bayesian Optimization (mlrMBO)
#algorithm = "CMA-ES" # Covariance Matrix Adapting (cmaes)

##---##
Optimization Library (nloptr)
#algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

##-------------------------------- algorithms ---------------------------------##
###
)

6 func_epsilon

result <- dplyr::bind_rows(comparison)

Ensure the output directory exists before writing
if (!dir.exists("../OUTPUT")) {

dir.create("../OUTPUT", recursive = TRUE)
}

write.csv(result, "../OUTPUT/result_comparison.csv", row.names = FALSE)

End(Not run)

func_epsilon Function: Exploration Strategy

Description

The exploration strategy parameters are threshold, epsilon, and lambda.

• Epsilon-first strategy: Used when only threshold is set. Subjects choose randomly for
trials less than threshold and by value for trials greater than ‘threshold.

• Epsilon-greedy strategy: Used if threshold is default (1) and epsilon is set. Subjects
explore with probability epsilon throughout the experiment.

• Epsilon-decreasing strategy: Used if threshold is default (1), and lambda is set. In this
strategy, the probability of random choice (exploration) decreases as trials increase. The pa-
rameter lambda controls the rate at which this probability declines with each trial.

Usage

func_epsilon(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
var2 = NA,
threshold = 1,
epsilon = NA,
lambda = NA,
alpha,
beta

)

func_epsilon 7

Arguments

i The current row number.
L_freq The frequency of left option appearance
R_freq The frequency of right option appearance
L_pick The number of times left option was picked
R_pick The number of times left option was picked
L_value The value of the left option
R_value The value of the right option
var1 [character] Column name of extra variable 1. If your model uses more than just

reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

threshold [integer] Controls the initial exploration phase in the epsilon-first strategy. This
is the number of early trials where the subject makes purely random choices,
as they haven’t yet learned the options’ values. For example, threshold = 20
means random choices for the first 20 trials. For epsilon-greedy or epsilon-
decreasing strategies, ‘threshold‘ should be kept at its default value.

P (x) =

{
trial ≤ threshold, x = 1 (random choosing)
trial > threshold, x = 0 (value-based choosing)

default: threshold = 1

epsilon-first: threshold = 20, epsilon = NA, lambda = NA

epsilon [numeric] A parameter used in the epsilon-greedy exploration strategy. It de-
fines the probability of making a completely random choice, as opposed to
choosing based on the relative values of the left and right options. For example,
if ‘epsilon = 0.1‘, the subject has a 10 choice and a 90 relevant when ‘threshold‘
is at its default value (1) and ‘lambda‘ is not set.

P (x) =

{
ϵ, x = 1 (random choosing)
1− ϵ, x = 0 (value-based choosing)

epsilon-greedy: threshold = 1, epsilon = 0.1, lambda = NA

lambda [vector] A numeric value that controls the decay rate of exploration probability
in the epsilon-decreasing strategy. A higher ‘lambda‘ value means the probabil-
ity of random choice will decrease more rapidly as the number of trials increases.

P (x) =

{
1

1+λ·trial , x = 1 (random choosing)
λ·trial

1+λ·trial , x = 0 (value-based choosing)

epsilon-decreasing threshold = 1, epsilon = NA, lambda = 0.5

8 func_epsilon

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

A numeric value, either 0 or 1. 0 indicates no exploration (choice based on value), and 1 indicates
exploration (random choice) for that trial.

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

Examples

Not run:
func_epsilon <- function(

Trial number
i,
Number of times this option has appeared
L_freq,
R_freq,
Number of times this option has been chosen
L_pick,
R_pick,
Current value of this option
L_value,
R_value,
Extra variables
var1 = NA,
var2 = NA,

Free Parameters
threshold = 1,
epsilon = NA,
lambda = NA,
Extra parameters
alpha,
beta

){
Epsilon-First: random choosing before a certain trial number
if (i <= threshold) {

try <- 1
} else if (i > threshold & is.na(epsilon) & is.na(lambda)) {

try <- 0
Epsilon-Greedy: random choosing throughout the experiment with probability epsilon
} else if (i > threshold & !(is.na(epsilon)) & is.na(lambda)){

try <- sample(
c(1, 0),
prob = c(epsilon, 1 - epsilon),
size = 1

)

func_eta 9

Epsilon-Decreasing: probability of random choosing decreases as trials increase
} else if (i > threshold & is.na(epsilon) & !(is.na(lambda))) {

try <- sample(
c(1, 0),
prob = c(

1 / (1 + lambda * i),
lambda * i / (1 + lambda * i)

),
size = 1

)
}
else {

try <- "ERROR"
}

return(try)
}

End(Not run)

func_eta Function: Learning Rate

Description

The structure of eta depends on the model type:

• Temporal Difference (TD) model: eta is a single numeric value representing the learning
rate.

• Risk-Sensitive Temporal Difference (RSTD) model: eta is a numeric vector of length two,
where eta[1] represents the learning rate for "good" outcomes, which means the reward is
higher than the expected value. eta[2] represents the learning rate for "bad" outcomes, which
means the reward is lower than the expected value.

Usage

func_eta(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
var2 = NA,
value,
utility,

10 func_eta

reward,
occurrence,
eta,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

value The expected value of the stimulus in the subject’s mind at this point in time.

utility The subjective value that the subject assigns to the objective reward.

reward The objective reward received by the subject after selecting a stimulus.

occurrence The number of times the same stimulus has been chosen.

eta [numeric] Parameters used in the Learning Rate Function, rate_func, repre-
senting the rate at which the subject updates the difference (prediction error)
between the reward and the expected value in the subject’s mind.
The structure of eta depends on the model type:

• For the Temporal Difference (TD) model, where a single learning rate is
used throughout the experiment

Vnew = Vold + η · (R− Vold)

• For the Risk-Sensitive Temporal Difference (RDTD) model, where two
different learning rates are used depending on whether the reward is lower
or higher than the expected value:

Vnew = Vold + η+ · (R− Vold), R > Vold

Vnew = Vold + η− · (R− Vold), R < Vold

func_eta 11

TD: eta = 0.3

RSTD: eta = c(0.3, 0.7)

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

learning rate eta

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

Examples

Not run:
func_eta <- function(

Trial number
i,
Number of times this option has appeared
L_freq,
R_freq,
Number of times this option has been chosen
L_pick,
R_pick,
Current value of this option
L_value,
R_value,
Extra variables
var1 = NA,
var2 = NA,

Expected value for this stimulus
value,
Subjective utility
utility,
Reward observed after choice
reward,
Occurrence count for this stimulus
occurrence,

Free Parameter
eta,
Extra parameters
alpha,
beta

){
################################# [TD] ####################################

if (length(eta) == 1) {
eta <- as.numeric(eta)

12 func_gamma

}
################################ [RSTD] ###################################

else if (length(eta) > 1 & utility < value) {
eta <- eta[1]

}
else if (length(eta) > 1 & utility >= value) {

eta <- eta[2]
}

################################ [ERROR] ##################################
else {

eta <- "ERROR" # Error check
}
return(eta)

}

End(Not run)

func_gamma Function: Utility Function

Description

This function represents an exponent used in calculating utility from reward. Its application varies
depending on the specific model:

• Stevens’ Power Law: Here, utility is calculated by raising the reward to the power of gamma.
This describes how the subjective value (utility) of a reward changes non-linearly with its
objective magnitude.

• Kahneman’s Prospect Theory: This theory applies exponents differently for gains and losses,
and introduces a loss aversion coefficient:

– For positive rewards (gains), utility is the reward raised to the power of gamma[1].
– For negative rewards (losses), utility is calculated by first multiplying the reward by beta,

and then raising this product to the power of gamma[2]. Here, beta acts as a loss aver-
sion parameter, accounting for the greater psychological impact of losses compared to
equivalent gains.

Usage

func_gamma(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1 = NA,

func_gamma 13

var2 = NA,
value,
utility,
reward,
occurrence,
gamma = 1,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

value The expected value of the stimulus in the subject’s mind at this point in time.

utility The subjective value that the subject assigns to the objective reward.

reward The objective reward received by the subject after selecting a stimulus.

occurrence The number of times the same stimulus has been chosen.

gamma [vector] This parameter represents the exponent in utility functions, specifically:

• Stevens’ Power Law: Utility is modeled as:

U(R) = Rγ

• Kahneman’s Prospect Theory: This exponent is applied differently based
on the sign of the reward:

U(R) =

{
Rγ1 , R > 0

β ·Rγ2 , R < 0

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

14 func_gamma

Value

Discount rate and utility

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

Examples

Not run:
func_gamma <- function(

Trial number
i,
Number of times this option has appeared
L_freq,
R_freq,
Number of times this option has been chosen
L_pick,
R_pick,
Current value of this option
L_value,
R_value,
Extra variables
var1 = NA,
var2 = NA,

Expected value for this stimulus
value,
Subjective utility
utility,
Reward observed after choice
reward,
Occurrence count for this stimulus
occurrence,

Free Parameter
gamma = 1,
Extra parameters
alpha,
beta

){
############################## [Utility] ##################################

if (length(gamma) == 1) {
gamma <- as.numeric(gamma)
utility <- sign(reward) * (abs(reward) ^ gamma)

}
############################### [Error] ###################################

else {
utility <- "ERROR"

}
return(list(gamma, utility))

func_pi 15

}

End(Not run)

func_pi Function: Upper-Confidence-Bound

Description

Unlike epsilon-greedy, which explores indiscriminately, UCB is a more intelligent exploration strat-
egy. It biases the value of each action based on how often it has been selected. For options chosen
fewer times, or those with high uncertainty, a larger "uncertainty bonus" is added to their estimated
value. This increases their selection probability, effectively encouraging the exploration of poten-
tially optimal, yet unexplored actions. A higher pi indicates a greater bias toward giving less-chosen
options.

Usage

func_pi(
i,
L_freq,
R_freq,
L_pick,
R_pick,
L_value,
R_value,
var1,
var2,
LR,
pi = 0.1,
alpha,
beta

)

Arguments

i The current row number.

L_freq The frequency of left option appearance

R_freq The frequency of right option appearance

L_pick The number of times left option was picked

R_pick The number of times left option was picked

L_value The value of the left option

R_value The value of the right option

16 func_pi

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

LR Are you calculating the probability for the left option or the right option?

pi [vector] Parameter used in the Upper-Confidence-Bound (UCB) action selec-
tion formula. ‘bias_func‘ controls the degree of exploration by scaling the un-
certainty bonus given to less-explored options. A larger value of pi (denoted
as c in Sutton and Barto(1998)) increases the influence of this bonus, leading
to more exploration of actions with uncertain estimated values. Conversely, a
smaller pi results in less exploration.

At = argmax
a

[
Vt(a) + π

√
ln(t)

Nt(a)

]
default: pi = 0.001

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

Value

The probability of choosing this option

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

Examples

Not run:
func_tau <- function(

Trial number
i,
Number of times this option has appeared
L_freq,
R_freq,
Number of times this option has been chosen
L_pick,
R_pick,
Current value of this option
L_value,
R_value,

func_tau 17

Extra variables
var1 = NA,
var2 = NA,

Whether calculating probability for left or right choice
LR,

Free parameter
pi = 0.1,
Extra parameters
alpha,
beta
){
if (!(LR %in% c("L", "R"))) {
stop("LR = 'L' or 'R'")
}

############################# [adjust value] ##############################
else if (LR == "L") {

bias <- pi * sqrt(log(L_pick + exp(1)) / (L_pick + 1e-10))
}
else if (LR == "R") {

bias <- pi * sqrt(log(R_pick + exp(1)) / (R_pick + 1e-10))
}

################################# [error] #################################
else {

bias <- "ERROR"
}

return(bias)
}

End(Not run)

func_tau Function: Soft-Max Function

Description

The softmax function describes a probabilistic choice rule. It implies that options with higher
subjective values are chosen with a greater probability, rather than deterministic. This probability
of choosing the higher-valued option increases with the parameter tau. A higher tau indicates
greater sensitivity to value differences, making choices more deterministic.

Usage

func_tau(
i,
L_freq,
R_freq,

18 func_tau

L_pick,
R_pick,
L_value,
R_value,
var1 = NA,
var2 = NA,
LR,
try,
tau = 1,
alpha,
beta

)

Arguments

i The current row number.
L_freq The frequency of left option appearance
R_freq The frequency of right option appearance
L_pick The number of times left option was picked
R_pick The number of times left option was picked
L_value The value of the left option with bias (if pi != 0)
R_value The value of the right option with bias (if pi != 0)
var1 [character] Column name of extra variable 1. If your model uses more than just

reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

LR Are you calculating the probability for the left option or the right option?
try If the choice was random, the value is 1; If the choice was based on value, the

value is 0.
tau [vector] Parameters used in the Soft-Max Function. ‘prob_func‘ representing

the sensitivity of the subject to the value difference when making decisions. It
determines the probability of selecting the left option versus the right option
based on their values. A larger value of tau indicates greater sensitivity to the
value difference between the options. In other words, even a small difference in
value will make the subject more likely to choose the higher-value option.

PL =
1

1 + e−(VL−VR)·τ ;PR =
1

1 + e−(VR−VL)·τ

e.g., tau = c(0.5)

alpha [vector] Extra parameters that may be used in functions.
beta [vector] Extra parameters that may be used in functions.

func_tau 19

Value

The probability of choosing this option

Note

When customizing these functions, please ensure that you do not modify the arguments. Instead,
only modify the ‘if-else‘ statements or the internal logic to adapt the function to your needs.

Examples

Not run:
func_tau <- function(

Trial number
i,
Number of times this option has appeared
L_freq,
R_freq,
Number of times this option has been chosen
L_pick,
R_pick,
Current value of this option
L_value,
R_value,
Extra variables
var1 = NA,
var2 = NA,

Whether calculating probability for left or right choice
LR,
Is it a random choosing trial?
try,

Free parameter
tau = 1,
Extra parameters
alpha,
beta

){
if (!(LR %in% c("L", "R"))) {
stop("LR = 'L' or 'R'")

}
############################### [value-based] #############################

else if (try == 0 & LR == "L") {
prob <- 1 / (1 + exp(-(L_value - R_value) * tau))

}
else if (try == 0 & LR == "R") {

prob <- 1 / (1 + exp(-(R_value - L_value) * tau))
}

################################# [random] ################################
else if (try == 1) {

prob <- 0.5
}

20 Mason_2024_Exp1

else {
prob <- "ERROR" # Error check

}

return(prob)
}

End(Not run)

Mason_2024_Exp1 Experiment 1 from Mason et al. (2024)

Description

This dataset originates from Experiment 1 of Mason et al. (2024), titled "Rare and extreme out-
comes in risky choice" (doi:10.3758/s1342302302415x). The raw data is publicly available on the
Open Science Framework (OSF) at https://osf.io/hy3q4/. For the purposes of this package,
we’ve performed basic cleaning and preprocessing of the original dataset.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (total of 143).

Block Block number, an integer (1 to 6).

Trial Trial number, an integer (1 to 60).

L_choice Left choice, a character indicating the option presented. The possible options are:

• A: 100% gain 4.
• B: 90% gain 0 and 10% gain 40.
• C: 100% lose 4.
• D: 90% lose 0 and 10% lose 40.

R_choice Right choice, a character indicating the option presented. The possible options are:

• A: 100% gain 4.
• B: 90% gain 0 and 10% gain 40.
• C: 100% lose 4.
• D: 90% lose 0 and 10% lose 40.

L_reward Reward associated with the left choice.

R_reward Reward associated with the right choice.

Sub_Choose The chosen option, either L_choice or R_choice.

Frame Type of frame, a character string (e.g., "Gain", "Loss", "Catch").

NetWorth The participant’s net worth at the end of each trial.

RT The participant’s reaction time (in milliseconds) for each trial.

https://doi.org/10.3758/s13423-023-02415-x
https://osf.io/hy3q4/

Mason_2024_Exp2 21

Examples

Load the Mason_2024_Exp1 dataset
data(binaryRL::Mason_2024_Exp1)
head(binaryRL::Mason_2024_Exp1)

Mason_2024_Exp2 Experiment 2 from Mason et al. (2024)

Description

This dataset originates from Experiment 2 of Mason et al. (2024), titled "Rare and extreme out-
comes in risky choice" (doi:10.3758/s1342302302415x). The raw data is publicly available on the
Open Science Framework (OSF) at https://osf.io/hy3q4/. For the purposes of this package,
we’ve performed basic cleaning and preprocessing of the original dataset.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (total of 143).
Block Block number, an integer (1 to 6).
Trial Trial number, an integer (1 to 60).
L_choice Left choice, a character indicating the option presented. The possible options are:

• A: 100% gain 36.
• B: 90% gain 40 and 10% gain 0.
• C: 100% lose 36.
• D: 90% lose 40 and 10% lose 0.

R_choice Right choice, a character indicating the option presented. The possible options are:
• A: 100% gain 36.
• B: 90% gain 40 and 10% gain 0.
• C: 100% lose 36.
• D: 90% lose 40 and 10% lose 0.

L_reward Reward associated with the left choice.
R_reward Reward associated with the right choice.
Sub_Choose The chosen option, either L_choice or R_choice.
Frame Type of frame, a character string (e.g., "Gain", "Loss", "Catch").
NetWorth The participant’s net worth at the end of each trial.
RT The participant’s reaction time (in milliseconds) for each trial.

Examples

Load the Mason_2024_Exp2 dataset
data(binaryRL::Mason_2024_Exp2)
head(binaryRL::Mason_2024_Exp2)

https://doi.org/10.3758/s13423-023-02415-x
https://osf.io/hy3q4/

22 optimize_para

optimize_para Process: Optimizing Parameters

Description

This is an internal helper function for ‘fit_p‘. Its primary purpose is to provide a unified interface
for users to interact with various optimization algorithm packages. It adapts the inputs and outputs
to be compatible with eight distinct algorithms, ensuring a seamless experience regardless of the
underlying solver used.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from stats::optim)

• 2. Simulated Annealing (GenSA::GenSA)

• 3. Genetic Algorithm (GA::ga)

• 4. Differential Evolution (DEoptim::DEoptim)

• 5. Particle Swarm Optimization (pso::psoptim)

• 6. Bayesian Optimization (mlrMBO::mbo)

• 7. Covariance Matrix Adapting Evolutionary Strategy (cmaes::cma_es)

• 8. Nonlinear Optimization (nloptr::nloptr)

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

Usage

optimize_para(
data,
id,
obj_func,
n_params,
n_trials,
lower,
upper,
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
algorithm

)

Arguments

data [data.frame] This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/

optimize_para 23

• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [character] Specifies the ID of the subject whose optimal parameters will be
fitted. This parameter accepts either string or numeric values. The provided ID
must correspond to an existing subject identifier within the raw dataset provided
to the function.

obj_func [function] The objective function that the optimization algorithm package ac-
cepts. This function must strictly take only one argument, ‘params‘ (a vector of
model parameters). Its output must be a single numeric value representing the
loss function to be minimized. For more detailed requirements and examples,
please refer to the relevant documentation (TD, RSTD, Utility).

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

lower [vector] Lower bounds of free parameters

upper [vector] Upper bounds of free parameters

initial_params [vector] Initial values for the free parameters that the optimization algorithm will
search from. These are primarily relevant when using algorithms that require
an explicit starting point, such as L-BFGS-B. If not specified, the function will
automatically generate initial values close to zero.
default: initial_params = NA.

initial_size [integer] This parameter corresponds to the population size in genetic algo-
rithms (GA). It specifies the number of initial candidate solutions that the algo-
rithm starts with for its evolutionary search. This parameter is only required for
optimization algorithms that operate on a population, such as ‘GA‘ or ‘DEop-
tim‘.
default: initial_size = 50.

iteration [integer] The number of iterations the optimization algorithm will perform when
searching for the best-fitting parameters during the fitting phase. A higher num-
ber of iterations may increase the likelihood of finding a global optimum but
also increases computation time.

seed [integer] Random seed. This ensures that the results are reproducible and remain
the same each time the function is run.
default: seed = 123

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘.
In addition, any algorithm from the ‘nloptr‘ package is also supported. If your
chosen ‘nloptr‘ algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.

24 rcv_d

Value

the result of binaryRL with optimal parameters

Examples

Not run:
binaryRL.res <- binaryRL::optimize_para(

data = binaryRL::Mason_2024_Exp2,
id = 1,
obj_func = binaryRL::RSTD,
n_params = 3,
n_trials = 360,
lower = c(0, 0, 0),
upper = c(1, 1, 1),
iteration = 10,
seed = 123,
algorithm = "L-BFGS-B" # Gradient-Based (stats)
#algorithm = "GenSA" # Simulated Annealing (GenSA)
#algorithm = "GA" # Genetic Algorithm (GA)
#algorithm = "DEoptim" # Differential Evolution (DEoptim)
#algorithm = "PSO" # Particle Swarm Optimization (pso)
#algorithm = "Bayesian" # Bayesian Optimization (mlrMBO)
#algorithm = "CMA-ES" # Covariance Matrix Adapting (cmaes)
#algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

)
summary(binaryRL.res)

End(Not run)

rcv_d Step 2: Generating fake data for parameter and model recovery

Description

This function is designed for model and parameter recovery of user-created (black-box) models,
provided they conform to the specified interface. (demo: TD, RSTD, Utility). The process involves
generating synthetic datasets. First, parameters are randomly sampled within a defined range. These
parameters are then used to simulate artificial datasets.

Subsequently, all candidate models are used to fit these simulated datasets. Model recoverability is
assessed if a synthetic dataset generated by Model A is consistently best fitted by Model A itself.

Furthermore, the function allows users to evaluate parameter recoverability. If, for instance, a
synthetic dataset generated by Model A was based on parameters like 0.3 and 0.7, and Model A
then recovers optimal parameters close to 0.3 and 0.7 from this data, it indicates that the parameters
of Model A are recoverable.

The function provides several optimization algorithms:

• 1. L-BFGS-B (from stats::optim)

rcv_d 25

• 2. Simulated Annealing (GenSA::GenSA)

• 3. Genetic Algorithm (GA::ga)

• 4. Differential Evolution (DEoptim::DEoptim)

• 5. Particle Swarm Optimization (pso::psoptim)

• 6. Bayesian Optimization (mlrMBO::mbo)

• 7. Covariance Matrix Adapting Evolutionary Strategy (cmaes::cma_es)

• 8. Nonlinear Optimization (nloptr::nloptr)

For more information, please refer to the homepage of this package: https://yuki-961004.
github.io/binaryRL/

Usage

rcv_d(
data,
id = NULL,
n_trials = NULL,
simulate_models = list(TD, RSTD, Utility),
simulate_lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
simulate_upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
fit_models = list(TD, RSTD, Utility),
fit_lower = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
fit_upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
model_names = c("TD", "RSTD", "Utility"),
funcs = NULL,
initial_params = NA,
initial_size = 50,
iteration_s = 10,
iteration_f = 10,
seed = 1,
nc = 1,
algorithm

)

Arguments

data [data.frame] This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

https://yuki-961004.github.io/binaryRL/
https://yuki-961004.github.io/binaryRL/

26 rcv_d

id [vector] Specifies which subject’s data to use. In parameter and model recovery
analyses, the specific subject ID is often irrelevant. Although the experimental
trial order might have some randomness for each subject, the sequence of reward
feedback is typically pseudo-random.
The default value for this argument is ‘NULL‘. When ‘id‘ is ‘NULL‘, the pro-
gram automatically detects existing subject IDs within the dataset. It then ran-
domly selects one subject as a sample, and the parameter and model recovery
procedures are performed based on this selected subject’s data.
default: id = NULL

n_trials [integer] Represents the total number of trials a single subject experienced in
the experiment. If this parameter is kept at its default value of ‘NULL‘, the pro-
gram will automatically detect how many trials a subject experienced from the
provided data. This information is primarily used for calculating model fit statis-
tics such as AIC (Akaike Information Criterion) and BIC (Bayesian Information
Criterion).
default: n_trials = NULL

simulate_models

[list] A collection of functions used to generate simulated data.

simulate_lower [list] The lower bounds for simulate models

simulate_upper [list] The upper bounds for simulate models

fit_models [list] A collection of functions applied to fit models to the data.

fit_lower [list] The lower bounds for model fit models

fit_upper [list] The upper bounds for model fit models

model_names [list] The names of fit modals

funcs [character] A character vector containing the names of all user-defined functions
required for the computation. When parallel computation is enabled (i.e., ‘nc >
1‘), user-defined models and their custom functions might not be automatically
accessible within the parallel environment.
Therefore, if you have created your own reinforcement learning model that mod-
ifies the package’s default four default functions (default functions: util_func
= func_gamma, rate_func = func_eta, expl_func = func_epsilon bias_func
= func_pi prob_func = func_tau), you must explicitly provide the names of
your custom functions as a vector here.

initial_params [numeric] Initial values for the free parameters that the optimization algorithm
will search from. These are primarily relevant when using algorithms that re-
quire an explicit starting point, such as L-BFGS-B. If not specified, the function
will automatically generate initial values close to zero.
default: initial_params = NA.

initial_size [integer] This parameter corresponds to the population size in genetic algo-
rithms (GA). It specifies the number of initial candidate solutions that the algo-
rithm starts with for its evolutionary search. This parameter is only required for
optimization algorithms that operate on a population, such as ‘GA‘ or ‘DEop-
tim‘.
default: initial_size = 50.

rcv_d 27

iteration_s [integer] This parameter determines how many simulated datasets are created
for subsequent model and parameter recovery analyses.

iteration_f [integer] The number of iterations the optimization algorithm will perform when
searching for the best-fitting parameters during the fitting phase. A higher num-
ber of iterations may increase the likelihood of finding a global optimum but
also increases computation time.

seed [integer] Random seed. This ensures that the results are reproducible and remain
the same each time the function is run.

default: seed = 123

nc [integer] Number of cores to use for parallel processing. Since fitting optimal
parameters for each subject is an independent task, parallel computation can
significantly speed up the fitting process:

• ‘nc = 1‘: The fitting proceeds sequentially. Parameters for one subject are
fitted completely before moving to the next subject.

• ‘nc > 1‘: The fitting is performed in parallel across subjects. For example, if
‘nc = 4‘, the algorithm will simultaneously fit data for four subjects. Once
these are complete, it will proceed to fit the next batch of subjects (e.g.,
subjects 5-8), and so on, until all subjects are processed.

default: nc = 1

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘.

In addition, any algorithm from the ‘nloptr‘ package is also supported. If your
chosen ‘nloptr‘ algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.

Value

A list where each element is a data.frame. Each data.frame within this list records the results of
fitting synthetic data (generated by Model A) with Model B.

Note

During the parameter fitting process, some algorithms might get stuck in local optima. Alternatively,
even a global optimum found could be a "beautiful error." This occurs because black-box functions
are often non-differentiable. A very low loss function value at a specific point might result from
overfitting noise in trials, with surrounding points having relatively high loss values.

A classic approach to mitigate this is Hierarchical Bayesian modeling, which constrains individual
parameters at the group level. Currently, this package does not offer such a solution.

However, we highly recommend using evolutionary algorithms like DEoptim or GA for optimization.
These algorithms continue to explore and weigh options even after finding an apparent optimum. If
the offspring of this optimum still yield superior solutions, it suggests that these parameters are not
extreme values obtained from overfitting noise.

28 recovery_data

Examples

Not run:
recovery <- binaryRL::rcv_d(

data = binaryRL::Mason_2024_Exp2,
##---##
##----------------------------- black-box function ----------------------------##

#funcs = c("your_funcs"),
model_names = c("TD", "RSTD", "Utility"),
simulate_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
simulate_lower = list(c(0, 1), c(0, 0, 1), c(0, 0, 1)),
simulate_upper = list(c(1, 1), c(1, 1, 1), c(1, 1, 1)),
fit_models = list(binaryRL::TD, binaryRL::RSTD, binaryRL::Utility),
fit_lower = list(c(0, 1), c(0, 0, 1), c(0, 0, 1)),
fit_upper = list(c(1, 5), c(1, 1, 5), c(1, 1, 5)),

##----------------------------- interation number -----------------------------##
iteration_s = 100,
iteration_f = 100,

##-------------------------------- algorithms ---------------------------------##
nc = 1, # <nc > 1>: parallel computation across subjects
Base R Optimization
algorithm = "L-BFGS-B" # Gradient-Based (stats)

##---##
Specialized External Optimization
#algorithm = "GenSA" # Simulated Annealing (GenSA)
#algorithm = "GA" # Genetic Algorithm (GA)
#algorithm = "DEoptim" # Differential Evolution (DEoptim)
#algorithm = "PSO" # Particle Swarm Optimization (pso)
#algorithm = "Bayesian" # Bayesian Optimization (mlrMBO)
#algorithm = "CMA-ES" # Covariance Matrix Adapting (cmaes)

##---##
Optimization Library (nloptr)
#algorithm = c("NLOPT_GN_MLSL", "NLOPT_LN_BOBYQA")

##-------------------------------- algorithms ---------------------------------##
###
)

result <- dplyr::bind_rows(recovery) %>%
dplyr::select(simulate_model, fit_model, iteration, everything())

Ensure the output directory exists
if (!dir.exists("../OUTPUT")) {

dir.create("../OUTPUT", recursive = TRUE)
}

write.csv(result, file = "../OUTPUT/result_recovery.csv", row.names = FALSE)

End(Not run)

recovery_data Process: Recovering Fake Data

recovery_data 29

Description

This function processes the synthetic datasets generated by ‘simulate_list‘. For each of these simu-
lated datasets, it then fits every model specified within the ‘fit_model‘ list. In essence, it iteratively
calls the ‘optimize_para()‘ function for each generated object.

The fitting procedure is analogous to that performed by ‘fit_p‘, and it similarly leverages parallel
computation across subjects to significantly accelerate the parameter estimation process.

Usage

recovery_data(
list,
id = 1,
fit_model,
funcs = NULL,
model_name,
n_params,
n_trials,
lower,
upper,
initial_params = NA,
initial_size = 50,
iteration = 10,
seed = 123,
nc = 1,
algorithm

)

Arguments

list [list] A list generated by function ‘simulate_list‘

id [vector] Specifies which subject’s data to use. In parameter and model recovery
analyses, the specific subject ID is often irrelevant. Although the experimental
trial order might have some randomness for each subject, the sequence of reward
feedback is typically pseudo-random.
The default value for this argument is ‘NULL‘. When ‘id‘ is ‘NULL‘, the pro-
gram automatically detects existing subject IDs within the dataset. It then ran-
domly selects one subject as a sample, and the parameter and model recovery
procedures are performed based on this selected subject’s data.
default: id = NULL

fit_model [function] fit model

funcs [character] A character vector containing the names of all user-defined functions
required for the computation. When parallel computation is enabled (i.e., ‘nc >
1‘), user-defined models and their custom functions might not be automatically
accessible within the parallel environment.
Therefore, if you have created your own reinforcement learning model that mod-
ifies the package’s default four default functions (default functions: util_func
= func_gamma, rate_func = func_eta, expl_func = func_epsilon bias_func

30 recovery_data

= func_pi prob_func = func_tau), you must explicitly provide the names of
your custom functions as a vector here.

model_name [character] The name of your modal

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

lower [vector] Lower bounds of free parameters

upper [vector] Upper bounds of free parameters

initial_params [numeric] Initial values for the free parameters that the optimization algorithm
will search from. These are primarily relevant when using algorithms that re-
quire an explicit starting point, such as L-BFGS-B. If not specified, the function
will automatically generate initial values close to zero.
default: initial_params = NA.

initial_size [integer] This parameter corresponds to the population size in genetic algo-
rithms (GA). It specifies the number of initial candidate solutions that the algo-
rithm starts with for its evolutionary search. This parameter is only required for
optimization algorithms that operate on a population, such as ‘GA‘ or ‘DEop-
tim‘.
Default: initial_size = 50.

iteration [integer] The number of iterations the optimization algorithm will perform when
searching for the best-fitting parameters during the fitting phase. A higher num-
ber of iterations may increase the likelihood of finding a global optimum but
also increases computation time.

seed [integer] Random seed. This ensures that the results are reproducible and remain
the same each time the function is run.
default: seed = 123

nc [integer] Number of cores to use for parallel processing. Since fitting optimal
parameters for each subject is an independent task, parallel computation can
significantly speed up the fitting process:

• ‘nc = 1‘: The fitting proceeds sequentially. Parameters for one subject are
fitted completely before moving to the next subject.

• ‘nc > 1‘: The fitting is performed in parallel across subjects. For example, if
‘nc = 4‘, the algorithm will simultaneously fit data for four subjects. Once
these are complete, it will proceed to fit the next batch of subjects (e.g.,
subjects 5-8), and so on, until all subjects are processed.

default: nc = 1

algorithm [character] Choose an algorithm package from ‘L-BFGS-B‘, ‘GenSA‘, ‘GA‘,
‘DEoptim‘, ‘PSO‘, ‘Bayesian‘, ‘CMA-ES‘.
In addition, any algorithm from the ‘nloptr‘ package is also supported. If your
chosen ‘nloptr‘ algorithm requires a local search, you need to input a character
vector. The first element represents the algorithm used for global search, and the
second element represents the algorithm used for local search.

Value

a data frame for parameter recovery and model recovery

rpl_e 31

Examples

Not run:
binaryRL.res <- binaryRL::optimize_para(

data = Mason_2024_Exp2,
id = 1,
n_params = 3,
n_trials = 360,
obj_func = binaryRL::RSTD,
lower = c(0, 0, 0),
upper = c(1, 1, 10),
iteration = 100,
algorithm = "L-BFGS-B"

)

summary(binaryRL.res)

End(Not run)

rpl_e Step 4: Replaying the experiment with optimal parameters

Description

After completing Step 3 using ‘fit_p‘ to obtain the optimal parameters for each subject and saving
the resulting CSV locally, this function allows you to load that result dataset. It then applies these
optimal parameters back into the reinforcement learning model, effectively simulating how the
"robot" (the model) would make its choices.

Based on this generated dataset, you can then analyze the robot’s data in the same manner as you
would analyze human behavioral data. If a particular model’s fitted data can successfully reproduce
the experimental effects observed in human subjects, it strongly suggests that this model is a good
and valid representation of the process.

Usage

rpl_e(
data,
id = NULL,
result,
model,
model_name,
param_prefix,
n_trials = NULL

)

Arguments

data [data.frame] This data should include the following mandatory columns:

32 rpl_e

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [vector] Specifies the subject ID(s) for whom optimal parameters are to be fitted.
If you intend to fit all subjects within your dataset, it is strongly recommended
to use id = unique(data$Subject). This approach accounts for cases where
subject IDs in the dataset may not be simple numeric sequences (e.g., "1", "2",
"3", "4") or may contain string entries (e.g., "1", "2", "3", "004"). Using id =
1:4 could lead to errors if IDs are not sequentially numbered integers.
default: id = NULL

result [data.frame] Output data generated by the ‘fit_p()‘ function. Each row repre-
sents model fit results for a subject.

model [function] A model function to be applied in evaluating the experimental effect.

model_name [character] A character string specifying the name of the model to extract from
the result.

param_prefix [character] A prefix string used to identify parameter columns in the ‘result‘ data
default: param_prefix = "param_"

n_trials [integer] Represents the total number of trials a single subject experienced in
the experiment. If this parameter is kept at its default value of ‘NULL‘, the pro-
gram will automatically detect how many trials a subject experienced from the
provided data. This information is primarily used for calculating model fit statis-
tics such as AIC (Akaike Information Criterion) and BIC (Bayesian Information
Criterion).
default: n_trials = NULL

Value

A list, where each element is a data.frame representing one subject’s results. Each data.frame
includes the value update history for each option, the learning rate (eta), utility function (gamma),
and other relevant information used in each update.

Examples

Not run:
list <- list()

list[[1]] <- dplyr::bind_rows(
binaryRL::rpl_e(
data = binaryRL::Mason_2024_Exp2,
result = read.csv("../OUTPUT/result_comparison.csv"),
model = binaryRL::TD,
model_name = "TD",
param_prefix = "param_",

RSTD 33

)
)

list[[2]] <- dplyr::bind_rows(
binaryRL::rpl_e(

data = binaryRL::Mason_2024_Exp2,
result = read.csv("../OUTPUT/result_comparison.csv"),
model = binaryRL::RSTD,
model_name = "RSTD",
param_prefix = "param_",

)
)

list[[3]] <- dplyr::bind_rows(
binaryRL::rpl_e(

data = binaryRL::Mason_2024_Exp2,
result = read.csv("../OUTPUT/result_comparison.csv"),
model = binaryRL::Utility,
param_prefix = "param_",
model_name = "Utility",

)
)

End(Not run)

RSTD Model: RSTD

Description

Vnew = Vold + η+ · (R− Vold), R > Vold

Vnew = Vold + η− · (R− Vold), R < Vold

Usage

RSTD(params)

Arguments

params [vector] algorithm packages accept only one argument

Value

[numeric] algorithm packages accept only one return

34 run_m

Examples

Not run:
RSTD <- function(params){

res <- binaryRL::run_m(
data = data,
id = id,
eta = c(params[1], params[2]),
tau = c(params[3]),
n_params = n_params,
n_trials = n_trials,
mode = mode

)

assign(x = "binaryRL.res", value = res, envir = binaryRL.env)

switch(mode, "fit" = -res$ll, "simulate" = res, "replay" = res)
}

End(Not run)

run_m Step 1: Building reinforcement learning model

Description

This function is designed to construct and customize reinforcement learning models.

Items for model construction:

• Data Input and Specification: You must provide the raw dataset for analysis. Crucially, you
need to inform the run_m function about the corresponding column names within your dataset
(e.g., Mason_2024_Exp1, Mason_2024_Exp2) This is a game, so it’s critical that your dataset
includes rewards for both the human-chosen option and the unchosen options.

• Customizable RL Models: This function allows you to define and adjust the number of free
parameters to create various reinforcement learning models.

– Value Function:

* Learning Rate: By adjusting the number of eta, you can construct basic reinforce-
ment learning models such as Temporal Difference (TD) and Risk Sensitive Tempo-
ral Difference (RSTD). You can also directly adjust func_eta to define your own
custom learning rate function.

* Utility Function: You can directly adjust the form of func_gamma to incorporate the
principles of Kahneman’s Prospect Theory. Currently, the built-in func_gamma only
takes the form of a power function, consistent with Stevens’ Power Law.

– Exploration–Exploitation Trade-off:

* Initial Values: This involves setting the initial expected value for each option when it
hasn’t been chosen yet. A higher initial value encourages exploration.

run_m 35

* Epsilon: Adjusting the threshold, epsilon and lambda parameters can lead to ex-
ploration strategies such as epsilon-first, epsilon-greedy, or epsilon-decreasing.

* Upper-Confidence-Bound: By adjusting pi, it controls the degree of exploration by
scaling the uncertainty bonus given to less-explored options.

* Soft-Max: By adjusting the inverse temperature parameter tau, this controls the
agent’s sensitivity to value differences. A higher value of tau means greater emphasis
on value differences, leading to more exploitation. A smaller value of tau indicates a
greater tendency towards exploration.

• Objective Function Format for Optimization: Once your model is defined in run_m, it
must be structured as an objective function that accepts params as input and returns a loss
value (typically logL). This format ensures compatibility with the algorithm package, which
uses it to estimate optimal parameters. For an example of a standard objective function format,
see TD, RSTD, Utility.

For more information, please refer to the homepage of this package: https://github.com/yuki-961004/
binaryRL

Usage

run_m(
mode = c("simulate", "fit", "replay"),
data,
id,
n_params,
n_trials,
softmax = TRUE,
seed = 123,
initial_value = NA,
threshold = 1,
alpha = NA,
beta = NA,
gamma = 1,
eta,
epsilon = NA,
lambda = NA,
pi = 0.001,
tau = 1,
util_func = func_gamma,
rate_func = func_eta,
expl_func = func_epsilon,
bias_func = func_pi,
prob_func = func_tau,
sub = "Subject",
time_line = c("Block", "Trial"),
L_choice = "L_choice",
R_choice = "R_choice",
L_reward = "L_reward",
R_reward = "R_reward",
sub_choose = "Sub_Choose",

https://github.com/yuki-961004/binaryRL
https://github.com/yuki-961004/binaryRL

36 run_m

rob_choose = "Rob_Choose",
raw_cols = NULL,
var1 = NA,
var2 = NA,
digits_1 = 2,
digits_2 = 5

)

Arguments

mode [character] This parameter controls the function’s operational mode. It has three
possible values, each typically associated with a specific function:

• "simulate": Should be used when working with rcv_d.
• "fit": Should be used when working with fit_p.
• "replay": Should be used when working with rpl_e.

In most cases, you won’t need to modify this parameter directly, as suitable
default values are set for different contexts.

data [data.frame] This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

id [integer] Which subject is going to be analyzed. The value should correspond to
an entry in the "sub" column, which must contain the subject IDs.
e.g., id = 18

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

softmax [logical] Whether to use the softmax function.

• TRUE: The value of each option directly influences the probability of select-
ing that option. Higher values lead to a higher probability of selection.

• FALSE: The subject will always choose the option with the higher value.
There is no possibility of selecting the lower-value option.

default: softmax = TRUE

seed [integer] Random seed. This ensures that the results are reproducible and remain
the same each time the function is run.
default: seed = 123

initial_value [numeric] Subject’s initial expected value for each stimulus’s reward. If this
value is not set initial_value = NA, the subject will use the reward received
after the first trial as the initial value for that stimulus. In other words, the
learning rate for the first trial is 100
default: initial_value = NA

run_m 37

threshold [integer] Controls the initial exploration phase in the epsilon-first strategy. This
is the number of early trials where the subject makes purely random choices,
as they haven’t yet learned the options’ values. For example, threshold = 20
means random choices for the first 20 trials. For epsilon-greedy or epsilon-
decreasing strategies, ‘threshold‘ should be kept at its default value.

P (x) =

{
trial ≤ threshold, x = 1 (random choosing)
trial > threshold, x = 0 (value-based choosing)

default: threshold = 1

epsilon-first: threshold = 20, epsilon = NA, lambda = NA

alpha [vector] Extra parameters that may be used in functions.

beta [vector] Extra parameters that may be used in functions.

gamma [vector] This parameter represents the exponent in utility functions, specifically:

• Stevens’ Power Law: Utility is modeled as:

U = Rγ

• Kahneman’s Prospect Theory: This exponent is applied differently based
on the sign of the reward:

U =

{
Rγ1 , R > 0

β ·Rγ2 , R < 0

eta [numeric] Parameters used in the Learning Rate Function, rate_func, repre-
senting the rate at which the subject updates the difference (prediction error)
between the reward and the expected value in the subject’s mind.
The structure of eta depends on the model type:

• For the Temporal Difference (TD) model, where a single learning rate is
used throughout the experiment

Vnew = Vold + η · (R− Vold)

• For the Risk-Sensitive Temporal Difference (RDTD) model, where two
different learning rates are used depending on whether the reward is lower
or higher than the expected value:

Vnew = Vold + η+ · (R− Vold), R > Vold

Vnew = Vold + η− · (R− Vold), R < Vold

TD: eta = 0.3

RSTD: eta = c(0.3, 0.7)

epsilon [numeric] A parameter used in the epsilon-greedy exploration strategy. It de-
fines the probability of making a completely random choice, as opposed to
choosing based on the relative values of the left and right options. For example,
if ‘epsilon = 0.1‘, the subject has a 10 choice and a 90 relevant when ‘threshold‘
is at its default value (1) and ‘lambda‘ is not set.

38 run_m

P (x) =

{
ϵ, x = 1 (random choosing)
1− ϵ, x = 0 (value-based choosing)

epsilon-greedy: threshold = 1, epsilon = 0.1, lambda = NA

lambda [vector] A numeric value that controls the decay rate of exploration probability
in the epsilon-decreasing strategy. A higher ‘lambda‘ value means the probabil-
ity of random choice will decrease more rapidly as the number of trials increases.

P (x) =

{
1

1+λ·trial , x = 1 (random choosing)
λ·trial

1+λ·trial , x = 0 (value-based choosing)

epsilon-decreasing threshold = 1, epsilon = NA, lambda = 0.5

pi [vector] Parameter used in the Upper-Confidence-Bound (UCB) action selec-
tion formula. ‘bias_func‘ controls the degree of exploration by scaling the un-
certainty bonus given to less-explored options. A larger value of pi (denoted
as c in Sutton and Barto(1998)) increases the influence of this bonus, leading
to more exploration of actions with uncertain estimated values. Conversely, a
smaller pi results in less exploration.

At = argmax
a

[
Vt(a) + π

√
ln(t)

Nt(a)

]
default: pi = 0.001

tau [vector] Parameters used in the Soft-Max Function. ‘prob_func‘ representing
the sensitivity of the subject to the value difference when making decisions. It
determines the probability of selecting the left option versus the right option
based on their values. A larger value of tau indicates greater sensitivity to the
value difference between the options. In other words, even a small difference in
value will make the subject more likely to choose the higher-value option.

PL =
1

1 + e−(VL−VR)·τ ;PR =
1

1 + e−(VR−VL)·τ

e.g., tau = c(0.5)

util_func [function] Utility Function see func_gamma.

rate_func [function] Learning Rate Function see func_eta.

expl_func [function] Exploration Strategy Function see func_epsilon.

bias_func [function] Upper-Confidence-Bound see func_pi.

prob_func [function] Soft-Max Function see func_tau.

sub [character] column name of subject ID
e.g., sub = "Subject"

time_line [vector] A vector specifying the name of the column that the sequence of the
experiment. This argument defines how the experiment is structured, such as
whether it is organized by "Block" with breaks in between, and multiple trials
within each block.
default: time_line = c("Block", "Trial")

run_m 39

L_choice [character] Column name of left choice.
default: L_choice = "Left_Choice"

R_choice [character] Column name of right choice.
default: R_choice = "Right_Choice"

L_reward [character] Column name of the reward of left choice
default: L_reward = "Left_reward"

R_reward [character] Column name of the reward of right choice
default: R_reward = "Right_reward"

sub_choose [character] Column name of choices made by the subject.
default: sub_choose = "Choose"

rob_choose [character] Column name of choices made by the model, which you could ig-
nore.
default: rob_choose = "Rob_Choose"

raw_cols [vector] Defaults to ‘NULL‘. If left as ‘NULL‘, it will directly capture all col-
umn names from the raw data.

var1 [character] Column name of extra variable 1. If your model uses more than just
reward and expected value, and you need other information, such as whether the
choice frame is Gain or Loss, then you can input the ’Frame’ column as var1
into the model.
default: var1 = "Extra_Var1"

var2 [character] Column name of extra variable 2. If one additional variable, var1,
does not meet your needs, you can add another additional variable, var2, into
your model.
default: var2 = "Extra_Var2"

digits_1 [integer] The number of decimal places to retain for columns related to value
function
default: digits_1 = 2

digits_2 [integer] The number of decimal places to retain for columns related to select
function.
default: digits_2 = 5

Value

A list of class binaryRL containing the results of the model fitting.

Examples

data <- binaryRL::Mason_2024_Exp1

binaryRL.res <- binaryRL::run_m(
mode = "fit",
data = data,
id = 18,
eta = c(0.321, 0.765),
n_params = 2,

40 simulate_list

n_trials = 360
)

summary(binaryRL.res)

simulate_list Process: Simulating Fake Data

Description

This function is responsible for generating synthetic (fake) data using random numbers. For all
parameters except the last one, their values are drawn from a uniform distribution within their
respective specified ranges.

The last parameter, representing the temperature (‘tau‘) in the soft-max function, is drawn from an
exponential distribution. If its ‘upper‘ bound is set to 1, it implies ‘tau‘ is sampled from ‘Exp(1)‘ (an
exponential distribution with a rate parameter of 1). If its ‘lower‘ bound is set to 1, this means that
after ‘tau‘ is randomly generated, it is shifted to the right by adding 1 (i.e., ‘tau + 1‘), establishing a
minimum value.

Usage

simulate_list(
data,
id = 1,
obj_func,
n_params,
n_trials,
lower,
upper,
iteration = 10,
seed = 123

)

Arguments

data [data.frame] This data should include the following mandatory columns:

• "sub"
• "time_line" (e.g., "Block", "Trial")
• "L_choice"
• "R_choice"
• "L_reward"
• "R_reward"
• "sub_choose"

simulate_list 41

id [vector] Specifies which subject’s data to use. In parameter and model recovery
analyses, the specific subject ID is often irrelevant. Although the experimental
trial order might have some randomness for each subject, the sequence of reward
feedback is typically pseudo-random.
The default value for this argument is ‘NULL‘. When ‘id‘ is ‘NULL‘, the pro-
gram automatically detects existing subject IDs within the dataset. It then ran-
domly selects one subject as a sample, and the parameter and model recovery
procedures are performed based on this selected subject’s data.
default: id = NULL

obj_func [function] The objective function that the optimization algorithm package ac-
cepts. This function must strictly take only one argument, ‘params‘ (a vector of
model parameters). Its output must be a single numeric value representing the
loss function to be minimized. For more detailed requirements and examples,
please refer to the relevant documentation (TD, RSTD, Utility).

n_params [integer] The number of free parameters in your model.

n_trials [integer] The total number of trials in your experiment.

lower [vector] Lower bounds of free parameters

upper [vector] Upper bounds of free parameters

iteration [integer] This parameter determines how many simulated datasets are created
for subsequent model and parameter recovery analyses.

seed [integer] Random seed. This ensures that the results are reproducible and remain
the same each time the function is run.
default: seed = 123

Value

a list with fake data generated by random free parameters

Examples

Not run:
list_simulated <- binaryRL::simulate_list(

data = binaryRL::Mason_2024_Exp2,
obj_func = binaryRL::RSTD,
n_params = 3,
n_trials = 360,
lower = c(0, 0, 1),
upper = c(1, 1, 1),
iteration = 100

)

df_recovery <- binaryRL::recovery_data(
list = list_simulated,
fit_model = binaryRL::RSTD,
model_name = "RSTD",
n_params = 3,
n_trials = 360,
lower = c(0, 0, 1),

42 TD

upper = c(1, 1, 5),
iteration = 100,
nc = 1,
algorithm = "L-BFGS-B"

)

End(Not run)

summary.binaryRL S3method summary

Description

S3method summary

Usage

S3 method for class 'binaryRL'
summary(object, ...)

Arguments

object binaryRL result

... others

Value

summary

TD Model: TD

Description

Vnew = Vold + η · (R− Vold)

Usage

TD(params)

Arguments

params [vector] algorithm packages accept only one argument

Utility 43

Value

[numeric] algorithm packages accept only one return

Examples

Not run:
TD <- function(params){

res <- binaryRL::run_m(
data = data,
id = id,
eta = c(params[1]),
tau = c(params[2]),
n_params = n_params,
n_trials = n_trials,
mode = mode

)

assign(x = "binaryRL.res", value = res, envir = binaryRL.env)

switch(mode, "fit" = -res$ll, "simulate" = res, "replay" = res)
}

End(Not run)

Utility Model: Utility

Description

U(R) = Rγ

Vnew = Vold + η · (U(R)− Vold)

Usage

Utility(params)

Arguments

params [vector] algorithm packages accept only one argument

Value

[numeric] algorithm packages accept only one return

44 Utility

Examples

Not run:
Utility <- function(params){

res <- binaryRL::run_m(
data = data,
id = id,
eta = c(params[1]),
gamma = c(params[2]),
tau = c(params[3]),
n_params = n_params,
n_trials = n_trials,
mode = mode

)

assign(x = "binaryRL.res", value = res, envir = binaryRL.env)

switch(mode, "fit" = -res$ll, "simulate" = res, "replay" = res)
}

End(Not run)

Index

fit_p, 2
func_epsilon, 4, 6, 26, 29, 38
func_eta, 4, 9, 26, 29, 38
func_gamma, 4, 12, 26, 29, 38
func_pi, 4, 15, 26, 30, 38
func_tau, 4, 17, 26, 30, 38

Mason_2024_Exp1, 20, 34
Mason_2024_Exp2, 21, 34

optimize_para, 22

rcv_d, 24
recovery_data, 28
rpl_e, 31
RSTD, 2, 23, 24, 33, 35, 41
run_m, 34

simulate_list, 40
summary.binaryRL, 42

TD, 2, 23, 24, 35, 41, 42

Utility, 2, 23, 24, 35, 41, 43

45

	fit_p
	func_epsilon
	func_eta
	func_gamma
	func_pi
	func_tau
	Mason_2024_Exp1
	Mason_2024_Exp2
	optimize_para
	rcv_d
	recovery_data
	rpl_e
	RSTD
	run_m
	simulate_list
	summary.binaryRL
	TD
	Utility
	Index

