Package 'SimSurvey'

July 21, 2025

```
Type Package
Title Test Surveys by Simulating Spatially-Correlated Populations
Version 0.1.6
Maintainer Paul Regular < Paul . Regular@dfo-mpo.gc.ca>
Description Simulate age-structured populations that vary in space and time and
     explore the efficacy of a range of built-in or user-defined sampling
     protocols to reproduce the population parameters of the known population.
     (See Regular et al. (2020) <doi:10.1371/journal.pone.0232822> for more
     details).
Depends R (>= 3.5.0)
License GPL-3
Additional_repositories https://inla.r-inla-download.org/R/stable/
LazyData true
ByteCompile true
URL https://paulregular.github.io/SimSurvey/
BugReports https://github.com/PaulRegular/SimSurvey/issues
Imports sf, stars, data.table, magrittr, progress, doParallel,
     parallel, foreach, plotly, rlang, lifecycle
Suggests fields, rmarkdown, flexdashboard, shiny, crosstalk,
     htmltools, viridis, lme4, ggplot2, INLA, INLAspacetime, knitr,
     bezier
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Author Paul Regular [aut, cre] (ORCID:
      <https://orcid.org/0000-0003-0318-2615>),
     Jonathan Babyn [ctb],
     Greg Robertson [ctb]
Repository CRAN
Date/Publication 2023-09-19 10:50:10 UTC
```

2 bathy

Contents

bathy	Southern Newfoundland bathymetry	
ndex		36
	vis_siii	54
	vis_sim	34
	test_surveys	
	survey_mesh	
	survey_lite_mesh	
	survey_grid	30
	strat_means	29
	strat error	28
	strat data	28
	sim_survey_paramer	27
	sim_survey_parallel	25
	sim_sets	23
		22
	sim R	20
	sim_parabola	19
	sim_nlf	18
	sim_logistic	17
	sim_ays_covar_spde	16
	$ \bullet$ $-$	15
	sim_abundance	14
	run_strat	11 12
	round_sim	11
	plot_trend	11
	object_size	8
	make_mesh	7
	make_grid	6
	land	6
	icc	5
	group_lengths	5
	fibonacci	4
	expand_surveys	4
	error_stats	3
	convert_N	3
	bathy	2

Description

Southern Newfoundland bathymetry

convert_N 3

Usage

bathy

Format

A stars object

Derived from data downloaded from http://www.gebco.net/. Details provided in the data-raw folder for this package.

convert_N

Convert abundance-at-age matrix to abundance-at-length

Description

Function for converting abundance-at-age matrix to abundance-at-length given a length-age-key. Expects matrices to be named.

Usage

```
convert_N(N_at_age = NULL, lak = NULL)
```

Arguments

N_at_age Abundance-at-age matrix

lak Length-age-key (i.e. probability of being in a specific length group given age)

Value

Returns abundance-at-length matrix.

error_stats

Calculate common error statistics

Description

Calculate common error statistics

Usage

```
error_stats(error)
```

Arguments

error

Vector of errors

4 fibonacci

Value

Returns a named vector of error statistics including mean error ("ME"), mean absolute error ("MAE"), mean squared error ("MSE") and root mean squared error ("RMSE")

expand_surveys

Set-up a series of surveys from all combinations of settings supplied

Description

Function is simply a wrapper for expand.grid that adds a survey number to the returned object

Usage

```
expand_surveys(
  set_den = c(0.5, 1, 2, 5, 10)/1000,
  lengths_cap = c(5, 10, 20, 50, 100, 500, 1000),
  ages_cap = c(2, 5, 10, 20, 50)
)
```

Arguments

set_den Vector of set densities (number of sets per grid unit squared)
lengths_cap Vector of maximum number of lengths measured per set

ages_cap Vector of maximum number of otoliths to collect per length group per division

per year

Value

Returns a data.frame including all combinations of the supplied vectors.

fibonacci

Generate Fibonacci sequence

Description

Generate Fibonacci sequence

Usage

```
fibonacci(from, to)
```

Arguments

from, to

Approximate start and end values of the sequence

group_lengths 5

Value

Returns a Fibonacci sequence as a vector.

Examples

```
fibonacci(2, 200)
```

group_lengths

Convert length to length group

Description

Helper function for converting lengths to length groups (Note: this isn't a general function; the output midpoints defining the groups aligns with DFO specific method/labeling)

Usage

```
group_lengths(length, group)
```

Arguments

length Interval from findInterval

group Length group used to cut the length data

Value

Returns a vector indicating the mid-point of the length group.

icc

Calculate intraclass correlation

Description

This is a simple function for calculating intraclass correlation. It uses lmer to run the formula described here: https://en.wikipedia.org/wiki/Intraclass_correlation

Usage

```
icc(x, group)
```

Arguments

x Response variable

group Group

6 make_grid

Value

Returns estimate of intraclass correlation.

land

Southern Newfoundland coastline

Description

Southern Newfoundland coastline

Usage

land

Format

A sf object (MULTIPOLYGON)

Derived from global administrative boundaries data (http://gadm.org/) downloaded using the getData function. Details provided in the data-raw folder for this package.

make_grid

Make a depth stratified survey grid

Description

This function sets up a depth stratified survey grid. A simple gradient in depth is simulated using stats::spline (default) with a shallow portion, shelf and deep portion. Adding covariance to the depth simulation is an option.

```
make_grid(
   x_range = c(-140, 140),
   y_range = c(-140, 140),
   res = c(3.5, 3.5),
   shelf_depth = 200,
   shelf_width = 100,
   depth_range = c(0, 1000),
   n_div = 1,
   strat_breaks = seq(0, 1000, by = 40),
   strat_splits = 2,
   method = "spline"
)
```

make_mesh 7

Arguments

x_range	Range (min x, max x) in x dimension in km
y_range	Range (min y, max y) in y dimension in km
res	Resolution, in km, of the grid cells
shelf_depth	Approximate depth of the shelf in m
shelf_width	Approximate width of the shelf in km
depth_range	Range (min depth, max depth) in depth in m
n_div	Number of divisions to include
strat_breaks	Define strata given these depth breaks
strat_splits	Number of times to horizontally split strat (i.e. easy way to increase the number of strata)
method	Use a "spline", "loess" or "bezier" to generate a smooth gradient or simply use "linear" interpolation?

Value

Returns a stars object with 2 dimensions (x and y) and 4 attributes (depth, cell, division, strat).

See Also

```
survey_grid
```

Examples

```
r <- make_grid(res = c(10, 10))
plot(r)

p <- sf::st_as_sf(r["strat"], as_points = FALSE, merge = TRUE)
plot(p)</pre>
```

make_mesh

Make an R-INLA mesh based off a grid

Description

This will make a mesh based off a given grid. Ideally the mesh construction and validation should be done by hand, but this exists for convenience. Meshes are used for sim_ays_covar_spde. The defaults are designed for the default grid. Just a basic interface between the grid and inla.mesh.2d.

8 object_size

Usage

```
make_mesh(
  grid = make_grid(),
  max.edge = 50,
  bound.outer = 150,
  cutoff = 10,
  offset = c(max.edge, bound.outer),
  ...
)
```

Arguments

grid grid object to make a mesh of

max.edge The largest allowed triangle edge length. One or two values. This is passed to inla.mesh.2d

bound.outer The optional outer extension value given to offset.

cutoff Minimum distance allowed between points

offset The automatic extension distance given to inla.mesh.2d

... Other options to pass to inla.mesh.2d

Value

Returns an object of class inla.mesh.

Examples

```
if (requireNamespace("INLA")) {
  basic_mesh <- make_mesh()
  plot(basic_mesh)
}</pre>
```

 $object_size$

Print object size

Description

A wrapper for object.size that prints in Mb by default

```
object_size(x, units = "Mb")
```

plot_trend 9

Arguments

```
x an R objectunits the units to be used in printing the size
```

Value

Returns a character with the object size followed by the unit.

plot_trend

Simple plotting functions

Description

These functions are simple plotting helpers to get some quick visuals of values produced by sim_abundance, sim_distribution, etc.

```
plot_trend(sim, sum_ages = sim$ages, col = viridis::viridis(1), ...)
plot_surface(sim, mat = "N", xlab = "Age", ylab = "Year", zlab = mat, ...)
plot_grid(grid, ...)
plot_distribution(
  sim,
  ages = sim$ages,
 years = sim$years,
  type = "contour",
  scale = "natural";
)
plot_survey(sim, which_year = 1, which_sim = 1)
plot_total_strat_fan(sim, surveys = 1:5, quants = seq(90, 10, by = -10), ...)
plot_length_strat_fan(
  sim,
  surveys = 1:5,
  years = 1:10,
  lengths = 1:50,
  select_by = "year",
 quants = seq(90, 10, by = -10),
)
```

plot_trend

```
plot_age_strat_fan(
    sim,
    surveys = 1:5,
    years = 1:10,
    ages = 1:10,
    select_by = "year",
    quants = seq(90, 10, by = -10),
    ...
)

plot_error_surface(sim, plot_by = "rule")

plot_survey_rank(sim, which_strat = "age")
```

Arguments

sim	Object returned by $sim_abundance$, $sim_distribution$, etc.		
sum_ages	Sum across these ages		
col	Plot color		
	Additional arguments to pass to plot_ly.		
mat	Name of matrix in sim list to plot.		
xlab, ylab, zlab	Axes labels.		
grid	Grid produced by make_grid.		
ages	Subset data to one or more ages.		
years	Subset data to one or more years.		
type	Plot type: "contour" or "heatmap".		
scale	Plot response on "natural" or "log" scale?		
which_year	Subset to specific year		
which_sim	Subset to specific sim		
surveys	Subset data to one or more surveys.		
quants	Quantile intervals to display on fan plot		
lengths	Subset data to one or more length groups.		
select_by	Select plot by "age", "length" or "year"?		
plot_by	Plot error surface by "rule" or "samples"?		
which_strat	Which strat values to focus on? (total, length, or age)		

Value

Returns a plot of class plotly.

round_sim 11

round_sim

Round simulated population

Description

Round simulated population

Usage

```
round_sim(sim)
```

Arguments

sim

Simulation from sim_distribution

Value

Returns a rounded simulation object. Largely used as a helper in sim_survey.

run_strat

Run stratified analysis on simulated data

Description

Run stratified analysis on simulated data

Usage

```
run_strat(
    sim,
    length_group = "inherit",
    alk_scale = "division",
    strat_data_fun = strat_data,
    strat_means_fun = strat_means)
```

Arguments

sim

Simulation from sim_survey

length_group

Size of the length frequency bins for both abundance at length calculations and age-length-key construction. By default this value is inherited from the value defined in sim_abundance from the closure supplied to sim_length ("inherit"). A numeric value can also be supplied, however, a mismatch in length groupings will cause issues with strat_error as true vs. estimated length groupings will be mismatched.

12 sim_abundance

```
alk_scale Spatial scale at which to construct and apply age-length-keys: "division" or "strat".

strat_data_fun Function for preparing data for stratified analysis (e.g. strat_data)

strat_means_fun

Function for calculating stratified means (e.g. strat_means)
```

Details

The "strat_data_fun" and "strat_means_fun" allow the use of custom strat_data and strat_means functions.

Value

Adds stratified analysis results for the total population ("total_strat") and the population aggregated by length group and age ("length_strat" and "age_strat", respectively) to the sim list.

Examples

sim_abundance

Simulate basic population dynamics model

Description

Simulate basic population dynamics model

```
sim_abundance(
   ages = 1:20,
   years = 1:20,
   Z = sim_Z(),
   R = sim_R(),
   N0 = sim_N0(),
   growth = sim_vonB()
)
```

sim_abundance 13

Arguments

ages	Ages to include in the simulation.
years	Years to include in the simulation.
Z	Total mortality function, like sim_Z, for generating mortality matrix.
R	Recruitment (i.e. abundance at min(ages)) function, like sim_R, for generating recruitment vector.
NØ	Starting abundance (i.e. abundance at min(years)) function, like sim_N0, for generating starting abundance vector.
growth	Closure, such as sim_vonB, for simulating length given age. The function is used here to generate a abundance-at-age matrix and it is carried forward for later use in sim_survey to simulate lengths from survey catch at age.

Details

Abundance from is calculated using a standard population dynamics model. An abundance-atlength matrix is generated using a growth function coded as a closure like sim_vonB. The function is retained for later use in sim_survey to simulate lengths given simulated catch at age in a simulated survey. The ability to simulate distributions by length is yet to be implemented.

Value

A list of length 9:

- ages Vector of ages in the simulation
- lengths Vector of length groups (depends on growth function)
- years Vector of years in the simulation
- R Vector of recruitment values
- No Vector of starting abundance values
- Z Matrix of total mortality values
- N Matrix of abundance values
- N_at_length Abundance at length matrix
- sim_length Function for simulating lengths given ages

Examples

14 sim_ays_covar

```
Z_mat <- outer(Za_dev, Zy_dev, "+") + 0.5</pre>
sim_abundance(ages = 1:10, years = 1:20,
               Z = sim_Z(log_mean = log(Z_mat), plot = TRUE))
sim_abundance(ages = 1:10, years = 1:20,
          Z = sim_Z(log_mean = log(Z_mat), log_sd = 0, phi_age = 0, phi_year = 0, plot = TRUE))
N0_{\text{fun}} <- \sin_N0(N0 = \text{"exp"}, \text{plot} = TRUE)
N0_{fun}(R0 = 1000, Z0 = rep(0.5, 20), ages = 1:20)
sim_abundance(N0 = sim_N0(N0 = "exp", plot = TRUE))
growth_fun <- sim_vonB(Linf = 100, L0 = 5, K = 0.2, log_sd = 0.05, length_group = 1, plot = TRUE)
growth_fun(age = rep(1:15, each = 100))
growth_fun(age = 1:15, length_age_key = TRUE)
sim_abundance(growth = sim_vonB(plot = TRUE))
sim <- sim_abundance()</pre>
plot_trend(sim)
plot_surface(sim, mat = "N")
plot_surface(sim, mat = "Z")
plot_surface(sim, mat = "N_at_length", xlab = "Length", zlab = "N")
```

sim_ays_covar

Simulate age-year-space covariance

Description

These functions return a function to use inside sim_distribution.

Usage

```
sim_ays_covar(
   sd = 2.8,
   range = 300,
   lambda = 1,
   model = "matern",
   phi_age = 0.5,
   phi_year = 0.9,
   group_ages = 5:20,
   group_years = NULL
)
```

Arguments

sd Variance (can be age specific).

range Decorrelation range

lambda Controls the degree of smoothness of Matern covariance process

model String indicating either "exponential" or "matern" as the correlation function

sim_ays_covar_spde 15

phi_age	Defines autocorrelation through ages. Can be one value or a vector of the same
	length as ages
phi_year	Defines autocorrelation through years. Can be one value or a vector of the same
	length as years
group_ages	Make space-age-year noise equal across these ages
group_years	Make space-age-year noise equal across these years

Value

Returns a function for use inside sim_distribution.

sim_ays_covar_spde Simulate age-year-space covariance using SPDE approach

Description

[Experimental]

Returns a function to use inside sim_distribution to generate the error term.

Usage

```
sim_ays_covar_spde(
   sd = 2.8,
   range = 300,
   model = "spde",
   phi_age = 0.5,
   phi_year = 0.9,
   group_ages = 5:20,
   group_years = NULL,
   mesh,
   barrier.triangles
)
```

Arguments

sdVariance (can be age specific) range Decorrelation range String indicating "barrier" or "spde" to generate Q with model Defines autocorrelation through ages. Can be one value or a vector of the same phi_age length as ages. Defines autocorrelation through years. Can be one value or a vector of the same phi_year length as years. Make space-age-year variance equal across these ages group_ages Make space-age-year variance equal across these years group_years mesh The mesh used to generate the precision matrix barrier.triangles

the set of triangles in the barrier of the mesh for the barrier model

sim_distribution

Value

Returns a function for use in sim_distribution.

Examples

sim_distribution

Simulate spatial and temporal distribution

Description

Provided an abundance at age matrix and a survey grid to populate, this function applies correlated space, age and year error to simulate the distribution of the population. The ability to simulate distributions by length is yet to be implemented.

```
sim_distribution(
  sim,
  grid = make_grid(),
  ays_covar = sim_ays_covar(),
  depth_par = sim_parabola()
)
```

sim_logistic 17

Arguments

sim	A list with ages, years and an abundance at age matrix like produced by sim_abundance.
grid	A stars object defining the survey grid, like survey_grid or one produced by make_grid
ays_covar	Closure for simulating age-year-space covariance, like sim_ays_covar
depth_par	Closure for defining relationship between abundance and depth, like sim_parabola

Details

This function simulates the probability of simulated fish inhabiting a cell as a function of a parabolic relationship with depth and space, age, and year autocorrelated errors. WARNING: it make take a long time to simulate abundance in a large grid across many ages and years - start small first.

Value

Appends three objects to the sim list:

- grid A stars object with the grid details
- grid_xy Grid details as a data.table in xyz format
- sp_N A data.table with abundance split by age, year and cell

Examples

sim_logistic

Closure for simulating logistic curve

Description

This closure is useful for simulating q inside the sim_survey function

```
sim_logistic(k = 2, x0 = 3, plot = FALSE)
```

sim_nlf

Arguments

k The steepness of the curve

x0 The x-value of the sigmoid's midpoint

plot Plot relationship

Value

Returns a function for use in sim_survey.

Examples

```
logistic_fun <- sim_logistic(k = 2, x0 = 3, plot = TRUE) logistic_fun(x = 1:10)
```

sim_nlf

Define a non-linear relationship

Description

[Experimental]

Closure to be used in sim_distribution.

Usage

```
sim_nlf(
  formula = ~alpha - ((depth - mu)^2)/(2 * sigma^2),
  coeff = list(alpha = 0, mu = 200, sigma = 70)
)
```

Arguments

formula

Formula describing parametric relationships between data and coefficients. The data used in sim_distribution are grid coordinates expanded across ages and years (i.e., includes columns "x", "y", "depth", "cell", "division", "strat", "age", "year"). Values of the coefficients must be included in argument coeff as a named list.

coeff

Named list of coefficient values used in formula.

Value

Returns a function for use inside sim_distribution.

sim_parabola 19

Examples

```
## Make a grid and replicate data for 5 ages and 5 years
## (This is similar to what happens inside sim_distribution)
grid <- make_grid(shelf_width = 10)</pre>
grid_xy <- data.frame(grid)</pre>
i <- rep(seq(nrow(grid_xy)), times = 5)</pre>
a <- rep(1:5, each = nrow(grid_xy))</pre>
grid_xy <- grid_xy[i, ]</pre>
grid_xy$age <- a</pre>
i \leftarrow rep(seq(nrow(grid_xy)), times = 5)
y <- rep(1:5, each = nrow(grid_xy))
grid_xy <- grid_xy[i, ]</pre>
grid_xy$year <- y</pre>
## Now using sim_nlf, produce a function to apply to the expanded grid_xy data
## For this firs example, the depth effect is parabolic and the vertex is deeper by age
## (i.e., to impose ontogenetic deepening)
nlf <- sim_nlf(formula = ~ alpha - ((depth - mu + beta * age) ^ 2) / (2 * sigma ^ 2),
                coeff = list(alpha = 0, mu = 200, sigma = 70, beta = -70))
grid_xy$depth_effect <- nlf(grid_xy)</pre>
library(plotly)
grid_xy %>%
  filter(year == 1) %>%
  plot_ly(x = ~depth, y = ~depth_effect, split = ~age) %>%
  add_lines()
```

sim_parabola

Define a parabolic relationship

Description

Closure to be used in sim_distribution. Form is based on the bi-gaussian function described here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993707/.

```
sim_parabola(
  alpha = 0,
  mu = 200,
  sigma = 70,
  sigma_right = NULL,
  log_space = FALSE,
  plot = FALSE
)
```

20 sim_R

Arguments

alpha, mu, sigma Parameters that control the shape of the parabola. Can be one value or a vector of equal length to the number of ages in the simulation (e.g. age-specific depth associations can be specified).

sigma_right Optional parameter to impose asymmetry by supplying a sigma parameter for the right side. If used, sigma will be used to define the width of the left side. Ignored if NULL.

log_space Should shape of the parabola be defined in log space? If TRUE, logged parameters are assumed to be supplied and x values used in the parabola equation are log transformed. This allows a more lognormal curve to be defined and, hence, allows a heavier tail and it forces very low values near zero.

Produce a simple plot of the simulated values?

Value

plot

Returns a function for use inside sim_distribution.

Examples

```
parabola_fun <- sim_parabola(mu = 50, sigma = 5, plot = TRUE)
parabola_fun(data.frame(depth = 0:100))

parabola_fun <- sim_parabola(mu = log(40), sigma = 0.5, log_space = FALSE, plot = TRUE)
parabola_fun(data.frame(depth = 0:100))

parabola_fun <- sim_parabola(mu = c(50, 120), sigma = c(5, 3), plot = TRUE)
parabola_fun(expand.grid(depth = 1:200, age = 1:2))</pre>
```

 sim_R

Simulate starting abundance, random recruitment and total mortality

Description

These functions return a function to use inside sim_abundance. Given parameters, it generates N0, R and Z values.

```
sim_R(log_mean = log(3e+07), log_sd = 0.5, random_walk = TRUE, plot = FALSE)
sim_Z(
  log_mean = log(0.5),
  log_sd = 0.2,
  phi_age = 0.9,
  phi_year = 0.5,
  plot = FALSE
```

```
sim_R 21
```

```
)
sim_N0(N0 = "exp", plot = FALSE)
```

Arguments

log_mean One mean value or a vector of means, in log scale, of length equal to years for

sim_R or a matrix of means with rows equaling the number of ages and columns

equaling the number of years for sim_Z.

log_sd Standard deviation of the variable in the log scale.

random_walk Simulate recruitment as a random walk?

plot produce a simple plot of the simulated values?

phi_age Autoregressive parameter for the age dimension.

phi_year Autoregressive parameter for the year dimension.

No Either specify "exp" or numeric vector of starting abundance excluding the first

age. If "exp" is specified using sim_N0, then abundance at age are calculated

using exponential decay.

Details

sim_R generates uncorrelated recruitment values or random walk values from a log normal distribution. sim_Z does the same as sim_R when phi_age and phi_year are both 0, otherwise values are correlated in the age and/or year dimension. The covariance structure follows that described in Cadigan (2015).

Value

Returns a function for use inside sim_abundance.

References

Cadigan, Noel G. 2015. A State-Space Stock Assessment Model for Northern Cod, Including Under-Reported Catches and Variable Natural Mortality Rates. Canadian Journal of Fisheries and Aquatic Sciences 73 (2): 296-308.

Examples

sim_sets

```
 \begin{split} & sim\_abundance(ages = 1:10, \ years = 1:20, \\ & Z = sim\_Z(log\_mean = log(Z\_mat), \ plot = TRUE)) \\ & sim\_abundance(ages = 1:10, \ years = 1:20, \\ & Z = sim\_Z(log\_mean = log(Z\_mat), \ log\_sd = 0, \ phi\_age = 0, \ phi\_year = 0, \ plot = TRUE)) \\ & N0\_fun <- sim\_N0(N0 = "exp", \ plot = TRUE) \\ & N0\_fun(R0 = 1000, \ Z0 = rep(0.5, \ 20), \ ages = 1:20) \\ & sim\_abundance(N0 = sim\_N0(N0 = "exp", \ plot = TRUE)) \end{split}
```

sim_sets

Simulate survey sets

Description

Simulate survey sets

Usage

```
sim_sets(
   sim,
   subset_cells,
   n_sims = 1,
   trawl_dim = c(1.5, 0.02),
   min_sets = 2,
   set_den = 2/1000,
   resample_cells = FALSE
)
```

Arguments

sim	Simulation object from sim_distribution		
subset_cells	Logical expression indicating the elements (x, y, depth, cell, division, strat, year) of the survey grid to keep (e.g., cell < 100)		
n_sims	Number of simulations to produce		
trawl_dim	Trawl width and distance (same units as grid)		
min_sets	Minimum number of sets per strat		
set_den	Set density (number of sets per grid unit squared)		
resample_cells	Allow resampling of sampling units (grid cells)? (Note: allowing resampling may create bias because depletion is imposed at the cell level)		

Value

Returns a data.table including details of each set location.

sim_survey 23

Examples

sim_survey

Simulate stratified-random survey

Description

Simulate stratified-random survey

Usage

```
sim_survey(
  sim,
  n_sims = 1,
  q = sim_logistic(),
  trawl_dim = c(1.5, 0.02),
  resample_cells = FALSE,
  binom_error = TRUE,
  min_sets = 2,
  set_den = 2/1000,
  lengths_cap = 500,
  ages_cap = 10,
  age_sampling = "stratified",
  age_length_group = 1,
  age_space_group = "division",
  custom_sets = NULL,
  light = TRUE
)
```

Arguments

sim

Simulation from sim_distribution

24 sim_survey

n_sims	Number of surveys to simulate over the simulated population. Note: requesting a large number of simulations may max out your RAM. Use sim_survey_parallel if many simulations are required.			
q	Closure, such as sim_logistic, for simulating catchability at age (returned values must be between 0 and 1)			
trawl_dim	Trawl width and distance (same units as grid)			
resample_cells	Allow resampling of sampling units (grid cells)? Setting to TRUE may introduce bias because depletion is imposed at the cell level.			
binom_error	Impose binomial error? Setting to FALSE may introduce bias in stratified estimates at older ages because of more frequent rounding to zero.			
min_sets	Minimum number of sets per strat			
set_den Set density (number of sets per grid unit squared). WARNING: may reterror if set_den is high and resample_cells = FALSE because the number of cells in a strata.				
lengths_cap	Maximum number of lengths measured per set			
ages_cap	If age_sampling = "stratified", this cap represents the maximum number of ages to sample per length group (defined using the age_length_group argument) per division or strat (defined using the age_space_group argument) per year. If age_sampling = "random", it is the maximum number of ages to sample from measured fish per set.			
age_sampling	Should age sampling be "stratified" (default) or "random"?			
age_length_group				
	Numeric value indicating the size of the length bins for stratified age sampling. Ignored if age_sampling = "random".			
age_space_group				
	Should age sampling occur at the "division" (default), "strat" or "set" spatial scale? That is, age sampling can be spread across each "division", "strat" or "set" in each year to a maximum number within each length bin (cap is defined using the age_cap argument). Ignored if age_sampling = "random".			
custom_sets	Supply an object of the same structure as returned by sim_sets which specifies a custom series of set locations to be sampled. Set locations are automated if custom_sets = NULL.			
light	Drop some objects from the output to keep object size low?			

Value

A list including rounded population simulation, set locations and details and sampling details. Note that that N = "true" population, I = population available to the survey, n = number caught by survey.

Examples

sim_survey_parallel 25

sim_survey_parallel

Simulate stratified random surveys using parallel computation

Description

This function is a wrapper for sim_survey except it allows for many more total iterations to be run than sim_survey before running into RAM limitations. Unlike test_surveys, this function retains the full details of the survey and it may therefore be more useful for testing alternate approaches to a stratified analysis for obtaining survey indices.

Usage

```
sim_survey_parallel(
    sim,
    n_sims = 1,
    n_loops = 100,
    cores = 1,
    quiet = FALSE,
    ...
)
```

Arguments

sim Simulation from sim_distribution				
n_sims	Number of times to simulate a survey over the simulated population. Requesting a large number of simulations here may max out your RAM.			
n_loops	Number of times to run the sim_survey function. Total simulations run will be the product of n_sims and n_loops arguments. Low numbers of n_sims and high numbers of n_loops will be easier on RAM, but may be slower.			
cores	Number of cores to use in parallel. More cores should speed up the process.			
quiet	Print message on what to expect for duration?			
	Arguments passed on to sim_survey			
	q Closure, such as sim_logistic, for simulating catchability at age (returned values must be between 0 and 1)			
	trawl_dim Trawl width and distance (same units as grid)			
	resample_cells Allow resampling of sampling units (grid cells)? Setting to TRUE may introduce bias because depletion is imposed at the cell level.			
	binom_error Impose binomial error? Setting to FALSE may introduce bias in stratified estimates at older ages because of more frequent rounding to zero.			
	min_sets Minimum number of sets per strat			

26 sim_survey_parallel

set_den Set density (number of sets per grid unit squared). WARNING: may
return an error if set_den is high and resample_cells = FALSE because
the number of sets allocated may exceed the number of cells in a strata.

lengths_cap Maximum number of lengths measured per set

- ages_cap If age_sampling = "stratified", this cap represents the maximum number of ages to sample per length group (defined using the age_length_group argument) per division or strat (defined using the age_space_group argument) per year. If age_sampling = "random", it is the maximum number of ages to sample from measured fish per set.
- age_sampling Should age sampling be "stratified" (default) or "random"?
- age_length_group Numeric value indicating the size of the length bins for stratified age sampling. Ignored if age_sampling = "random".
- age_space_group Should age sampling occur at the "division" (default), "strat" or "set" spatial scale? That is, age sampling can be spread across each "division", "strat" or "set" in each year to a maximum number within each length bin (cap is defined using the age_cap argument). Ignored if age_sampling = "random".
- custom_sets Supply an object of the same structure as returned by sim_sets which specifies a custom series of set locations to be sampled. Set locations are automated if custom_sets = NULL.

light Drop some objects from the output to keep object size low?

Details

sim_survey is hard-wired here to be "light" to minimize object size.

Value

Returns an object of the same structure as sim_survey.

Examples

sim_vonB 27

sim_vonB

Closure for simulating length given age using von Bertalanffy notation

Description

This function outputs a function which holds the parameter values supplied and the function either simulates lengths given ages or generates a length age key give a sequence of ages.

Usage

```
sim_vonB(
   Linf = 120,
   L0 = 5,
   K = 0.1,
   log_sd = 0.1,
   length_group = 3,
   digits = 0,
   plot = FALSE
)
```

Arguments

Linf	Mean asymptotic length
L0	Length at birth
K	Growth rate parameter
log_sd	Standard deviation of the relationship in log scale
length_group	Length group for length age key. Note that labels on the matrix produced are midpoints using the DFO conventions; see <code>group_lengths</code> . Also note that this length group will dictate the length group used in the stratified analysis run by <code>run_strat</code> .
digits	Integer indicating the number of decimal places to round the values to
plot	Produce a simple plot of the simulated values?

Value

Returns a function for use inside sim_abundance.

Examples

```
 growth\_fun <- sim\_vonB(Linf = 100, L0 = 5, K = 0.2, log\_sd = 0.05, length\_group = 1, plot = TRUE) \\ growth\_fun(age = rep(1:15, each = 100)) \\ growth\_fun(age = 1:15, length\_age\_key = TRUE) \\ sim\_abundance(growth = sim\_vonB(plot = TRUE))
```

28 strat_error

sti	^at	d.	ata
J ()	uu	_~~	ucu

Prepare simulated data for stratified analysis

Description

Generate set details (setdet), length-frequency (If) and age-frequency (af) data for stratified analysis

Usage

```
strat_data(sim, length_group = 3, alk_scale = "division")
```

Arguments

sim Simulation from sim_survey
length_group Size of the length frequency bins

alk_scale Spatial scale at which to construct and apply age-length-keys: "division", "strat"

or "set".

Value

Returns a list including set details (setdet), length-frequencies (1f), and age-frequencies (af).

strat_error

Calculate error of stratified estimates

Description

Calculate error of stratified estimates

Usage

```
strat_error(sim)
```

Arguments

sim

Object from run_strat (includes simulated population and survey along with stratified analysis results)

Value

Adds details and summary stats of stratified estimate error to the simlist, ending with "_strat_error" or "_strat_error_stats". Error statistics includes mean absolute error ("MAE"), mean squared error ("MSE"), and root mean squared error ("RMSE")

strat_means 29

Examples

strat_means

Calculate stratified means, variances and confidence intervals across groups

Description

Calculate stratified means, variances and confidence intervals across groups

Usage

```
strat_means(
  data = NULL,
  metric = NULL,
  strat_groups = NULL,
  survey_groups = NULL,
  confidence = 95
)
```

Arguments

Expects data.table with all grouping variables in stacked format (must include strat_area and tow_area for scaling values)

metric Variable in specified data.table. e.g. "number", "mass"

strat_groups Grouping variables for calculations of the fine-scale strat-level means (strat and

strat_area are required). e.g. c("year", "species", "shiptrip", "NAFOdiv", "strat",

"strat_area", "age")

survey_groups Grouping variables for large-scale summary calculations. e.g. ("year", "species")

confidence Percent for confidence limits

Details

Function was mainly created for use in the run_strat function. It first calculates strat-level statistics and then the larger-scale statistics like total abundance

30 survey_lite_mesh

Value

Returns a data.table including stratified estimates of abundance.

survey_grid

Sample survey simulation grid.

Description

A exemplar for the structure of a survey grid object to supply to the functions in this package.

Usage

```
survey_grid
```

Format

A stars object with 4 attributes:

cell Survey cell identifier

division NAFO division

strat Survey strata number

depth Mean depth of the waters under each cell, units = m

For further details on how this file was created, see the data-raw folder for this package.

survey_lite_mesh

Lite sample survey mesh and related items

Description

Lite sample survey mesh and related items

Usage

```
survey_lite_mesh
```

Format

A list containing the same items as survey_mesh, but with fewer nodes to save on computational time

survey_mesh 31

survey_mesh

Sample survey meshes and related items

Description

@format A list containing the R-INLA survey mesh, the set of triangles in the barrier and the barrier polygons for plotting

Usage

survey_mesh

Format

An object of class list of length 3.

Details

An example of a mesh containing barrier information for use with sim_ays_covar_spde. Also derived from global administrative boundaries data (http://gadm.org). Details on creation provided in the data-raw folder of this package in the survey_mesh.R file. Includes the set of barrier triangles needed to use the barrier approach, barrier polygons for plotting and the set of triangles in the barrier.

test_surveys

Test sampling design of multiple surveys using a stratified analysis

Description

This function allows a series of sampling design settings to be set and tested on the simulated population. True population values are compared to stratified estimates of abundance.

```
test_surveys(
   sim,
   surveys = expand_surveys(),
   keep_details = 1,
   n_sims = 1,
   n_loops = 100,
   cores = 2,
   export_dir = NULL,
   length_group = "inherit",
   alk_scale = "division",
   progress = TRUE,
```

32 test_surveys

```
resume_test(export_dir = NULL, ...)
```

Arguments

sim Simulation from sim_distribution.

surveys A data frame or data table with a sequence of surveys and their settings with a

format like the data.table returned by expand_surveys.

keep_details Survey and stratified analysis details are dropped here to minimize object size.

This argument allows the user to keep the details of one survey by specifying

the survey number in the data.frame supplied to surveys.

n_sims Number of times to simulate a survey over the simulated population. Requesting

a large number of simulations here may max out your RAM.

n_loops Number of times to run the sim_survey function. Total simulations run will be

the product of n_sims and n_loops arguments. Low numbers of n_sims and

high numbers of n_loops will be easier on RAM, but may be slower.

cores Number of cores to use in parallel. More cores should speed up the process.

export_dir Directory for exporting results as they are generated. Main use of the ex-

port is to allow this process to pick up where test_survey left off by calling

resume_test. If NULL, nothing is exported.

length_group Size of the length frequency bins for both abundance at length calculations and

age-length-key construction. By default this value is inherited from the value defined in sim_abundance from the closure supplied to sim_length ("inherit"). A numeric value can also be supplied, however, a mismatch in length groupings will cause issues with strat_error as true vs. estimated length groupings will

be mismatched.

alk_scale Spatial scale at which to construct and apply age-length-keys: "division" or

"strat".

progress Display progress bar and messages?

... Arguments passed on to sim_survey

q Closure, such as sim_logistic, for simulating catchability at age (returned values must be between 0 and 1)

trawl_dim Trawl width and distance (same units as grid)

resample_cells Allow resampling of sampling units (grid cells)? Setting to TRUE may introduce bias because depletion is imposed at the cell level.

binom_error Impose binomial error? Setting to FALSE may introduce bias in stratified estimates at older ages because of more frequent rounding to zero.

min_sets Minimum number of sets per strat

age_sampling Should age sampling be "stratified" (default) or "random"?

age_length_group Numeric value indicating the size of the length bins for stratified age sampling. Ignored if age_sampling = "random".

test_surveys 33

age_space_group Should age sampling occur at the "division" (default), "strat" or "set" spatial scale? That is, age sampling can be spread across each "division", "strat" or "set" in each year to a maximum number within each length bin (cap is defined using the age_cap argument). Ignored if age_sampling = "random".

custom_sets Supply an object of the same structure as returned by sim_sets which specifies a custom series of set locations to be sampled. Set locations are automated if custom_sets = NULL.

Details

Depending on the settings, test_surveys may take a long time to run. The resume_test function is for resuming partial runs of test_surveys. Note that progress bar time estimates will be biased here by previous completions. test_loop is a helper function used in both test_surveys and resume_test. CAUTION: while the dots construct is available in the resume_test function, be careful adding arguments as it will change the simulation settings if the arguments added were not specified in the initial test_surveys run.

Value

Adds a table of survey designs tested. Also adds details and summary stats of stratified estimate error to the sim list, ending with "_strat_error" or "_strat_error_stats". Error statistics includes mean error ("ME"), mean absolute error ("MAE"), mean squared error ("MSE"), and root mean squared error ("RMSE"). Also adds a sample size summary table ("samp_totals") to the list. Survey and stratified analysis details are not kept to minimize object size.

Examples

```
pop <- sim_abundance(ages = 1:20, years = 1:5) %>%
           sim_distribution(grid = make_grid(res = c(10, 10)))
surveys \leftarrow expand_surveys(set_den = c(1, 2) / 1000,
                          lengths_cap = c(100, 500),
                          ages_cap = c(5, 20)
## This call runs 25 simulations of 8 different surveys over the same
## population, and then runs a stratified analysis and compares true vs
## estimated values. (Note: total number of simulations are low to decrease
## computation time for the example)
tests <- test_surveys(pop, surveys = surveys, keep_details = 1,
                      n_sims = 5, n_loops = 5, cores = 1)
library(plotly)
tests$total_strat_error %>%
    filter(survey == 8, sim %in% 1:50) %>%
    group_by(sim) %>%
   plot_ly(x = ~year) %>%
    add_lines(y = ~I_hat, alpha = 0.5, name = "estimated") %>%
   add_lines(y = ~I, color = I("black"), name = "true") %>%
    layout(xaxis = list(title = "Year"),
```

34 vis_sim

```
yaxis = list(title = "Abundance index"))

plot_total_strat_fan(tests, surveys = 1:8)
plot_length_strat_fan(tests, surveys = 1:8)
plot_age_strat_fan(tests, surveys = 1:8)
plot_age_strat_fan(tests, surveys = 1:8, select_by = "age")

plot_error_surface(tests, plot_by = "rule")
plot_error_surface(tests, plot_by = "samples")

plot_survey_rank(tests, which_strat = "length")
plot_survey_rank(tests, which_strat = "age")
```

vis_sim

Make a flexdashboard for visualizing the simulation

Description

Assumes the working directory is the project directory

Usage

```
vis_sim(sim, ...)
```

Arguments

```
sim Object produced by sim_abundance, sim_distribution, sim_survey or test_surveys.
... Additional arguments to send to run
```

Value

No value returned; function produces an interactive dashboard.

Examples

```
if (interactive()) {
  pop <- sim_abundance(ages = 1:20, years = 1:20)
  vis_sim(pop)

dist <- sim_distribution(pop, grid = make_grid(res = c(10, 10)))
  vis_sim(dist)

## Run one survey design</pre>
```

vis_sim 35

Index

* datasets bathy, 2 land, 6	<pre>plot_total_strat_fan (plot_trend), 9 plot_trend, 9</pre>
survey_grid,30	resume_test (test_surveys), 31
survey_lite_mesh, 30	round_sim, 11
survey_mesh, 31	run, <i>34</i>
1 11 2	run_strat, 11, 27-29
bathy, 2	sim_abundance, 9-11, 12, 17, 20, 21, 27, 32,
convert N 3	34
convert_N, 3	sim_ays_covar, 14, 17
error_stats, 3	sim_ays_covar_spde, 15
expand.grid, 4	sim_distribution, 9–11, 14–16, 16, 18–20,
expand_surveys, 4, 32	22, 23, 25, 32, 34
expand_surveys, 1, 32	sim_logistic, 17, 24, 25, 32
fibonacci, 4	sim_N0, 13
findInterval, 5	sim_N0 (sim_R), 20
,	sim_nlf, 18
getData, 6	sim_parabola, <i>17</i> , 19
group_lengths, 5, 27	sim_R, 13, 20
	sim_sets, 22, 24, 26, 33
icc, 5	sim_survey, 11, 13, 17, 18, 23, 25, 26, 28, 32,
	34
land, 6	sim_survey_parallel, 24, 25
lmer, 5	sim_vonB, <i>13</i> , 27
mala mid 6 10 17	sim_Z, <i>13</i>
make_grid, 6, 10, 17	sim_Z (sim_R), 20
make_mesh, 7	stats::spline, 6
object.size, 8	strat_data, <i>12</i> , 28
object_size, 8	strat_error, 11, 28, 32
object_312e, 6	strat_means, <i>12</i> , 29
<pre>plot_age_strat_fan (plot_trend), 9</pre>	survey_grid, 7, 17, 30
plot_distribution (plot_trend), 9	survey_lite_mesh, 30
plot_error_surface (plot_trend), 9	survey_mesh, 31
plot_grid (plot_trend), 9	
plot_length_strat_fan (plot_trend), 9	test_surveys, <i>25</i> , <i>31</i> , <i>34</i>
plot_ly, <i>10</i>	
plot_surface (plot_trend), 9	vis_sim, 34
plot_survey (plot_trend), 9	
plot_survey_rank (plot_trend), 9	