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Abstract

Propensity score weighting is an important tool for causal inference and comparative
effectiveness research. Besides the inverse probability of treatment weights (IPW), re-
cent development has introduced a general class of balancing weights, corresponding to
alternative target populations and estimands. In particular, the overlap weights (OW)
lead to optimal covariate balance and estimation efficiency, and a target population of
scientific and policy interest. We develop the R package PSweight to provide a com-
prehensive design and analysis platform for causal inference based on propensity score
weighting. PSweight supports (i) a variety of balancing weights, including OW, IPW,
matching weights as well as optimal trimming, (ii) binary and multiple treatments, (iii)
simple and augmented (doubly-robust) weighting estimators, (iv) nuisance-adjusted sand-
wich variances, and (v) ratio estimands for binary and count outcomes. PSweight also
provides diagnostic tables and graphs for study design and covariate balance assessment.
In addition, PSweight allows for propensity scores and outcome models to be estimated
through machine learning methods including generalized boosted regression models and
super learner, or other estimates obtained by users. We demonstrate the functionality of
the package using a data example from the National Child Development Survey (NCDS),
where we evaluate the causal effect of educational attainment on income.

Keywords: Causal inference, Propensity score, Weighting, Multiple treatments, Optimal trim-
ming.

1. Introduction

Propensity score is one of the most widely used causal inference methods for observational
studies (Rosenbaum and Rubin 1983). Propensity score methods include weighting, matching,
stratification, regression, and mixed methods such as the augmented weighting estimators.
The PSweight package provides an analysis pipeline for causal inference with propensity score
weighting (Robins, Rotnitzky, and Zhao 1994; Robins, Hernán, and Brumback 2000; Hirano
and Imbens 2001; Hirano, Imbens, and Ridder 2003; Lunceford and Davidian 2004; Li, Mor-
gan, and Zaslavsky 2018). There are a number of existing R packages on propensity score
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weighting (see Table 1). Comparing to those, PSweight offers three major advantages: it in-
corporates (i) visualization and diagnostic tools of checking covariate overlap and balance, (ii)
a general class of balancing weights, including overlap weights, inverse probability of treatment
weights, and trimming, and (iii) multiple treatments. More importantly, PSweight comprises
a wide range of functionalities, whereas each of the competing packages only supports a sub-
set of these functionalities. As such, PSweight is currently the most comprehensive platform
for causal inference with propensity score weighting, offering analysts a one-stop shop for the
design and analysis. Table 1 summarizes the key functionalities of PSweight in comparison
to related existing R packages. We elaborate the main features of PSweight below.

PSweight facilitates better practices in the design stage of observational studies, an aspect
that has not been sufficiently emphasized in related packages. Specifically, we provide a design
module that facilitates visualizing overlap (also known as the positivity assumption) and eval-
uating covariate balance without access to the final outcome (Austin and Stuart 2015). When
there is limited overlap, PSweight allows for symmetric propensity score trimming (Crump,
Hotz, Imbens, and Mitnik 2009; Yoshida, Solomon, Haneuse, Kim, Patorno, Tedeschi, Lyu,
Franklin, Hernández-Díaz, and Glynn 2018) and optimal trimming (Crump et al. 2009; Yang,
Imbens, Cui, Faries, and Kadziola 2016) to improve the internal validity. We extend the class
of balance metrics suggested in Austin and Stuart (2015) and Li, Thomas, and Li (2019)
for binary treatments, and those in McCaffrey, Griffin, Almirall, Slaughter, Ramchand, and
Burgette (2013) and Li and Li (2019) for multiple treatments. In addition, the design module
helps describe the weighted target population by providing the information required in the
standard “Table 1” of a clinical article.

In addition to the standard inverse probability of treatment weights (IPW), PSweight im-
plements the average treatment effect among the treated (Treated) weights, overlap weights
(OW), matching weights (MW) and entropy weights (EW) for both binary (Li and Greene
2013; Mao, Li, and Greene 2018; Li et al. 2018; Zhou, Matsouaka, and Thomas 2020) and mul-
tiple treatments (Yoshida, Hernández-Díaz, Solomon, Jackson, Gagne, Glynn, and Franklin
2017; Li and Li 2019). All weights are members of the family of balancing weights (Li et al.
2018); the last three types of weights target at the subpopulation with improved overlap
in the covariates between (or across) treatment groups, similar to the target population in
randomized controlled trials (Thomas, Li, and Pencina 2020a,b). Among them, OW achieves
optimal balance and estimation efficiency (Li et al. 2018, 2019). We also implement the
augmented weighting estimators corresponding to each of the above weighting schemes (Mao
et al. 2018). By default, PSweight employs parametric regression models to estimate propen-
sity scores and potential outcomes. Nonetheless, it also allows for propensity scores to be
estimated by external machine learning methods including generalized boosted regression
models (McCaffrey et al. 2013) and super learner (Van der Laan, Polley, and Hubbard 2007),
or importing any other propensity or outcome model estimates of interest, such as those via
the covariate-balancing propensity score (Imai and Ratkovic 2014).

To our knowledge, PSweight is the first R package to accommodate a variety of balancing
weighting schemes with multiple treatments. Existing R packages such as twang (Ridge-
way et al. 2020), CBPS (Fong et al. 2019), optweight (Greifer 2019) have also implemented
weighting-based estimation with multiple treatments, but focus on IPW. The PSW R pack-
age (Mao and Li 2018) implements both OW and MW and allows for nuisance-adjusted
variance estimation, but it is only restricted to binary treatments.

To assist applied researchers to perform propensity score weighting analysis, this article pro-
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Table 1: Comparisons of existing R packages that implement propensity score weighting
with discrete treatments. Binary treatments and additive estimands are implemented in all
packages, and therefore those two columns are omitted.

Multiple Balance IPW/ATT OW/other Ratio Augmented Nuisance-adj Optimal
treatments diagnostics weights weights estimands weighting variance trimming

PSweight X X X X X X X X

twang X X X × × × × ×

CBPS X X X × × X X ×

PSW × X X X X X X ×

optweight X × X × × × × ×

ATE X X X × × × X ×

WeightIt X × X X × × × ×

causalweight X × X × × X × ×

sbw × X X × × × × ×

X indicates that the functionality is currently implemented in the package; × indicates otherwise.
References: twang (Version 1.6): Ridgeway, McCaffrey, Morral, Griffin, Burgette, and Cefalu (2020); CBPS (Version
0.21): Fong, Ratkovic, and Imai (2019); PSW (Version 1.1-3): Mao and Li (2018); optweight (Version 0.2.5): Greifer
(2019); ATE (Version 0.2.0): Haris and Chan (2015); WeightIt (Version 0.10.2): Greifer (2020); causalweight (Version
0.2.1): Bodory and Huber (2020); sbw (Version 1.1.1): Zubizarreta and Li (2020).

vides a comprehensive illustration of the PSweight package. In Section 2, we explain the
methodological foundation of PSweight. Section 3 outlines the main functions and their ar-
guments. Section 4 illustrates the use of these functions with a data example that studies the
causal effect of educational attainment on income. Section 5 concludes with a short discussion
and outlines future development.

2. Overview of Propensity Score Weighting

Before diving into the implementation details of PSweight, we briefly introduce the basics of
the propensity score weighting framework.

2.1. Binary Treatments

Additive Causal Estimands

Assume we have an observational study with N units. Each unit i (i = 1, 2, . . . , N) has a
binary treatment indicator Zi (Zi = 0 for control and Zi = 1 for treated), a vector of p
covariates Xi = (X1i, · · · , Xpi). For each unit i, we assume a pair of potential outcomes
{Yi(1), Yi(0)} mapped to the treatment and control status, of which only the one correspond-
ing to the observed treatment is observed, denoted by Yi = ZiYi(1) + (1 − Zi)Yi(0); the other
potential outcome is counterfactual.

Causal effects are contrasts of the potential outcomes of the same units in a target population,
which usually is the population of a scientific interest (Thomas et al. 2020b). PSweight incor-
porates a general class of weighted average treatment effect (WATE) estimands. Specifically,
assume the observed sample is drawn from a probability density f(x), and let g(x) denote the
covariate density of the target population. The ratio h(x) ∝ g(x)/f(x) is called the tilting
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function, which adjusts the distribution of the observed sample to represent the target popula-
tion. Denote the conditional expectation of the potential outcome by mz(x) = E[Y (z)|X = x]
for z = 0, 1. Then, we can represent the average treatment effect over the target population
by a WATE estimand:

τh = Eg[Y (1) − Y (0)] =
E{h(x)(m1(x) − m0(x))}

E{h(x)}
. (2.1)

To estimate (2.1), PSweight maintains two standard assumptions: (1) unconfoundedness:
{Y (1), Y (0)} ⊥ Z | X; (2) overlap: 0 < P (Z = 1|X) < 1. The propensity score is the
probability of a unit being assigned to the treatment group given the covariates (Rosenbaum
and Rubin 1983): e(x) = P (Z = 1|X = x). While assumption (1) is generally untestable and
critically depends on substantive knowledge, assumption (2) can be checked visually from data
by comparing the distribution of propensity scores between treatment and control groups.

Balancing Weights

For a given tilting function h(x) (and correspondingly a WATE estimand τh), we can de-
fine the balancing weights (w1, w0) for the treated and control units: w1(x) ∝ h(x)/e(x)
and w0(x) ∝ h(x)/{1 − e(x)}. These weights balance the covariate distributions between
the treated and control groups towards the target population (Li et al. 2018). PSweight

implements the following Hájek estimator for WATE:

τ̂h = µ̂h
1 − µ̂h

0 =

∑N
i=1 w1(xi)ZiYi∑N

i=1 w1(xi)Zi

−

∑N
i=1 w0(xi)(1 − Zi)Yi∑N

i=1 w0(xi)(1 − Zi)
, (2.2)

where the weights are calculated based on the propensity scores estimated from the data.
Clearly, specification of h(x) defines the target population and estimands. PSweight primarily
implements the following three types of balancing weights (see Table 2 for a summary):

• Inverse probability of treatment weights (IPW) (Horvitz and Thompson 1952; Robins
et al. 2000), whose target population is the combined treatment and control group
represented by the observed sample, and the target estimand is the average treatment
effect among the combined population (ATE).

• Treated weights (Hirano and Imbens 2001), whose target population is the treated group,
and target estimand is the average treatment effect for the treated population (ATT).
Treated weights can be viewed as a special case of IPW because it inversely weights the
control group.

• Overlap weights (OW) (Li et al. 2018; Li and Li 2019), whose target population is the
subpopulation with the most overlap in the observed covariates between treatment and
group groups . In medicine this is known as the population in clinical equipoise and is
the population eligible to be enrolled in randomized clinical trials. The target estimand
of OW is the average treatment effect for the overlap population (ATO).

IPW has been the dominant weighting method in the literature, but has a well-known short-
coming of being sensitive to extreme propensity scores, which induces bias and large variance
in estimating treatment effects. OW addresses the conceptual and operational problems of
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Table 2: Target populations, tilting functions, estimands and the corresponding balancing
weights for binary treatments in PSweight.

Target population Tilting function h(x) Estimand Balancing weights (w1, w0)

Combined 1 ATE
(

1
e(x) , 1

1−e(x)

)

Treated e(x) ATT
(
1, e(x)

1−e(x)

)

Overlap e(x)(1 − e(x)) ATO (1 − e(x), e(x))

Matching ξ1(x) ATM
(

ξ1(x)
e(x) , ξ1(x)

1−e(x)

)

Entropy ξ2(x) ATEN
(

ξ2(x)
e(x) , ξ2(x)

1−e(x)

)

Notes: ξ1(x) = min{e(x), 1−e(x)} and ξ2(x) = −{e(x) log(e(x))+(1−e(x)) log(1−e(x))}.

IPW. Among all balancing weights, OW leads to the smallest asymptotic (and often finite-
sample) variance of the weighting estimator (2.2). (Li et al. 2018, 2019). Recent simulations
also show that OW provides more stable causal estimates under limited overlap (Li et al.
2019; Mao et al. 2018; Yoshida et al. 2017, 2018), and is more robust to misspecification of
the propensity score model (Zhou et al. 2020).

PSweight implements two additional types of balancing weights: matching weights (MW) (Li
and Greene 2013), and entropy weights (EW) (Zhou et al. 2020). Similar to OW, MW and
EW focus on target populations with substantial overlap between treatment groups. Though
having similar operating characteristics, MW and EW do not possess the same theoretical
optimality as OW, and are less used in practice. Therefore, we will not separately describe
MW and EW hereafter.

Covariate Balance Check

In observational studies, propensity scores are generally unknown and need to be estimated.
Therefore, propensity score analysis usually involves two steps: (1) estimating the propensity
scores, and (2) estimating the causal effects based on the estimated propensity scores. In
PSweight, the default model for estimating propensity scores with binary treatments is a
logistic regression model. Spline or polynomial models can be easily incorporated by adding
bs(), ns() or poly() terms into the model formula. PSweight also allows for importing
propensity scores estimated from external routines, such as boosted models or super learner
(Section 4.4).

Goodness-of-fit of the propensity score model is usually assessed based on the resulting co-
variate balance. In the context of propensity score weighting, this is measured based on either
the absolute standardized difference (ASD):

ASD =

∣∣∣∣∣

∑N
i=1 w1(xi)ZiXpi∑N

i=1 w1(xi)Zi

−

∑N
i=1 w0(xi)(1 − Zi)Xpi∑N

i=1 w0(xi)(1 − Zi)

∣∣∣∣∣

/√
s2

1 + s2
0

2
, (2.3)

or the target population standardized difference (PSD), max{PSD0, PSD1}, where

PSDz =

∣∣∣∣∣

∑N
i=1 wz(xi)1{Zi = z}Xpi∑N

i=1 wz(xi)1{Zi = z}
−

∑N
i=1 h(xi)Xpi∑N

i=1 h(xi)

∣∣∣∣∣

/√
s2

1 + s2
0

2
. (2.4)
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In (2.3) and (2.4), s2
z is the variance (either unweighted or weighted, depending on user

specification) of the pth covariate in group z, and (w0, w1) are the specified balancing weights.
Setting w0 = w1 = 1 corresponds to the unweighted mean differences. ASD and PSD are
often displayed as column in the baseline characteristics table (known as the “Table 1”) and
visualized via a Love plot (also known as a forest plot) (Greifer 2018). A rule of thumb for
determining adequate balance is when ASD of all covariates is controlled within 0.1 (Austin
and Stuart 2015).

2.2. Multiple Treatments

Li and Li (2019) extend the framework of balancing weights to multiple treatments. Assume
that we have J (J ≥ 3) treatment groups, and let Zi stand for the treatment received by
unit i, Zi ∈ {1, . . . , J}. We further define Dij = 1{Zi = j} as a set of multinomial indicator,
satisfying

∑J
i=1 Dij = 1 for all j. Denote the potential outcome for unit i under treatment j as

Yi(j), of which only the one corresponding to the received treatment, Yi = Yi(Zi), is observed.
The generalized propensity score is the probability of receiving a potential treatment j given
X (Imbens 2000): ej(x) = P (Z = j|X = x), with the constraint that

∑J
j=1 ej(x) = 1.

To define the target estimand, let mj(x) = E[Y (j)|X = x] be the conditional expectation
of the potential outcome in group j. For specified tilting function h(x) and target density
g(x) ∝ f(x)h(x), the jth average potential outcome among the target population is

µh
j = Eg[Y (j)] =

E{h(x)mj(x)}

E{h(x)}
. (2.5)

Causal estimands can then be constructed in a general manner as contrasts based on µh
j . For

example, the most commonly seen estimands in multiple treatments are the pairwise average
treatment effects between groups j and j′: τh

j,j′ = µh
j − µh

j′ . This definition can be generalized
to arbitrary linear contrasts. Denote aaa = (ai, · · · , aJ) as a contrast vector of length J . A
general class of additive estimands is

τh(aaa) =
J∑

j=1

ajµh
j . (2.6)

Specific choices for a with nominal and ordinal treatments can be found in Li and Li (2019).
Similar as before, propensity score weighting analysis with multiple treatments rests on two
assumptions: (1) weak unconfoundedness: Y (j) ⊥ 1{Z = j}|X, for all j, and (2) Overlap:
the generalized propensity score is bounded away from 0 and 1: 0 < ej(x) < 1, for all j.

With multiple treatments, the tilting function h(x) specifies the target population, estimand,
and balancing weights. For a given h(x), the balancing weights for the jth treatment group
wj(x) ∝ h(x)/ej(x). Then the Hájek estimator for µh

j is

µ̂h
j =

∑N
i=1 wj(xi)DijYi∑N

i=1 wj(xi)Dij

. (2.7)

Contrasts based on µ̂h
j can be obtained for any a to estimate the additive causal estimand

τh(a). Of note, we only consider types of estimands that are transitive, and therefore the ATT
estimands introduced in Lechner (2001) is not implemented. In parallel to binary treatments
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PSweight implements five types of balancing weights with multiple treatments: IPW, treated
weights, OW, MW, and EW, and the corresponding target estimand of each weighting scheme
is its pairwise (between each pair of treatments) counterpart in binary treatments. Among
all the weights, OW minimizes the total asymptotic variances of all pairwise comparisons,
and has been shown to have the best finite-sample efficiency in estimating pairwise WATEs
(Li and Li 2019). Table 3 summarizes the target population, tilting function and balancing
weight for multiple treatments that are available in PSweight.

Table 3: Target populations, tilting functions, and the corresponding balancing weights for
multiple treatments in PSweight.

Target population Tilting function h(x) Balancing weights {wj(x), j = 1, . . . , J}

Combined 1 {1/ej(x)}

Treated (j′th group) ej′(x)
{
ej′(x)/ej(x)

}

Overlap {
∑J

k=1 1/ek(x)}−1
{

{
∑J

k=1 1/ek(x)}−1/ej(x)
}

Matching mink{ek(x)} {mink{ek(x)}/ej(x)}

Entropy −
∑J

k=1 ek(x) log{ek(x)}
{

−
∑J

k=1 ek(x) log{ek(x)}/ej(x)
}

To estimate the generalized propensity scores for multiple treatments, the default model in
PSweight is a multinomial logistic model. PSweight also allows for externally estimated
generalized propensity scores. Goodness-of-fit of the generalized propensity score model is
assessed by the resulting covariate balance, which is measured by the pairwise versions of the
ASD and PSD. The detailed formula of these metrics can be found in Li and Li (2019). A
common threshold for balance is that the maximum pairwise ASD or maximum PSD is below
0.1.

2.3. Propensity Score Trimming

Propensity score trimming excludes units with estimated (generalized) propensity scores close
to zero (or one). It is a popular approach to address the extreme weights problem of IPW.
PSweight implements the symmetric trimming rules in Crump et al. (2009) and Yoshida
et al. (2018). Operationally, we allow users to specify a single cutoff δ on the estimated
generalized propensity scores, and only includes units for analysis if minj{ej(x)} ∈ [δ, 1].
With binary treatments, the symmetric trimming rule reduces to e(x) ∈ [δ, 1 − δ]. The
natural restriction δ < 1/J must be satisfied due to the constraint

∑J
j=1 ej(x) = 1. To avoid

specifying an arbitrary trimming threshold δ, PSweight also implements the optimal trimming
rules of Crump et al. (2009) and Yang et al. (2016), which minimizes the (total) asymptotic
variance(s) for estimating the (pairwise) ATE among the class of all trimming rules. OW
can be viewed as a continuous version of trimming because it smoothly down-weigh the units
with propensity scores close to 0 or 1, and thus avoids specifying a threshold.

2.4. Augmented Weighting Estimators

PSweight also implements augmented weighting estimators, which augment a weighting es-
timator by an outcome regression and improves the efficiency. With IPW, the augmented
weighting estimator is known as the doubly-robust estimator (Lunceford and Davidian 2004;



8 An R Vignette to the PSweight Package

Bang and Robins 2005; Funk, Westreich, Wiesen, Stürmer, Brookhart, and Davidian 2011).
With binary treatments, the augmented estimator with general balancing weights are dis-
cussed Hirano et al. (2003) and Mao et al. (2018). Below, we briefly outline the form of this
estimator with multiple treatments. Recall the conditional mean of Yi(j) given Xi and treat-
ment Zi = j as mj(xi) = E[Yi(j)|Xi = xi] = E[Yi|Xi = xi, Zi = j]. This conditional mean
can be estimated by generalized linear models, kernel estimators, or machine learning models.
PSweight by default employs the generalized linear models, but also allows estimated values
from other routines. When mj(xi) is estimated by generalized linear models, PSweight cur-
rently accommodates three types of outcomes: continuous, binary and count outcomes (with
or without an offset), using the canoncal link function.

With a pre-specified tilting function, the augmented weighting estimator for group j is

µ̂h,aug

j =

∑N
i=1 wj(xi)Dij{Yi − mj(xi)}∑N

i=1 wj(xi)Dij

+

∑N
i=1 h(xi)mj(xi)∑N

i=1 h(xi)
. (2.8)

The first term of (2.8) is the Hájek estimator of the regression residuals, and the second
term is the standardized average potential outcome (a g-formula estimator). With IPW,
(2.8) is consistent to E[Y (j)] when either the propensity score model or the outcome model is
correctly specified, but not necessarily both. For other balancing weights, (2.8) is consistent
to the WATE when the propensity model is correctly specified, regardless of outcome model
specification. When both models are correctly specified, (2.8) achieves the lower bound of the
variance for regular and asymptotic linear estimators (Robins et al. 1994; Hirano et al. 2003;
Mao et al. 2018).

2.5. Ratio Causal Estimands

With binary and count outcomes, ratio causal estimands are often of interest. Using notation
from the multiple treatments as an example, once we use weighting to obtain estimates for
the set of average potential outcomes {µh

j , j = 1, . . . , J}, we can directly estimate the causal
relative risk (RR) and causal odds ratio (OR), defined as

τh,RR

j,j′ =
µh

j

µh
j′

, τh,OR

j,j′ =
µh

j /(1 − µh
j )

µh
j′/(1 − µh

j′)
. (2.9)

Here the additive estimand τh,RD

j,j′ = µh
j − µh

j′ is the causal risk difference (RD). PSweight

supports a class of ratio estimands for any given contrasts a. Specifically, we define the
log-RR type parameters by

λh,RR(aaa) =
J∑

j=1

aj log
(
µh

j

)
, (2.10)

and the log-OR type parameters by

λh,OR(aaa) =
J∑

j=1

aj

{
log

(
µh

j

)
− log

(
1 − µh

j

)}
. (2.11)

With nominal treatments, the contrast vector a can be specified to encode pairwise com-
parisons in the log scale (as in (2.10)) or in the log odds scale (as in (2.11)), in which
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case exp{λh,RR(aaa)} and exp{λh,OR(aaa)} become the causal RR and causal OR in (2.9). User-
specified contrasts a can provide a variety of nonlinear estimands. For example, when J = 3,
with a = (1, −2, 1)T one can use PSweight to assess the equality of two consecutive causal
RR: H0 : µh

3/µh
2 = µh

2/µh
1 .

2.6. Variance and Interval Estimation

Empirical Sandwich Variance

PSweight by default implements the empirical sandwich variance for propensity score weight-
ing estimators (Lunceford and Davidian 2004; Li et al. 2019; Mao et al. 2018) based on the
M-estimation theory (Stefanski and Boos 2002). The variance adjusted for the uncertainty
in estimating the propensity score and outcome models, and are sometime referred to as
the nuisance-adjusted sandwich variance. Below we illustrate the main steps with multiple

treatments and general balancing weights. Write θ =
(
ν1, . . . , νJ , η1, . . . , ηJ , βT , αT

)T
as the

collection of parameters to be estimated. Then
{

µ̂h,aug

j = ν̂j + η̂j : j = 1, . . . , J
}

jointly solve

N∑

i=1

Ψi(θ) =
N∑

i=1




w1(xi)Di1{Yi − m1(xi; α) − ν1}
...

wJ(xi)DiJ{Yi − mJ(xi; α) − νJ}

h(xi){m1(xi; α) − η1}
...

h(xi){mJ(xi; α) − ηJ}

Sβ(Zi, xi; β)

Sα(Yi, Zi, xi; α)




= 0,

where Sβ(Zi, xi; β) and Sα(Yi, Zi, xi; α) are the score functions of the propensity score model
and the outcome model. The empirical sandwich variance estimator is

V̂(θ̂) =

{
N∑

i=1

∂

∂θT
Ψi(θ̂)

}−1 {
N∑

i=1

Ψi(θ̂)ΨT
i (θ̂)

} {
N∑

i=1

∂

∂θ
ΨT

i (θ̂)

}−1

.

Because µ̂h,aug

j = ν̂j + η̂j , the variance of arbitrary linear contrasts based on the average po-
tential outcomes can be easily computed by applying the Delta method to the joint variance
V̂(θ̂). For the Hájek weighting estimators, variance is estimated by removing Sα(Yi, Zi, xi; α)
as well as the components involving mj(xi; α) in Ψi(θ). Finally, when propensity scores and
potential outcomes are not estimated through the generalized linear model or are supplied ex-
ternally, or MW are used (since the tilting function is not everywhere differentiable), PSweight

ignores the uncertainty in estimating β and α and removes Sβ(Zi, xi; β) and Sα(Yi, Zi, xi; α)
in Ψi(θ) in the calculation of the empirical sandwich variance. Based on the estimated vari-
ance, PSweight computes the associated symmetric confidence intervals and p-values via the
normal approximation.

For ratio causal estimands, PSweight applies the logarithm transformation to improve the ac-
curacy of the normal approximation (Agresti 2003). For estimating the variance of causal RR,
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we first obtain the joint variance of
(
log

(
µ̂h,aug

1

)
, . . . log

(
µ̂h,aug

J

))T
using the Delta method,

and then estimate the variance of λh,RR(aaa). Once the symmetric confidence intervals are ob-
tained for λh,RR(aaa) using the normal approximation, we can exponentiate the upper and lower
confidence limits to derive the asymmetric confidence intervals for the causal RR. Confidence
intervals for the causal OR are computed similarly.

Bootstrap Variance

PSweight also allows using bootstrap to estimate variances, which can be much more com-
putationally intensive than the closed-form sandwich estimator but sometimes give better
finite-sample performance in small samples. By default, PSweight resamples R = 50 boot-
strap replicates with replacement. For each replicate, the weighting estimator (2.7) or the
augmented weighting estimtor (2.8) is implemented, providing R estimates of the J average
potential outcomes (an R × J matrix). Then for any contrast vector aaa = (a1, · · · , aJ)T ,
PSweight obtains R bootstrap estimates:

T̂
h(aaa)bootstrap =



τ̂h(aaa)1 =

J∑

j=1

ajµ̂h
j,1, . . . , τ̂h(aaa)R =

J∑

j=1

ajµ̂h
j,R



 .

The sample variance of T̂h(aaa)bootstrap is reported by PSweight as the bootstrap variance; the

lower and upper 2.5% quantiles of T̂h(aaa)bootstrap form the 95% bootstrap interval estimate.

2.7. Covariate Adjustment in Randomized Trials

Although propensity score weighting has been largely developed in observational studies, it
is also an important tool for covariate adjustment in randomized controlled trials (RCTs).
Williamson, Forbes, and White (2014) showed that IPW can reduce the variance of the un-
adjusted difference-in-means treatment effect estimator in RCTs, and Shen, Li, and Li (2014)
proved that the IPW estimator is semiparametric efficient and asymptotically equivalent to
the analysis of covariance (ANCOVA) estimator (Tsiatis, Davidian, Zhang, and Lu 2008).
Zeng, Li, Wang, and Li (2020) generalized these results of IPW to the family of balancing
weights. Operationally, there is no difference in implementing propensity score weighting be-
tween RCTs and observational studies. Therefore, PSweight is directly applicable to perform
covariate-adjusted analysis in RCTs.

3. Overview of Package

The PSweight package includes two modules tailored for design and analysis of observational
studies. The design module provides diagnostics to assess the adequacy of the propensity
score model and the weighted target population, prior to the use of outcome data. The
analysis module provides functions to estimate the causal estimands discussed in Section 2.
We briefly describe the two modules below.

3.1. Design Module

PSweight offers the SumStat() function to visualize the distribution of the estimated propen-
sity scores, to assess the balance of covariates under different weighting schemes, and to
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characterize the weighted target population. It uses the following code snippet:

SumStat(ps.formula, ps.estimate = NULL, trtgrp = NULL, Z = NULL, covM = NULL,

+ zname = NULL, xname = NULL, data = NULL, weight = "overlap", delta = 0,

+ method = "glm", ps.control = list())

By default, the (generalized) propensity scores are estimated by the (multinomial) logistic
regression, through the argument ps.formula. Alternatively, gbm() functions in the gbm

package (Greenwell, Boehmke, Cunningham, and Developers 2019) or the SuperLearner()

function in the SuperLearner package (Polley, LeDell, Kennedy, and van der Laan 2019) can
also be called by using method = "gbm" or method = "SuperLearner". Additional param-
eters of those functions can be supplied through the ps.control argument. The argument
ps.estimate supports estimated propensity scores from external routines. SumStat() pro-
duces a SumStat object, with estimated propensity scores, unweighted and weighted covariate
means for each treatment group, balance diagnostics, and effective sample sizes (defined in Li
and Li (2019)). We then provide a summary.SumStat() function, which takes the SumStat

object and summarizes weighted covariate means by treatment groups and the between-group
differences in either ASD or PSD. The default options in weighted.var = TRUE and metric

= "ASD" yield ASD based on weighted standard deviations in Austin and Stuart (2015). The
weighted covariate means can be used to build a baseline characteristics “Table 1” to illustrate
the target population where trimming or balancing weights are applied.

summary(object, weighted.var = TRUE, metric = "ASD")

Table 4: Functions in the design module of PSweight.

Function Description

SumStat() Generate a SumStat object with information of propensity
scores and weighted covariate balance

summary.SumStat() Summarize the SumStat object and return weighted covari-
ate means by treatment groups and weighted or unweighted
between-group differences in ASD or PSD

plot.SumStat() Plot the distribution of propensity scores or weighted covariate
balance metrics from the SumStat object

PStrim() Trim the data set based on estimated propensity scores

Diagnostics of propensity score models can be visualized with the plot.SumStat() function.
It takes the SumStat object and produces a balance plot (type = "balance") based on the
ASD and PSD. A vertical dashed line can be set by the threshold argument, with a de-
fault value equal to 0.1. The plot.SumStat() function can also supply density plot (type

= "density"), or histogram (type = "hist") of the estimated propensity scores. The his-
togram, however, is only available for the binary treatment case. The plot function is imple-
mented as follows:

plot(x, type = "balance", weighted.var = TRUE, threshold = 0.1,

+ metric = "ASD")

In the design stage, propensity score trimming can be carried out with the PStrim() function.
The trimming threshold delta is set to 0 by default. PStrim() also enables optimal trimming
rules (optimal = TRUE) that give the most statistically efficient (pairwise) subpopulation
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ATE, among all possible trimming rules. A trimmed data set along with a summary of
trimmed cases will be returned by PStrim(). This function is given below:

PStrim(data, ps.formula = NULL, zname = NULL, ps.estimate = NULL,

+ delta = 0, optimal = FALSE, method = "glm", ps.control = list())

Alternatively, trimming is also anchored in the SumStat() function with the delta argument.
All functions in the design module are summarized in Table 4.

3.2. Analysis Module

The analysis module of PSweight includes two functions: PSweight() and summary.PSweight().
The PSweight() function estimates the average potential outcomes in the target population,
{µh

j , j = 1, . . . , J}, and the associated variance-covariance matrix. By default, the empirical
sandwich variance is implemented, but bootstrap variance can be obtained with the argu-
ment bootstrap = TRUE). The weight argument can take "IPW", "treated", "overlap",
"matching" or "entropy", corresponding to the weights introduced in Section 2. More de-
tailed descriptions of each input argument in the PSweight() function can be found in Table
5. A typical PSweight() code snippet looks like

PSweight(ps.formula, ps.estimate, trtgrp, zname, yname, data,

+ weight = "overlap", delta = 0, augmentation = FALSE, bootstrap = FALSE,

+ R = 50, out.formula = NULL, out.estimate = NULL, family = "gaussian",

+ ps.method = "glm", ps.control = list(), out.method = "glm",

+ out.control = list())

Similar to the design module, the summary.PSweight() function synthesizes information from
the PSweight object for statistical inference. A typical code snippet looks like

summary(object, contrast, type = "DIF", CI = TRUE)

In the summary.PSweight() function, the argument type corresponds to the three types es-
timands: type = "DIF" is the default argument that specifies the additive causal contrasts;
type = "RR" specifies the contrast on the log scale as in equation (2.10); type = "OR" speci-
fies the contrast on the log odds scale as in equation (2.11). Confidence intervals and p-values
are obtained using normal approximation and reported by the summary.PSweight() function.
The argument contrast represents a contrast vector aaa or matrix with multiple contrast row
vectors. If contrast is not specified, summary.PSweight() provides all pairwise comparisons
of the average potential outcomes. By default, confidence interval is printed (CI = TRUE);
alternatively, one can print the test statistics and p-values by CI = FALSE.
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Table 5: Arguments for function PSweight() in the analysis module of PSweight.

Argument Description Default

ps.formula A symbolic description of the propensity score model. –

ps.estimate An optional matrix or data frame with externally estimated
(generalized) propensity scores for each observation; can also
be a vector with binary treatments.

NULL

trtgrp An optional character defining the treated population for
estimating (pairwise) ATT. It can also be used to specify
the treatment level when only a vector of values are supplied
for ps.estimate in the binary treatment setting.

Last value in
alphabetic
order

zname An optional character specifying the name of the treatment
variable when ps.formula is not provided.

NULL

yname A character specifying name of the outcome variable in data.

weight A character specifying the type of weights to be used. "overlap"

delta Trimming threshold for (generalized) propensity scores. 0

augmentation Logical value of whether augmented weighting estimators
should be used.

FALSE

bootstrap Logical value of whether bootstrap is used to estimate the
standard error

FALSE

R Number of bootstrap replicates if bootstrap = TRUE 50

out.formula A symbolic description of the outcome model to be esti-
mated when augmentation = TRUE

out.estimate An optional matrix or data frame containing externally es-
timated potential outcomes for each observation under each
treatment level.

NULL

family A description of the error distribution and canonical link
function to be used in the outcome model if out.formula is
provided

"gaussian"

ps.method a character to specify the method for propensity model. "glm"

ps.control A list to specify additional options when method is set to
"gbm" or "SuperLearner".

list()

out.method A character to specify the method for outcome model. "glm"

out.control A list to specify additional options when methodout is set
to "gbm" or "SuperLearner".

list()
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4. Case Study with the NCDS Data

We demonstrate PSweight in a case study that estimates the causal effect of educational
attainment on hourly wage, based on the National Child Development Survey (NCDS) data.
Section 4.1 gives an overview of the study. Section 4.2 and 4.3 provides propensity score
weighting analyses of the average treatment effect in the context of a binary treatment and a
tri-valued treatment, respectively. Section 4.4 demonstrates how the machine learning method
for propensity scores and potential outcomes can be implemented in PSweight.

4.1. NCDS Data Overview

The National Child Development Survey (NCDS) is a longitudinal study on children born in
the United Kingdom (UK) in 1958 1. NCDS collected information such as educational attain-
ment, familial backgrounds, and socioeconomic and health well being on 17, 415 individuals.
We followed Battistin and Sianesi (2011) to pre-process the data and obtain a subset of 3, 642
males employed in 1991 with complete educational attainment and wage information for anal-
ysis. For illustration, we use the Multiple Imputation by Chained Equations (MICE, Buuren
and Groothuis-Oudshoorn 2010) to impute missing covariates and obtain a single imputed
data set for all subsequent analysis.2 The outcome variable wage is log of the gross hourly
wage in Pound. The treatment variable is educational attainment. For the binary treatment
case, we created Dany to indicate whether one had attained any academic qualification. There
are 2399 individuals that attained academic qualification, and 1, 243 individuals without any.
For the multiple treatment case, we created Dmult with three levels: ">=A/eq", "O/eq" and
"None", representing advanced qualification (1, 806 individuals), intermediate qualification
(941 individuals) and no qualification (895 individuals). We consider twelve pre-treatment
covariates or potential confounders. The variable white indicates whether an individual iden-
tified himself as white race; scht indicates the school type they attended at age 16; qmab and
qmab2 are math test scores at age 7 and 11; qvab and qvab2 are two reading test scores at age
7 and 11; sib_u stands for the number of siblings; agepa and agema are the ages of parents
in year 1974; in the same year, the employment status of mother maemp was also collected;
paed_u and maed_u are the years of education for parents. Information on the study variables
can be summarized using the str() function as below:

R> str(NDCS)

'data.frame': 3642 obs. of 16 variables:

$ white : int 1 1 1 1 1 1 1 1 1 1 ...

$ wage : num 2.57 2.04 1.72 2.2 2.48 ...

$ Dany : int 1 1 0 1 1 0 0 1 1 1 ...

$ Dmult : chr ">=A/eq" ">=A/eq" "None" "O/eq" ...

$ maemp : int 0 0 0 0 1 1 0 1 0 1 ...

$ scht : int 2 1 1 3 1 2 1 1 1 3 ...

$ qmab : int 2 5 4 5 3 1 4 5 5 2 ...

1https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/
2Ten out of twelve pre-treatment covariates we considered have missingness. The smallest missingness

proportion is 4.9% and the largest missingness proportion is 17.2%. We considered one imputed complete data
set for illustrative purposes, but note that a more rigorous analysis could proceed by combining analyses from
multiple imputed data sets via the Rubin’s rule.
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$ qmab2 : int 2 5 4 4 3 1 1 4 4 5 ...

$ qvab : int 1 5 4 4 2 2 2 4 3 4 ...

$ qvab2 : int 2 5 5 5 3 2 1 3 1 5 ...

$ paed_u : int 9 0 0 10 9 10 0 11 10 10 ...

$ maed_u : int 9 0 0 10 9 9 0 11 9 10 ...

$ agepa : int 60 56 57 40 57 43 43 46 43 47 ...

$ agema : int 59 56 53 41 45 42 38 45 43 40 ...

$ sib_u : int 3 0 0 1 1 1 1 1 0 3 ...

$ wagebin: num 1 0 0 1 1 0 1 1 1 1 ...

4.2. Propensity Score Weighting with Binary Treatments

Estimating Propensity Scores and Balance Check

Suppose we wish to estimate the causal effect of whether the attainment of any academic
qualification leads to higher hourly wage. Because the attainment of any academic qualifica-
tion is not randomized, and may be affected by potential confounders, we specify the following
propensity score model and carry out weighting analysis.

R> ps.any <- Dany ~ white + maemp + as.factor(scht) + as.factor(qmab)

+ as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u

+ agepa + agema + sib_u + paed_u * agepa + maed_u * agema

In addition to the main effects of covariates, we considered adjusting for the interaction
between the ages of parents and their education following Battistin and Sianesi (2011). We
use the Sumstat() function to estimate the logistic propensity score model and obtain balance
statistics under three types of weighting schemes, IPW, the treated weights and OW.

R> bal.any <- SumStat(ps.formula = ps.any, data = NCDS,

+ weight = c("IPW", "overlap", "treated"))

The output on screen from the Sumstat() function is the choice of weights and the treatment
group selected (trtgrp) only if "treated" is included in the weight argument. In this
example, as trtgrp is unspecified, Sumstats() automatically takes the last level in alphabetic
order of the treatment variable as the treatment group: Dany = 1.

R> bal.any

trt group for PS model is: 1

weights estimated for: IPW overlap treated

The full return of SumStat is a list including the treatment group level (for defining ATT)
("trtgrp"), estimated propensity scores ("propensity"), estimated weight under each weight-
ing scheme ("ps.weights"), effective sample size ("ess") and balance statistics under each
weighting scheme (e.g., "unweighted.sumstat", "IPW.sumstat", "overlap.sumstat",
"treated.sumstat") . Further, the balance statistics for each weighting scheme includes both
ASD and PSD, with both the unweighted or weighted standard deviation of the covariates.

The plot.SumStat() function visualizes the distributions of estimated propensity scores and
covariate balance statistics. Specifying argument type = "hist" generates the histogram
of estimated propensity scores to receive the treatment (treatment as defined in "trtgrp").
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Alternatively, type = "density" provides the density of the estimated probability to receive
each treatment level. Figure 1 presents the histogram and density plots of the estimated
propensity scores in our analysis. The histogram suggests that there may be a slight lack of
overlap due to minor separation of the two groups.

R> plot(bal.any, type = "density")

R> plot(bal.any, type = "hist")
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Figure 1: Histogram and density plots of estimated propensity scores with respect to the
binary treatment variable Dany generated by plot.SumStat() function.

Finally, specifying argument type = "balance" in plot.SumStat() generates a love plot
based on either the ASD metric (metric = "ASD") or the maximum PSD metric (metric =

"PSD"). Figure 2 presents the PSD-based love plot with the weighted standard deviation (by
default weighted.var = TRUE). Clearly, the unweighted mean differences are substantially
larger than the commonly used balance threshold 0.1, while propensity score weighting in
general improves the covariate balance. Among the three weighting schemes, OW and IPW
have controlled the maximum PSD for each covariate to be below 0.1, and OW provides the
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best balance, with the maximum PSD for each covariate being close to zero.

R> plot(bal.any, type = "balance", metric = "PSD")
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Figure 2: Love plot with the binary treatment variable Dany using the maximum PSD metric,
generated by plot.SumStat() function in the PSweight package.

Estimation and Inference of (Weighted) Average Treatment Effects

Because the IPW, treated weights and OW achieve adequate balance according to Figure 2,
we use these three weighting schemes to estimate the ATE, ATT and ATO. Based on the
propensity score model ps.any, we first use the PSweight() function to obtain the average
potential outcomes among the combined population using IPW.

R> ate.any <- PSweight(ps.formula = ps.any, yname = "wage", data = NCDS,

+ weight= "IPW")

R> ate.any

Original group value: 0, 1

Point estimate:

1.9002, 2.0927

The ate.any is an PSweight object returned by the PSweight() function. Printing ate.any

will only provide the estimated average potential outcomes for each treatment level. In
this case, 1.9002 and 2.0927 correspond to the average log hourly wages when the entire
population attains no academic qualification (Dany = 0) and otherwise (Dany = 1). We
observe that higher educational attainment leads to higher average hourly wage. Despite
its simple on-screen output, ate.any contains a list of six elements: estimated propensity
scores (propensity), estimated average potential outcomes (muhat), joint covariance matrix
of the estimated average potential outcomes (covmu), estimates for each bootstrap sample
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if bootstrap = TRUE (muboot), group label in alphabetic orders (group), and the indicated
treatment group for defining ATT (trtgrp).

The average potential outcomes among the treated population and among the overlap popula-
tion can be estimated in a similar fashion, by specifying the weight option in the PSweight()

function. If weight is left unspecified, PSweight() function uses the OW by default and em-
phasizes the subpopulation with the optimal internal validity (Li et al. 2018). When weight

= "treated", we obtain the estimated average potential outcomes among the population with
academic qualification. For estimating the ATT, if one leaves trtgrp unspecified, PSweight()

function by default considers the last value (in alphabetic order) of the treatment variable
to be the treatment group in defining ATT (Dany = 1). If the investigator is instead inter-
ested in estimating the causal effect among the population without academic qualification,
the specification of trtgrp = 0 should be used.

R> ato.any <- PSweight(ps.formula = ps.any, yname = "wage", data = NCDS)

R> att.any <- PSweight(ps.formula = ps.any, yname = "wage", data = NCDS,

+ weight= "treated")

R> ato.any

Original group value: 0, 1

Point estimate:

1.8617, 2.0408

R> att.any

Original group value: 0, 1

Treatment group value: 1

Point estimate:

1.9394, 2.1515

Compared to ate.any and ato.any, the on-screen output of att.any now includes an ex-
tra element,the treatment group that defines the ATT estimand. In the analysis of NCDS
data, we only see minor differences between the estimated average potential outcomes across
the three target populations. The average log hourly wage appear consistently higher if all
individuals in either target population attained academic qualification, say, through some ef-
fective population-level educational intervention. Similar to the design module, we provide a
summary.PSweight() function to estimate the (weighted) average treatment effects and their
variances. By default, summary.PSweight() presents all pairwise contrasts of the estimated
average potential outcomes type = "DIF"), and therefore targets on the additive causal esi-
mands. For example, we can estimate the ATE and ATO along with their sandwich standard
errors and 95% confidence intervals using the following code.

summary(ate.any, CI = FALSE)

Closed-form inference:

Original group value: 0, 1

Contrast:
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0 1

Contrast 1 -1 1

Estimate Std.Error z value Pr(>|z|)

Contrast 1 0.192543 0.021122 9.1158 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R> summary(ato.any, CI = FALSE)

Closed-form inference:

Original group value: 0, 1

Contrast:

0 1

Contrast 1 -1 1

Estimate Std.Error z value Pr(>|z|)

Contrast 1 0.179129 0.015609 11.476 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The returns of the summary.PSweight() function indicate that the standard error for ATO
is smaller and the associated confidence interval is tighter, matching the theoretical results of
Li et al. (2018). The summary.PSweight() function also returns the p-value of (weak) causal
null hypothesis that the specified contrast of the average potential outcomes is zero. In this
case, the p-values correspond to H0 : µh

1 = µh
0 are all small and we reject the null.

In addition to specifying a propensity score model, we obtain an augmented estimator by
specifying a model for log hourly wage as a function of potential confounders within each
treatment group. The PSweight() function allows us to combine propensity score weight-
ing and outcome modeling to achieve efficiency and/or increased robustness. We specify a
regression formula through out.formula using the same set of confounders adjusted for in
ps.any.

R> out.wage <- wage ~ white + maemp + as.factor(scht) + as.factor(qmab)

+ + as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u

+ + agepa + agema + sib_u + paed_u * agepa + maed_u * agema

The treatment variable is not included in out.wage as PSweight automatically fits a separate
a potential outcome regression model within each treatment group, therefore allowing for full
treatment-by-covariate interactions. For the continuous outcome wage, the PSweight() fits
the linear model by default (family = "gaussian"). Loading the outcome regression formula
and specifying augmentation = TRUE, we obtain the estimated average potential outcomes
by the augmented weighting estimators introduced in Section 2.4

R> ate.any.aug <- PSweight(ps.formula = ps.any, yname = "wage", data = NCDS,

+ weight= "IPW", augmentation = TRUE, out.formula = out.wage)
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R> ato.any.aug <- PSweight(ps.formula = ps.any, yname = "wage", data = NCDS,

+ augmentation = TRUE, out.formula = out.wage)

Similar to the simple weighting estimators, the output on screen includes the information
of the treatment group levels as well as the estimated average potential outcomes in the
respective target population (output omitted for brevity). In this analysis, we find that the
point estimates do not differ substantially between the simple weighting and the augmented
weighting estimators, for each weighting scheme under consideration. The fact that the
augmented weighting estimates resemble the simple weighting estimates may serve as indirect
evidence that the propensity score model is not grossly misspecified (Robins and Rotnitzky
2001; Mercatanti and Li 2014).

We then estimate the (weighted) average treatment effects using the summary.PSweight()

function. In this example, while the point estimates do not change substantially between
the augmented weighting estimators and simple weighting estimators, outcome augmentation
reduces the standard errors for estimating ATE, but not so much for estimating ATO. Such
comparison results match the simulation findings of Mao et al. (2018). Overall, we find that,
regardless of the weighting scheme considered, attaining academic qualification on average
leads to significantly higher hourly wage than not at the 0.05 level. We do acknowledge,
however, that the interpretation of study results should not rely on a single dichotomy of a
p-value that is great than or smaller than 0.05.

R> summary(ate.any.aug, CI=FALSE)

Closed-form inference:

Original group value: 0, 1

Contrast:

0 1

Contrast 1 -1 1

Estimate Std.Error z value Pr(>|z|)

Contrast 1 0.186079 0.019842 9.3782 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R> summary(ato.any.aug, CI = FALSE)

Closed-form inference:

Original group value: 0, 1

Contrast:

0 1

Contrast 1 -1 1

Estimate Std.Error z value Pr(>|z|)

Contrast 1 0.180004 0.015646 11.505 < 2.2e-16 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Alternatively, the standard errors and confidence intervals can be estimated via nonparametric
bootstrap. For example, we can specify bootstrap = TRUE in the PSweight() function and
use summary.PSweight() to make bootstrap-based inference for any causal contrasts based
on average potential outcomes. By default, the number of bootstrap replicates is set to
50, and other values can be specified using the R argument in PSweight() function. When
bootstrap = TRUE, PSweight() prints a short message for completing every 50 runs for ease
of monitoring.

R> ate.any.bs <- PSweight(ps.formula = ps.any, yname = "wage", data = NCDS,

+ weight= "IPW", bootstrap = TRUE)

bootstrap 50 samples

While the on screen output ate.any.bs is no different from ate.any, summarizing ate.any.bs

now returns the bootstrap standard errors, (quantile-based) confidence intervals and associ-
ated p-values. We illustrate how to obtain these information using the following code.

R> summary(ate.any.bs, contrast = rbind(c(-1, 1),c(1, -1))

Use Bootstrap sample for inference:

Original group value: 0, 1

Contrast:

0 1

Contrast 1 -1 1

Contrast 2 1 -1

Estimate Std.Error lwr upr Pr(>|z|)

Contrast 1 0.192543 0.024332 0.137837 0.23701 < 2.2e-16 ***

Contrast 2 -0.192543 0.024332 -0.237005 -0.13784 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the above example, we further illustrate how one can specify non-default contrasts through
the contrast argument. By setting contrast = rbind(c(-1, 1),c(1, -1)), we can si-
multaneously report the causal comparison for Dany = 1 versus Dany = 0 and its reverse
comparison. These two contrasts study the same causal effect from two opposite directions,
therefore it is expected that the same numerical values are returned with a reverse sign. The
bootstrap standard error is almost identical to the sandwich standard error, but the bootstrap
confidence interval is no longer symmetric around the point estimate as it does not rely on
normal approximation.

4.3. Propensity Score Weighting with Multiple Treatments



22 An R Vignette to the PSweight Package

The syntax we provide in the binary treatment case in Section 4.2 can be generalized seam-
lessly to the multiple treatment case; therefore to avoid redundancy, the purpose of this
subsection is not to repeat the same steps. Instead, we complement the last subsection by
pointing out additional features of PSweight with multiple treatments. For simplicity, we will
focus on IPW and the three types of weights that improve overlap: OW, MW and EW (Li
and Li 2019).

Estimating Generalized Propensity Scores and Balance Assessment

We use Dmult, the three-level variable, as the treatment of interest. About one half of
the population attained advanced academic qualification, the there are approximately equal
number of individuals with intermediate academic qualification or no academic qualification.
To illustrate the estimation and inference for ratio estimands, we also introduce a binary
outcome of wage, wagebin. The dichotomized wage was obtained with the cutoff of the
average hourly wage of actively employed British male aged 30-39 in 19913. The averaged
hourly wage is 8.23, and we take log(8.23) ≈ 2.10 as the cutoff. Among the study participants,
we observe 1610 and 2032 individuals above and below the average, and we are interested in
estimating the pairwise (weighted) average treatment effect of the academic qualification for
obtaining above-average hourly wage.

We specify a multinominal regression model, ps.mult, to estimate the generalized propensity
scores, with the same set of covariates used in the binary treatment case.

ps.mult <- Dmult ~ white + maemp + as.factor(scht) + as.factor(qmab) +

+ as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u +

+ agepa + agema + sib_u + paed_u * agepa + maed_u * agema

Then we obtain the propensity score estimates and assess weighted covariate balance with the
SumStat() function. This component is similar to the binary treatment case, except that we
only allow density plots for visualizing the generalized propensity scores (but not histograms).
Specifically, the plot.SumStat() function returns a density plot even if one specifies type =

"hist". In this case, a warning message will be generated to indicate that "Histogram only

available for binary treatment".

R> bal.mult <- SumStat(ps.formula = ps.mult,

+ weight = c("IPW", "overlap", "matching", "entropy"), data = NCDS)

R> plot(bal.mult, type = "hist")

Warning message:

In plot.SumStat(bal.mult, type = "hist") :

Histogram only available for binary treatment. Density plot provided instead.

The distributions of generalized propensity scores are given in Figure 3 (in alphabetic order of
the names of treatment groups). For the generalized propensity score to receive the advanced
qualification (">=A/eq") or no qualification ("None"), there is a mild lack of overlap due to
separation of the group-specific distribution. Since bal.mult includes four weighting schemes,
we plot the maximum pairwise ASD and assess the (weighted) covariate balance in a single
Love plot.

R> plot(bal.mult, metric = "ASD")

3https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/
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Figure 3: Density plots of estimated generalized propensity scores with respect to the
three-level treatment variable Dmult generated by plot.SumStat() function in the PSweight

package.

The covariates are imbalanced across the three groups prior to any weighting. Although
IPW can generally improve covariate balance, the maximum pairwise ASD still ocassionally
exceeds the threshold 0.1 due to lack of overlap. In contrast, OW, MW and EW all emphasize
the subpopulation with improved overlap and provide better balance across all covariates.

Generalized Propensity Score Trimming

The PSweight package can perform trimming based on (generalized) propensity scores. As
IPW does not adequately balance the covariates across the three groups in Figure 4, we explore
trimming as a way to improve balance for IPW. There are two types of trimming performed by
the PSweight package: (1) symmetric trimming that removes units with extreme (generalized
propensity scores) (Crump et al. 2009; Yoshida et al. 2018) and (2) optimal trimming that
provides the most efficient IPW estimator for estimating (pairwise) ATE (Crump et al. 2009;
Yang et al. 2016). Specifically, the symmetric trimming is supported by both the SumStat()

and PSweight() functions through the delta argument. Both functions refit the (generalized)
propensity score model after trimming following the recommendations in Li et al. (2019). We
also provide a stand-alone PStrim function that performs both symmetric trimming and
optimal trimming. Following Yoshida et al. (2018), with three treatment groups, we exclude
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Figure 4: Love plot with the three-level treatment variable Dmult using the maximum pairwise
ASD metric, generated by plot.SumStat() function in the PSweight package.

all individuals with the estimated generalized propensity scores less than δ = 0.067. This
threshold removes a substantial amount of individuals in the advanced qualification group
(information can be pulled from the trim element in the SumStat object). As discussed in
Yoshida et al. (2018), propensity trimming could improve the estimation of ATE and ATT,
but barely have any effect for estimation of ATO and ATM. Evidently, Figure 5 indicates that
IPW controls all pairwise ASD within 10% in the trimmed sample. Trimming had nearly no
effect on the weighted balance for OW, MW and EW.

R> bal.mult.trim <- SumStat(ps.formula = ps.mult,

+ weight = c("IPW", "overlap", "matching", "entropy"),

+ data = NCDS, delta = 0.067)

R> bal.mult.trim

1050 cases trimmed, 2592 cases remained

trimmed result by trt group:

>=A/eq None O/eq

trimmed 778 71 201

remained 1028 824 740

weights estimated for: IPW overlap matching entropy

R> plot(bal.mult.trim,metric = "ASD")

Alternatively, if one does not specify the trimming threshold, the PStrim function supports
the optimal trimming procedure that identifies the optimal threshold based on data. An
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Figure 5: Love plot with the three-level treatment variable Dmult using the maximum pair-
wise ASD metric, after symmetric trimming with δ = 0.067. This plot is generated by
plot.SumStat() function in the PSweight package.

example syntax is given as follows. By pulling out the summary statistics for trimming,
we can see that optimal trimming excludes 27%, 9% and 2% of the individuals among those
with advanced qualification, intermediate qualification and no qualification, respectively. The
exclusion is more conservative compared to symmetric trimming with δ = 0.067. However,
the resulting covariate balance after optimal trimming is similar to Figure 5 and omitted.

R> PStrim(ps.formula = ps.mult, data = NCDS, optimal = TRUE)

>=A/eq None O/eq

trimmed 479 21 82

remained 1327 874 859

Estimation and Inference of Pairwise (Weighted) Average Treatment Effects

We estimate the ratio estimands introduced in Section 2.5 using the binary outcome wagebin.
For illustration, we will only estimate the causal effects based on the data without trimming,
and the analysis with the trimmed data follows the exact same steps. Based on the multino-
mial logistic propensity score model, we obtain the pairwise causal RR among the combined
population via IPW.

R> ate.mult <- PSweight(ps.formula = ps.mult, yname = "wagebin", data = NCDS,

+ weight = "IPW")

R> contrasts.mult <- rbind(c(1,-1, 0), c(1, 0,-1), c(0, -1, 1))

R> sum.ate.mult.rr <- summary(ate.mult, type = "RR", contrast = contrasts.mult)

R> sum.ate.mult.rr
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Closed-form inference:

Inference in log scale:

Original group value: >=A/eq, None, O/eq

Contrast:

>=A/eq None O/eq

Contrast 1 1 -1 0

Contrast 2 1 0 -1

Contrast 3 0 -1 1

Estimate Std.Error lwr upr Pr(>|z|)

Contrast 1 0.607027 0.115771 0.380120 0.83393 1.577e-07 ***

Contrast 2 0.459261 0.052294 0.356767 0.56176 < 2.2e-16 ***

Contrast 3 0.147766 0.121692 -0.090746 0.38628 0.2246

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

By providing the appropriate contrast matrix, we obtain all pairwise comparisons of the aver-
age potential outcomes on the log scale with the summary.PSweight() function, and estimate
λh,RR(aaa) for contrast vector aaa. The p-values provides statistical evidence against the weak
causal null H0 : λh,RR(aaa) = 0. It is found that, among the combined population, the propor-
tion that receives above-average hourly wage when everyone attains advanced qualification is
exp(0.607) = 1.83 times that when everyone attains no academic qualification. Further, the
proportion that receives above-average hourly wage when everyone attains advanced qualifi-
cation is exp(0.459) = 1.58 times that when everyone attains intermediate qualification. Both
effects are significant at the 0.05 levels and provides strong evidence against the correspond-
ing causal null (p-value < 0.001). However, if everyone attains intermediate qualification,
the proportion that receives above-average hourly wage is only slightly higher compared to
without qualification, with a p-value exceeding 0.05. To directly report the causal RR and
its confidence intervals, we can simply exponentiate the point estimate and confidence limits
provided by the summary.PSweight() function.

R> exp(sum.ate.mult.rr$estimates[,c(1,4,5)])

Estimate lwr upr

Contrast 1 1.834968 1.4624601 2.302358

Contrast 2 1.582904 1.4287028 1.753749

Contrast 3 1.159241 0.9132496 1.471493

Focusing on the target population that has the most overlap in the observed covariates, we
further use the OW to estimate the pairwise causal RR. OW theoretically provides the best
internal validity for pairwise comparisons; Figure 5 also indicates that OW achieves better
covariate balance among the overlap population. Exponentiating the results provided by
the summary.PSweight() function, we observe each pairwise causal RR has a larger effect
size among the overlap weighted population. Interestingly, among the overlap population,
the proportion that receives above-average hourly wage when everyone attains intermediate
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qualification becomes approximately 1.55 times that when everyone attains no academic qual-
ification, and the associated 95% CI excludes the null. Moreover, the standard errors for the
pairwise comparisons are smaller when using OW versus IPW, implying that OW analysis
generally corresponds to increased power by focusing on a population with equipoise. We
repeat the analysis using both MW and EW; the results are similar to OW for this analysis
and therefore omitted for brevity.

R> ato.mult <- PSweight(ps.formula = ps.mult, yname = "wagebin", data = NCDS,

+ weight = "overlap")

R> sum.ato.mult.rr <- summary(ato.mult, type = "RR", contrast = contrasts.mult)

R> exp(sum.ato.mult.rr$estimates[,c(1,4,5)])

Estimate lwr upr

Contrast 1 2.299609 1.947140 2.715882

Contrast 2 1.527931 1.363092 1.712705

Contrast 3 1.505048 1.257180 1.801785

The above output suggests that among the overlap population, the causal RR for comparing
advanced qualification and intermediate qualification is similar in magnitude to that for com-
paring intermediate qualification and no qualification. We can formally test for the equality
of two consecutive causal RR based on the null hypothesis H0 : µh

3/µh
2 = µh

2/µh
1 (also see

Section 2.5). Operationally, we need to specify the corresponding contrast vector contrast

= c(1, 1, -2). The p-value for testing this null is 0.91 (output omitted for brevity), and
suggests a lack of evidence against the equality of consecutive causal RR at the 0.05 level.

R> summary(ato.mult, type = "RR", contrast = c(1, 1, -2), CI = FALSE)

With the binary outcome wagebin, we can also estimate the pairwise causal OR among a
specific target population. For example, using OW, the causal conclusions regarding the
effectiveness due to attaining academic qualification do not change, because all three 95%
confidence intervals exclude null. However, the pairwise causal OR appear larger than the
pairwise causal RR. This is expected because our outcome of interest is not uncommon (Nur-
minen 1995). For rare outcomes, causal OR approximates causal RR.

R> sum.ato.mult.or <- summary(ato.mult, type = "OR", contrast = contrasts.mult)

R> exp(sum.ato.mult.or$estimates[,c(1,4,5)])

Estimate lwr upr

Contrast 1 3.586050 2.841383 4.525879

Contrast 2 2.050513 1.696916 2.477791

Contrast 3 1.748855 1.375483 2.223578

As a final step, we illustrate how to combine OW with outcome regression and estimate the
pairwise causal RR among the overlap population. Similar to Section 4.2, we use the same
set of covariates in the binary outcome regression model.

R> out.wagebin <- wagebin ~ white + maemp + as.factor(scht) + as.factor(qmab) +

+ as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u +

+ agepa + agema + sib_u + paed_u * agepa + maed_u * agema
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Loading this outcome regression formula into the PSweight() function, and specifying family

= "binomial" to indicate the type of outcome, we obtain the augmented overlap weighting
estimates on the log RR scale. Exponentiating the point estimates and confidence limits,
one reports the pairwise causal RR. The pairwise causal RR reported by the augmented
OW estimator is similar to that reported by the simple OW estimator; further, the width of
the confidence interval is also comparable before and after outcome augmentation, and the
causal conclusions based on pairwise RR remain the same. The similarity between simple
and augmented OW estimators implies that OW itself may already be efficient.

R> ato.mult.aug <- PSweight(ps.formula = ps.mult, yname = "wagebin", data = NCDS,

+ augmentation = TRUE, out.formula = out.wagebin, family = "binomial")

R> sum.ato.mult.aug.rr <- summary(ato.mult.aug, type = "RR",

+ contrast = contrasts.mult)

R> exp(sum.ato.mult.aug.rr$estimates[,c(1,4,5)])

Estimate lwr upr

Contrast 1 2.310628 1.957754 2.727105

Contrast 2 1.540176 1.375066 1.725111

Contrast 3 1.500237 1.253646 1.795331

4.4. Using Machine Learning to Estimate Propensity Scores and Potential

Outcomes

As an alternative to the default generalized linear models, we can use more advanced machine
learning models to estimate propensity scores and potential outcomes. Flexible propensity
score and outcome estimation has been demonstrated to reduce bias due to model misspeci-
fication, and potentially improve covariate balance (Lee, Lessler, and Stuart 2010; Hill 2011;
McCaffrey et al. 2013). This can be achieved in PSweight for both balance check and con-
structing weighted estimator by specifying the method as the generalized boosted model
(GBM) or the super learner methods. Additional model specifications for these methods can
be supplied through ps.control and out.control. Machine learning models that are in-
cluded in neither gbm nor SuperLearner could be estimated externally and then imported
through the ps.estimate and out.estimate arguments. These two arguments broaden the
utility of PSweight where any externally generated estimates of propensity scores and poten-
tial outcomes models can be easily incorporated.

We now illustrate the use of GBM as an alternative of the default generalized linear models.
The illustration is based on binary education: ‘Dany’. GBM is a family of non-parametric
tree-based regressions that allow for flexible non-linear relationships between predictors and
outcomes (Friedman, Hastie, and Tibshirani 2000). The following propensity model formula
is specified; the formula does not include interactions terms because boosted regression is
already capable of capturing non-linear effects and interactions (McCaffrey, Ridgeway, and
Morral 2004). In this illustration, we use the AdaBoost (Freund and Schapire 1997) algorithm
to fit the propensity model through the control setting, ps.control=list(distribution

= "adaboost"). We use the default values for other model parameters such as the num-
ber of trees (n.trees = 100), interaction depth (interaction.depth = 1), the minimum
number of observations in the terminal nodes (n.minobsinnode = 1), shrinkage reduction
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(shrinkage = 0.1), and bagging fraction (shrinkage = 0.5). Alternative values for these
parameters could also be passed through ps.control.

R> ps.any.gbm <- Dany ~ white + maemp + as.factor(scht) + as.factor(qmab) +

+ as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u +

+ maed_u+ agepa + agema + sib_u

R> bal.any.gbm <-SumStat(ps.formula = ps.any.gbm, data= NCDS, weight = "overlap",

+ method = "gbm", ps.control = list(distribution = "adaboost"))

The balance check through plot.SumStat() suggests substantial improvement in covariate
balance with SMD of all covariates below 0.1 after weighting. After assessing balance and
confirming the adequacy of the propensity score model, we further fit the outcome model using
GBM with the default logistic regression and parameters. In the PSweight() function, we
can specify both ps.method = "gbm" and out.method = "gbm" and leave the out.control

argument as default. The detailed code and summary of the output is in below. Here
we redefine the propensity score model without interaction terms because GBM considers
interactions between covariates by default. The results using GBM are very similar to those
using generalized linear models.

R> out.wage.gbm <- wage ~ white + maemp + as.factor(scht) + as.factor(qmab) +

+ as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u +

+ maed_u + agepa + agema + sib_u

R> ato.any.aug.gbm <- PSweight(ps.formula = ps.any.gbm, yname = "wagebin",

+ data = NCDS, augmentation = TRUE, out.formula = out.wage.gbm,

+ ps.method = "gbm", ps.control = list(distribution = "adaboost"),

+ out.method = "gbm")

R> summary(ato.any.aug.gbm, CI = FALSE)

Closed-form inference:

Original group value: 0, 1

Contrast:

0 1

Contrast 1 -1 1

Estimate Std.Error z value Pr(>|z|)

Contrast 1 0.186908 0.018609 10.044 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5. Summary

Propensity score weighting is an important tool for causal inference and comparative effec-
tiveness research. This paper introduces the PSweight package and demonstrates its function-
ality with the NCDS data example in the context of binary and multiple treatment groups.
In addition to providing easy-to-read balance statistics and plots to aid the design of observa-
tional studies, the PSweight offers point and variance estimation with a variety of weighting
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schemes for the (weighted) average treatment effects on both the additive and ratio scales.
These weighting schemes include the optimal overlap weights recently introduced in Li et al.
(2018) and Li and Li (2019), and could help generate valid causal comparative effectiveness
evidence among the population at equipoise.

The PSweight package is under continuing development to include other useful components
for propensity score weighting analysis. Specifically, future versions of PSweight will include
components to enable pre-specified subgroup analysis with balancing weights and flexible vari-
able selection tools (Yang, Lorenzi, Papadogeorgou, Wojdyla, Li, and Thomas 2020). We are
also studying overlap weighting estimators with time-to-event outcomes and complex survey
designs. Those new features are being actively developed concurrently with our extensions to
the methodology.

Computational details

PSweight 1.1.6 (license: GPL-2, GPL-3) was built on R 4.0.3 and dependent on the MASS 7.3.51-
4 package, ggplot2 3.2.1 package, nnet 7.3-14, gbm 2.1.8, SuperLearner 2.0-26, and numDeriv 2016.8-
11 package. Package mice is not a dependent package of PSweight but was used to impute
the missing entries in our data example. All these packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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