Type: | Package |
Title: | Process Performance Qualification (PPQ) Plans in Chemistry, Manufacturing and Controls (CMC) Statistical Analysis |
Version: | 1.1.0 |
Maintainer: | Yalin Zhu <yalin.zhu@merck.com> |
Depends: | R (≥ 3.2.0) |
Imports: | ggplot2, plotly |
Description: | Assessment for statistically-based PPQ sampling plan, including calculating the passing probability, optimizing the baseline and high performance cutoff points, visualizing the PPQ plan and power dynamically. The analytical idea is based on the simulation methods from the textbook Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Methods for CMC Applications. In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry (pp. 227-250). Springer, Cham. |
License: | GPL-3 |
Suggests: | knitr, rmarkdown, devtools |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
RoxygenNote: | 7.1.0 |
Encoding: | UTF-8 |
URL: | https://allenzhuaz.github.io/PPQplan/, https://github.com/allenzhuaz/PPQplan |
BugReports: | https://github.com/allenzhuaz/PPQplan/issues |
LazyData: | true |
Language: | en-US |
Packaged: | 2020-10-08 02:01:06 UTC; zhuyal |
Author: | Yalin Zhu |
Repository: | CRAN |
Date/Publication: | 2020-10-08 04:30:06 UTC |
Heatmap/Contour Plot for Assessing Power of the CQA PPQ Plan Using General Multiplier.
Description
The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.
Usage
PPQ_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, test.point)
Arguments
attr.name |
(optional) user-defined attribute name for PPQ assessment |
attr.unit |
(optional) user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
k |
general multiplier for constructing the specific interval |
test.point |
(optional) actual process data points for testing whether the processes pass PPQ |
Value
Heatmap (or Contour Plot) for PPQ Assessment.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
PPQ_pp
and PPQ_occurve
.
Examples
## Not run:
mu <- seq(1.6,3.4,0.05)
sigma <- seq(0.05,0.8,0.01)
PPQ_ctplot(attr.name = "Total Protein", attr.unit = "mg/mL", Llim=1.5, Ulim=3.5,
mu = mu, sigma = sigma, k=2.373)
## Example verifying simulation resutls in the textbook page 249
mu <- seq(95, 105, 0.1)
sigma <- seq(0.2, 5, 0.1)
PPQ_ctplot(attr.name = "Composite Assay", attr.unit = "%LC", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373)
mu <- seq(90, 110, 0.5)
PPQ_ctplot(attr.name = "Composite Assay", attr.unit = "%LC", Llim=90, Ulim=110,
mu = mu, sigma = sigma, k=2.373)
mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
PPQ_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373)
test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
PPQ_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373, test.point=test)
## End(Not run)
Heatmap/Contour Plot for Dynamically Assessing Power of the CQA PPQ Plan Using General Multiplier.
Description
The function for dynamically plotting (ggplot) the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.
Usage
PPQ_ggplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k,
test.point, dynamic)
Arguments
attr.name |
(optional) user-defined attribute name for PPQ assessment |
attr.unit |
(optional) user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
k |
general multiplier for constructing the specific interval |
test.point |
(optional) actual process data points for testing whether the processes pass PPQ |
dynamic |
logical; if |
Value
Dynamic Heatmap (or Contour Plot) for PPQ Assessment.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
PPQ_pp
and PPQ_occurve
.
Examples
## Not run:
mu <- seq(95, 105, 0.1)
sigma <- seq(0.1,1.7,0.1)
PPQ_ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373, dynamic = FALSE)
test <- data.frame(mu=c(97,98.3,102.5), sd=c(0.55, 1.5, 0.2))
PPQ_ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373, test.point = test)
## End(Not run)
Operating Characteristic (OC) Curves for the CQA PPQ Plan Using General Multiplier.
Description
The function for plotting the OC curve to show the PPQ plan, given lower and upper specification limits.
Usage
PPQ_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, add.reference)
Arguments
attr.name |
(optional) user-defined attribute name |
attr.unit |
(optional) user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
k |
general multiplier for constructing the specific interval |
add.reference |
logical; if |
Value
OC curves for specification test and PPQ plan.
Author(s)
Yalin Zhu
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
PPQ_pp
and rl_pp
.
Examples
## Not run:
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=97, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=100, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373)
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373, add.reference=TRUE)
PPQ_occurve(attr.name = "Protein Concentration", attr.unit="%", Llim=90, Ulim=110,
mu=seq(90, 110, 0.1), sigma=1.25, k=2.373)
## Only display referece curves, leave k as NULL by default
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105,
mu=98, sigma=seq(0.1, 10, 0.1), n=10, add.reference=TRUE)
## End(Not run)
Probability of Passing PPQ Test Using General Multiplier
Description
The function for calculating the probability of passing critical quality attributes (CQA) PPQ test .
Usage
PPQ_pp(Llim, Ulim, mu, sigma, n, n.batch, k)
Arguments
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
k |
general multiplier for constructing the specific interval |
Value
A numeric value of the passing/acceptance probability
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
rl_pp
.
Examples
## Not run:
PPQ_pp(Llim = 90, Ulim = 110, mu=105, sigma=1.5, n=10, k=3.1034)
# One-sided tolerance interval with k=0.753 (95/67.5 one-sided tolerance interval LTL)
PPQ_pp(sigma=0.03, mu=1.025, n=40, Llim=1, Ulim=Inf, k=0.753)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
sapply(X=seq(0.1,10,0.1), FUN = PPQ_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ_pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
sigma <- seq(0.1, 4, 0.1)
pp1 <- sapply(X=sigma, FUN = PPQ_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
pp2 <- sapply(X=sigma, FUN = PPQ_pp, mu=98, n=10, Llim=95, Ulim=105, k=2.373)
pp3 <- sapply(X=sigma, FUN = PPQ_pp, mu=99, n=10, Llim=95, Ulim=105, k=2.373)
pp4 <- sapply(X=sigma, FUN = PPQ_pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
plot(sigma, pp1, xlab="Standard Deviation", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(sigma, pp2, type="o", pch=2, col=2)
lines(sigma, pp3, type="o", pch=3, col=3)
lines(sigma, pp4, type="o", pch=4, col=4)
legend("topright", legend=paste0(rep("mu=",4),c(97,98,99,100)), bg="white",
col=c(1,2,3,4), pch=c(1,2,3,4), lty=1, cex=0.8)
mu <- seq(95, 105, 0.1)
pp5 <- sapply(X=mu, FUN = PPQ_pp, sigma=0.5, n=10, Llim=95, Ulim=105, k=2.373)
pp6 <- sapply(X=mu, FUN = PPQ_pp, sigma=1, n=10, Llim=95, Ulim=105, k=2.373)
pp7 <- sapply(X=mu, FUN = PPQ_pp, sigma=1.5, n=10, Llim=95, Ulim=105, k=2.373)
pp8 <- sapply(X=mu, FUN = PPQ_pp, sigma=2, n=10, Llim=95, Ulim=105, k=2.373)
pp9 <- sapply(X=mu, FUN = PPQ_pp, sigma=2.5, n=10, Llim=95, Ulim=105, k=2.373)
plot(mu, pp5, xlab="Mean Value", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(mu, pp6, type="o", pch=2, col=2)
lines(mu, pp7, type="o", pch=3, col=3)
lines(mu, pp8, type="o", pch=4, col=4)
lines(mu, pp9, type="o", pch=5, col=5)
legend("topright", legend=paste0(rep("sigma=",5),seq(0.5,2.5,0.5)), bg="white",
col=c(1,2,3,4,5), pch=c(1,2,3,4,5), lty=1, cex=0.8)
## End(Not run)
A General Heatmap for Dynamically Assessing Power of the Sampling Plan Using a General Specification Limit.
Description
The function for dynamically plotting (ggplot) the heatmap to evaluate the sampling plan based on a general lower and/or upper specification limits.
Usage
heatmap_ly(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, test.point, dynamic)
Arguments
attr.name |
(optional) user-defined attribute name for sampling plan assessment |
attr.unit |
(optional) user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
test.point |
(optional) actual process data points for testing whether the processes pass PPQ |
dynamic |
logical; if |
Value
A Plain or Dynamic Heatmap for Sampling Plan Assessment.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
pp
and PPQ.occurve
.
Examples
## Not run:
heatmap_ly(attr.name = "Thickness", attr.unit = "%",Llim = -0.2, Ulim = 0.2,
mu = seq(-0.2, 0.2, 0.001), sigma = seq(0,0.2, 0.001),
test.point=data.frame(c(0.1,-0.05),c(0.15,0.05)), n=2, dynamic = T)
## End(Not run)
Estimating K-factors for Tolerance Intervals Based on Howe's Method
Description
Estimates k-factors for tolerance intervals based on Howe's method with normality assumption.
Usage
k_factor(n, alpha = 0.05, P = 0.99, side = 1)
Arguments
n |
Sample size |
alpha |
The level chosen such that (1-alpha) is the confidence level. |
P |
The proportion of the population to be covered by the tolerance interval. |
side |
Whether a 1-sided or 2-sided tolerance interval is required (determined by |
Value
The estimated k-factor for tolerance intervals assuming normality.
Note
This function is a simplified version of tolerance::K.factor()
, only considering Howe's method.
See Also
ti_pp
Examples
k_factor(10, P = 0.95, side = 2)
Heatmap/Contour Plot for Assessing Power of the CQA PPQ Plan Using Prediction Interval.
Description
The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.
Usage
pi_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, test.point)
Arguments
attr.name |
user-defined attribute name for PPQ assessment |
attr.unit |
user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
alpha |
significant level for constructing the prediction interval. |
test.point |
(optional) actual process data points for testing whether the processes pass PPQ |
Value
Heatmap (or Contour Plot) for PPQ Assessment.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
pi_pp
and pi_occurve
.
Examples
## Not run:
## Example verifying simulation resutls in the textbook page 249
mu <- seq(95, 105, 0.1)
sigma <- seq(0.2, 3.5, 0.1)
pi_ctplot(attr.name = "Composite Assay", attr.unit = "%LC",
mu = mu, sigma = sigma, Llim=95, Ulim=105)
mu <- seq(90, 110, 0.5)
pi_ctplot(attr.name = "Composite Assay", attr.unit = "%LC",
mu = mu, sigma = sigma, Llim=90, Ulim=110)
mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
pi_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%",
mu = mu, sigma = sigma, Llim=95, Ulim=105)
test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
pi_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, test.point=test)
## End(Not run)
Operating Characteristic (OC) Curves for the CQA PPQ Plan using Prediction Interval.
Description
The function for plotting the OC curves and optimizing the baseline and high performance PPQ plans, given lower and upper specification limits.
Usage
pi_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, add.reference)
Arguments
attr.name |
user-defined attribute name |
attr.unit |
user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
alpha |
significant level for constructing the prediction interval. |
add.reference |
logical; if |
Value
OC curves for specification test and PPQ plan.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
pi_pp
and rl_pp
.
Examples
## Not run:
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01))
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), n.batch=3)
# Baseline curve
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), alpha = 0.1135434)
# High performance curve
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), alpha = 0.0225518)
# 95% with reference curves
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), add.reference=TRUE)
pi_occurve(attr.name = "Composite Assay", attr.unit = "%",
mu = 100, sigma = seq(0.1,6,0.1), Llim=95, Ulim=105, n.batch=1, add.reference=TRUE)
pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=seq(95,105,0.1), sigma=1, Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi_occurve(attr.name = "Protein Concentration", attr.unit="%",
mu=seq(90, 110, 0.1), sigma=1.25, Llim=90, Ulim=110, add.reference=TRUE)
## End(Not run)
Probability of Passing PPQ Test using Prediction Interval
Description
The function for calculating the probability of passing critical quality attributes (CQA) PPQ test .
Usage
pi_pp(Llim, Ulim, mu, sigma, n, n.batch, alpha)
Arguments
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
alpha |
significant level for constructing the prediction interval. |
Value
A numeric value of the passing/acceptance probability
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
rl_pp
.
Examples
## Not run:
pi_pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = pi_pp, mu=97, n=10, Llim=95, Ulim=105,
n.batch=1, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = pi_pp, mu=100, n=10, Llim=95, Ulim=105,
n.batch=1, alpha=0.05)
## End(Not run)
Probability of Passing General Upper and/or Lower Specification Limit
Description
The function for calculating the probability of passing a general upper and/or lower boundary.
Usage
pp(Llim, Ulim, mu, sigma, n)
Arguments
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) |
Value
A numeric value of the passing/acceptance probability
Author(s)
Yalin Zhu
See Also
rl_pp
and PPQ_pp
.
Probability of Passing Specification Test for a Release Batch
Description
The function for calculating the probability of passing critical quality attributes (CQA) specification test .
Usage
rl_pp(Llim, Ulim, mu, sigma, NV)
Arguments
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
NV |
nominal volume for the specification test. |
Value
A numeric value of the passing/acceptance probability
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
PPQ_pp
, pi_pp
and ti_pp
.
Examples
rl_pp(Llim=1.5, Ulim=3.5, mu=2.5, sigma=0.8)
Heatmap/Contour Plot for Assessing Power of the PPQ Plan using Tolerance Interval.
Description
The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.
Usage
ti_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch,
alpha, coverprob, side, test.point)
Arguments
attr.name |
user-defined attribute name for PPQ assessment |
attr.unit |
user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
alpha |
significant level for constructing the tolerance interval. |
coverprob |
coverage probability for constructing the tolerance interval |
side |
whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively). |
test.point |
(optional) actual process data points for testing whether the processes pass PPQ |
Value
Heatmap (or Contour Plot) for PPQ Assessment.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
ti_pp
and ti_occurve
.
Examples
## Not run:
mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
ti_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%",
mu = mu, sigma = sigma, Llim=95, Ulim=105)
ti_ctplot(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL",
Llim = 100, Ulim = Inf, mu=seq(100, 110, 0.5), sigma=seq(0.2, 15 ,0.5), n=40,
alpha = 0.05, coverprob = 0.675, side=1)
## End(Not run)
Operating Characteristic (OC) Curves for the PPQ Plan using Tolerance Interval.
Description
The function for plotting the OC curve to show the PPQ plan based on the specification test, given lower and upper specification limits.
Usage
ti_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha,
coverprob, side, add.reference, NV)
Arguments
attr.name |
user-defined attribute name |
attr.unit |
user-defined attribute unit |
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
alpha |
significant level for constructing the tolerance interval. |
coverprob |
coverage probability for constructing the tolerance interval |
side |
whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively). |
add.reference |
logical; if |
NV |
nominal volume for the specification test. |
Value
OC curves for specification test and PPQ plan.
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
ti_pp
and rl_pp
.
Examples
## Not run:
ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL",
Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40,
alpha = 0.05, coverprob = 0.97, side=1, NV=3)
ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL",
Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40,
alpha = 0.05, coverprob = 0.992, side=1, NV=3)
## End(Not run)
Probability of Passing PPQ Test using Tolerance Interval
Description
The function for calculating the probability of passing critical quality attributes (CQA) PPQ test .
Usage
ti_pp(Llim, Ulim, mu, sigma, n, n.batch, alpha, coverprob, side)
Arguments
Llim |
lower specification limit |
Ulim |
upper specification limit |
mu |
hypothetical mean of the attribute |
sigma |
hypothetical standard deviation of the attribute |
n |
sample size (number of locations) per batch |
n.batch |
number of batches for passing PPQ during validation |
alpha |
significant level for constructing the tolerance interval |
coverprob |
coverage probability for constructing the tolerance interval |
side |
whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively). |
Value
A numeric value of the passing/acceptance probability
Author(s)
Yalin Zhu
References
Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. Springer.
See Also
rl_pp
.
Examples
ti_pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti_pp, mu=97, n=10, Llim=95, Ulim=105,
n.batch=1, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti_pp, mu=100, n=10, Llim=95, Ulim=105,
n.batch=1, alpha=0.05)