Package 'NIPTeR'

July 21, 2025

Type Package
Encoding UTF-8
Title Fast and Accurate Trisomy Prediction in Non-Invasive Prenatal Testing
Version 1.0.2
Date 2016-03-09
Author Dirk de Weerd, Lennart Johansson
Maintainer Lennart Johansson <1.johansson@umcg.nl>
Description Fast and Accurate Trisomy Prediction in Non-Invasive Prenatal Testing.
Imports stats, Rsamtools, sets, S4Vectors
Depends R (>= $3.1.0$),
License GNU Lesser General Public License
Suggests knitr, pander
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-03-09 18:55:22
Contents
add_samples_controlgroup
as_control_group
bin_bam_sample
calculate_z_score
chi_correct
chrfractions

19

```
      gc_correct
      9

      getcontrolchromosomes
      10

      getfractionscontrolgroup
      11

      getreadscontrolgroup
      11

      match_control_group
      12

      perform_regression
      13

      prepare_ncv
      15

      remove_duplicates_controlgroup
      17

      remove_sample_controlgroup
      17

      retrieve_fractions_of_interest
      18
```

add_samples_controlgroup

Add a sample to an existing control group

Description

Index

This functions adds NIPTSample objects to an existing control group and returns a new NIPTControlGroup object.

Usage

```
add_samples_controlgroup(nipt_control_group, samples_to_add)
```

Arguments

```
nipt_control_group

The NIPTControlGroup to add the samples to
samples_to_add A list with sample(s) to add. This always needs to be a list
```

Value

NIPTControlGroup object

Examples

as_control_group 3

as_control_group

Convert list of nipt samples to nipt control group

Description

Convert list of nipt samples to nipt control group

Usage

```
as_control_group(nipt_samples, control_group_type = generic_control_group)
```

Arguments

Control group type, either 'generic control group' or 'fitted to sample'. Leave this argument blank

Details

This function returns an S3 object of class nipt_control_group. It is a list with 3 items:

- List Samples nipt_sample objects in the control group
- Character Correction_status Correction_status(es) in the control group
- Character **Samplenames** The sample names of samples present in the control group

Read count strategy should be uniform in all samples in a control group object; meaning samples where forward and reverse reads are counted separately cannot be in the same control group object as samples where forward and reverse reads are counted together.

A control group object with duplicate samples or samples with different correction statusses is possible but not recommended and will generate a warning message.

Value

NIPTControlGroup object

Examples

4 bin_bam_sample

Description

Load a BAM file and count reads in bins of size 50.000 base pairs

Usage

```
bin_bam_sample(bam_filepath, do_sort = FALSE, separate_strands = FALSE,
    custom_name = NULL)
```

Arguments

bam_filepath Character The location and filename on the file system where the bam file is

stored

do_sort Boolean Sort the bam file? If the bam is unsorted set to true, but the use of

pre-sorted bam files is recommended.

separate_strands

Boolean If set to true, reads from forward and reverse strands are counted and stored separately. This option should be used if you are planning on using regression, since this doubles the number of predictors (F+R) and distributes predictive power more equally over prediction sets since F and R strand from the

same chromosome cannot be both in one prediction set.

custom_name String The name of sample. Default samplename is the filename of the bam file

without the .bam suffix and filepath prefix.

Details

This function returns an object of class NIPTSample, the main 'currency' of this package. It is a list with 5 items:

- List **autosomal_chromosome_reads** Autosomal reads are stored in a matrix where the columns are the bins and rows (22) represent the autosomal chromosomes. The length of this list is either 1 or 2, depending if the forward and reverse reads are counted separately.
- Character **correction_status_autosomal_chromosomes** The correction status of the autosomal reads. The status can either be *Uncorrected* or *GC Corrected* and/or *Chi Corrected*
- List **sex_chromosome_reads** Sex chromosome reads are stored in a similar matrix(es) as the autosomal chromosome reads, now with 2 (X and Y) rows.
- Character correction_status_autosomal_chromosomes The status can either be Uncorrected or GC Corrected and/or Chi Corrected.
- Character sample_name Sample name

Value

Object NIPTSample

calculate_ncv_score 5

Examples

calculate_ncv_score

Use an NCV template to calculate a NCV score for sample of interest

Description

Use an NCV template to calculate a NCV score for sample of interest

Usage

```
calculate_ncv_score(nipt_sample, ncv_template)
```

Arguments

Details

```
prepare_ncv
```

Value

ncv_result object

References

Sehnert et al.

6 calculate_z_score

Examples

calculate_z_score

Calculate 'standard' Z-score

Description

Calculate 'standard' Z-score

Usage

```
calculate_z_score(nipt_sample, nipt_control_group, chromo_focus)
```

Arguments

```
nipt_sample The NIPTSample object that is the focus of the analysis
nipt_control_group
The NIPTControlGroup object used in the analysis
chromo_focus
The chromosome of interest. Most commonly chromosome 13, 18 or 21. How-
```

ever, every autosomal chromosome can be predicted

Details

In the Z-score approach, introduced by Chiu et al in 2008, the chromosomal fraction of interest of a sample is compared to the chromosomal fractions of interest of the reference samples, the 'NIPTControlGroup' object. The output of the function is an object of class 'ZscoreResult'. It is a named list containing seven fields:

- numeric **sample_Zscore** The Z score for the sample of interest for the sample of interest
- named num **control_group_statistics** Named num of length 3, the first field being the mean (name mean), the second field is the standard deviation (name SD) and the third field is the P value of the Shapiro-Wilk test (name Shapiro_P_value)
- matrix **control_group_Zscores** containing the Z scores of the chromosome of interest for all used control samples
- integer **focus_chromosome** The chromosome of interest. Most commonly chromosome 13, 18 or 21. However, every autosomal chromosome can be predicted
- string **control_group_sample_names** The sample names of all control group samples used in the analysis
- string **correction status** The correction status of the control group
- string **sample_name** The sample_name of the sample of interest

chi_correct 7

Value

ZscoreResult object

Examples

chi_correct

Performs chi-square based variation reduction

Description

Performs chi-square based variation reduction

Usage

```
chi_correct(nipt_sample, nipt_control_group, chi_cutoff = 3.5,
  include_XY = F)
```

Arguments

```
nipt_sample The NIPTSample object that is the focus of the analysis

nipt_control_group

The NIPTControlGroup object used in the analysis

chi_cutoff The Z-score cutoff. If a bin has a Z-score above this threshold, it will be corrected

include_XY Also apply correction to X and Y chromosomes?
```

Details

The chi-squared based variation reduction identifies overdispersed bins within the control group and corrects these bins in both the sample of interest and the control group. The function takes in a 'NIPTSample' and a 'NIPTControlGroup' object, both to be corrected. For every corresponding bin in the control group a chi-squared score is calculated and this total score is converted to a normal distribution. Corresponding bins with a normalized score above _chi_cutoff_ (default 3.5) are corrected by dividing the number of reads by the total chi-squared score divided by degrees of freedom

Value

Named list of length 2. The corrected nipt_sample is in index 1 and the corrected control group in index 2 to extract the corrected sample use \$sample or [[1]]. To extract the control group from the list use \$control_group or [[2]]

Examples

chrfractions

Calculate chromosomal fraction

Description

Calculate chromosomal fraction

Usage

```
chrfractions(nipt_sample)
```

Arguments

```
diagnose_control_group
```

Diagnose control group

Description

Compute a regular Z-score for every chromosome of every sample in a NIPTControlGroup object

Usage

```
diagnose_control_group(nipt_control_group)
```

gc_correct 9

Arguments

```
nipt_control_group
```

The NIPTControlGroup object to diagnose

Details

This function computes a regular Z-score for every chromosome of every sample in a NIPTControlGroup object. It returns a named list with diagnostics information.

The function returns a named list with 3 fields:

- Z_scores A matrix containing Z-scores for every sample and every chromosome
- abberant_scores Dataframe with samplename and chromosome of Z-scores outside -3 3 range
- control_group_statistics Matrix with mean, standard deviation and P value of Shapiro-Wilk test

Value

named list

Examples

```
## Not run:
diagnose_control_group(nipt_control_group = control_group)
## End(Not run)
```

gc_correct

Perform a GC bias correction on nipt sample

Description

LOESS based GC bias correction algorithm described by Chen et al (2011)

Usage

```
gc_correct(nipt_object, method = "LOESS", include_XY = F, span = 0.75,
  ref_genome = "hg37")
```

Arguments

nipt_object	The object that will be corrected. This can either be a 'NIPTSample' or a 'NIPT-ControlGroup' object
method	To select the LOESS based method use "LOESS", to select the bin weights based method use "bin".
include_XY	Also apply correction to X and Y chromosomes?
span	The span for the LOESS fit. Only applicable when LOESS method is used.
ref_genome	The reference genome used. Either " $hg37$ " or " $hg38$ " default = " $hg37$ "

Details

GC content bias is the correlation between the number of reads mapped to a specific genomic region and the GC content of this region. In NIPTeR, two GC bias correction algorithms have been implemented, the LOESS based method introduced by Chen et al. (2011) and the bin weight based method described by Fan and Quake (2010).

Value

Depending on the input object either a NIPTSample or a NIPTControlGroup object

Examples

getcontrolchromosomes Get control chromosomes names

Description

Get control chromosomes names

Usage

```
getcontrolchromosomes(nipt_sample, control_chromosomes = control_chromosomes)
```

Arguments

Vector with control chromosomes

getfractionscontrolgroup

getfractionscontrolgroup

Get all chromosomal fractions of a control group

Description

Get all chromosomal fractions of a control group

Usage

```
getfractionscontrolgroup(nipt_control_group)
```

Arguments

```
nipt_control_group
```

The NIPTControlGroup to retrieve the chromosomal fraction of every autosome for

getreadscontrolgroup Get reads per chromosome per control group sample

Description

Get reads per chromosome per control group sample

Usage

```
getreadscontrolgroup(nipt_control_group)
```

Arguments

```
nipt_control_group
```

The control group to retrieve reads for

match_control_group

Best matching control group by least sum of squares

Description

The matchcontrolgroup function determines how well an NIPTSample fits within the NIPTControl-Group

Usage

```
match_control_group(nipt_sample, nipt_control_group, mode, n_of_samples,
  include_chromosomes = NULL, exclude_chromosomes = NULL)
```

Arguments

nipt_sample The NIPTSample object that is the focus of the analysis

nipt_control_group

The NIPTControlGroup object used in the analysis

mode

The function mode. This can either be "subset" or "report". Mode "subset" means the return value will be a new 'NIPTControlGroup' object containing n samples. When mode "report" is used the output is a matrix containing the sum of squares score of the differences between the chromosomal fractions of the sample and the control for every control sample, sorted in increasing score.

n_of_samples

The length of the resulting NIPTControlGroup. Only applicable if mode "sub-

set" is used.

include_chromosomes

integer. Include potential trisomic chromosomes into the comparison? Default = NULL, meaning chromosomes 13, 18 and 21 are not included

exclude_chromosomes

integer.Exclude other autosomal chromosomes besides chromosomes 13, 18 and 21? Default = NULL

Details

The 'matchcontrolgroup' function determines how well an NIPTSample fits within the NIPTControlGroup and, if needed, makes a subset 'NIPTControlGroup' of length n.

Value

The output for mode *subset* is a new 'NIPTControlGroup' composed of _n_ samples. The output for mode *report* is a matrix with a single column containing the sum of squares in ascending order.

13 perform_regression

Examples

```
## Not run:
##Mode report
scores_control_group <- matchcontrolgroup(nipt_sample = sample_of_interest,</pre>
                                           nipt_control_group = control_group,
                                          mode = "report", include_chromosomes = c(13,18))
##Mode subset
subset_control_group <- matchcontrolgroup(nipt_sample = sample_of_interest,</pre>
                                            nipt_control_group = control_group,
                                            mode = "subset", n_of_samples = 50)
## End(Not run)
```

perform_regression

Regression based Z score

Description

Make multiple models using linear regression and calculate Z-score

Usage

```
perform_regression(nipt_sample, nipt_control_group, chromo_focus,
 n_models = 4, n_predictors = 4, exclude_chromosomes = NULL,
  include_chromosomes = NULL, use_test_train_set = T,
  size_of_train_set = 0.6, overdispersion_rate = 1.15,
  force_practical_cv = F)
```

Arguments

nipt_sample The NIPTSample object that is the focus of the analysis nipt_control_group The NIPTControlGroup object used in the analysis The chromosome of interest. Most commonly chromosome 13, 18 or 21. Howchromo_focus ever, every autosomal chromosome can be predicted n_{models} Integer Number of linear models to be made. Default setting is 4 models n_predictors Integer The number of predictors each model contains. Default is 4 exclude_chromosomes integer. Exclude which autosomal chromosomes as potential predictors? De-

fault potential trisomic chromosomes 13, 18 and 21 are exluded.

include_chromosomes

integer. Include potential trisomic chromosomes? Options are: chromosomes 13, 18 and 21

14 perform_regression

```
use_test_train_set
```

Use a test and train set to build the models? Default is TRUE

size_of_train_set

The size of the train set expressed in a decimal. Default is 0.6 (60 of the control samples)

overdispersion_rate

The standard error of the mean is multiplied by this factor

force_practical_cv

Boolean, Ignore the theoretical CV and always use the practical CV?

Details

The regression based Z-score builds *n* models with *m* predictors using stepwise regression with forward selection. The models are used to predict the chromosomal fraction of interest, for the sample and for the control group. The observed fractions are then divided by the expected fraction, and Z-scores are calculated over these ratios. The Z-score is calculated by subtracting one from the ratio of the sample and dividing this result by the coefficient of variation. The coefficient of variation (CV) can either be the Practical or Theoretical CV. The Theoretical CV is the standard error multiplied by the overdispersion. Theoretically, the CV cannot be lower than the standard error of the mean. If it is case the CV is lower than Theoretical CV, then the Theoretical CV is used.

The output of this function is an object of type RegressionResult, a named list containing:

- prediction_statistics A dataframe with 7 rows and a column for every model. The rows are:
 - **Z_score_sample** The regression based Z score for the model
 - CV The coefficient of varation for the model
 - cv_types The CV type used to calculate the regression based Z score for the model. Either Practical_CV or Theoretical_CV
 - P_value_shapiro The P value of the Shaipro-Wilk test for normality of the control group regression based Z scores for the model
 - **Predictor chromosomes** The predictor chromosomes used in the model
 - Mean_test_set The mean of the test set. Note that for calculating the regression based Z scores the mean is replaced by one. The mean, however, can be seen as a quality metric for the model
 - CV_train_set The CV of the train set. The difference between this CV and the CV of the
 test can be used as a measure to quantify overfit
- **control_group_Zscores** A matrix containing the regression based Z-scores for the control sample
- **focus_chromosome** he chromosome of interest. Most commonly chromosome 13, 18 or 21. However, every autosomal chromosome can be predicted
- correction_status The correction status of the control group autosomes
- control_group_sample_names The sample names of the test set group
- models List of the summary.lm output for every model
- potential predictors The total pool of chromosomes where the predictors are selected from
- all control group Z scores Z-scores for every sample using theoretical and practical VCs
- additional_statistics Statistics for both the practical and theoretical CVs for every prediction set

prepare_ncv 15

Value

RegressionResult object

Examples

prepare_ncv

Prepare NCV calculation

Description

Determine the best NCV chromosomes, calculate NCV scores and asses normal distribution control group using Shapiro-Wilk test

Usage

```
prepare_ncv(nipt_control_group, chr_focus, max_elements,
  exclude_chromosomes = NULL, include_chromosomes = NULL,
  use_test_train_set = T, size_of_train_set = 0.6)
```

Arguments

nipt_control_group

The NIPTControlGroup object used in the analysis

chr_focus Integer.The chromosome of interest. Most commonly chromosome 13, 18 or 21.

However, every autosomal chromosome can be predicted

exclude_chromosomes

Integer. Exclude which autosomal chromosomes as potential predictors? Default potential trisomic chromosomes 13, 18 and 21 are exluded.

include_chromosomes

Integer. Which potential trisomic chromosomes (13,18 and 21) to include?

use_test_train_set

Boolean. Use a test and train set?

size_of_train_set

Double The size of the train set expressed in a decimal. Default is 0.6 (60% of the control group samples)

16 prepare_ncv

Details

chromosomes to calculate the chromosomal fractions. The 'best' subset is the set which yields the lowest coefficient of variation for the chromosomal fractions of the chromosome of interest in the control group. Because a brute force approach is used to determine the best subset, which can be computationally intensive, this method is divided into two functions, prepare_ncv and calculate_ncv. prepare_ncv returns a template object (NCVTemplate) for a given chromosome of interest and the control group used. This template can be used for any number of analyses. If the control group or chromosome of interest changes, a new template must be made.

The new template object is a list containing:

- Character **denominators** The set of denominator chromosomes
- Character focus_chromosomeThe chromosome of interest used for this 'NCVTemplate' object
- Character **nipt_sample_names** The sample names of the test set samples
- Character **correction_status** The correction status(es) of the control group samples
- Data.frame control_group_Z_scores The NCV scores for the test set samples
- Character potential_denominators The total pool of denominators the best denominators are selected from
- Numeric **control_group_statistics** Named num of length 3, the first field being the mean (name mean), the second field is the standard deviation (name SD) and the third field is the P value of the Shapiro-Wilk test (name Shapiro_P_value)

If a Test and Train set is used the ncv_template object also includes:

- Character sample names train set The sample name where the model is trained on
- Numeric train_set_statistics Mean, SD and Shapiro-Wilk test P value of the Z scores of the train set
- Data.frame **train_set_Zscores** The Z scores of the train set

Value

ncv template object

References

Sehnert et al.

Examples

```
remove_duplicates_controlgroup
```

Remove duplicate samples from control group

Description

Removes all duplicate samples in control group by samplename.

Usage

```
remove_duplicates_controlgroup(nipt_control_group)
```

Arguments

```
nipt_control_group NIPTControlGroup object
```

Details

This functions removes duplicate samples from the control group based on name. It returns a new NIPTControlGroup object.

Value

NIPTControlGroup object

Examples

```
## Not run:
new_control_group <- remove_duplicates_controlgroup(nipt_control_group = old_control_group)
## End(Not run)</pre>
```

```
remove_sample_controlgroup
```

Remove a sample by samplename from control group

Description

Remove a sample by samplename from control group

Usage

```
remove_sample_controlgroup(samplename, nipt_control_group)
```

Arguments

```
samplename Regular expression string. All matching samplenames are removed from the control group

nipt_control_group

NIPTControlGroup object to remove samples from
```

Details

This function removes a sample from the 'NIPTControlGroup' object by name. Note that this function uses a regular expression, and if more sample_names satisfy the regular expression, they will also be removed. It returns a new NIPTControlGroup object.

Value

NIPTControlGroup object

Examples

Retrieve the chromosomal fractions of a chromosome of interest

Description

Retrieve the chromosomal fractions of a chromosome of interest

Usage

```
retrieve_fractions_of_interest(nipt_sample, chromo_focus, chromosomal_fracs)
```

Arguments

```
nipt_sample NIPTSample to check wether the strands are combined or separated chromo_focus The chromosome of interest chromosomal_fracs
```

The chromosomal fractions to extract the chromosome of interest from

Index

```
add\_samples\_controlgroup, 2
as_control_group, 3
\verb|bin_bam_sample|, 4
calculate_ncv_score, 5
calculate\_z\_score, \\ 6
chi_correct, 7
chrfractions, 8
{\tt diagnose\_control\_group,\,8}
gc_correct, 9
getcontrolchromosomes, 10
{\tt getfractionscontrolgroup}, 11
{\tt getreadscontrolgroup}, 11
match_control_group, 12
nipt_sample (bin_bam_sample), 4
perform_regression, 13
prepare_ncv, 5, 15
{\tt remove\_duplicates\_controlgroup,}\ 17
remove_sample_controlgroup, 17
retrieve_fractions_of_interest, 18
```