Type: | Package |
Title: | Moments of Folded and Doubly Truncated Multivariate Distributions |
Version: | 6.1 |
Date: | 2024-10-17 |
Author: | Christian E. Galarza
|
Maintainer: | Christian E. Galarza <cgalarza88@gmail.com> |
Description: | It computes arbitrary products moments (mean vector and variance-covariance matrix), for some double truncated (and folded) multivariate distributions. These distributions belong to the family of selection elliptical distributions, which includes well known skewed distributions as the unified skew-t distribution (SUT) and its particular cases as the extended skew-t (EST), skew-t (ST) and the symmetric student-t (T) distribution. Analogous normal cases unified skew-normal (SUN), extended skew-normal (ESN), skew-normal (SN), and symmetric normal (N) are also included. Density, probabilities and random deviates are also offered for these members. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Depends: | R (≥ 3.6.0) |
Imports: | Rcpp (≥ 1.0.1), mvtnorm (≥ 1.0.11), tlrmvnmvt (≥ 1.1.0), hypergeo |
LinkingTo: | Rcpp (≥ 1.0.1), RcppArmadillo, mvtnorm |
Suggests: | tmvtnorm |
NeedsCompilation: | yes |
Packaged: | 2024-10-28 21:14:51 UTC; cgala |
Repository: | CRAN |
Date/Publication: | 2024-10-28 21:40:02 UTC |
Moments of Folded and Doubly Truncated Multivariate Distributions
Description
It computes arbitrary products moments (mean vector and variance-covariance matrix), for some double truncated (and folded) multivariate distributions. These distributions belong to the family of selection elliptical distributions, which includes well known skewed distributions as the unified skew-t distribution (SUT) and its particular cases as the extended skew-t (EST), skew-t (ST) and the symmetric student-t (T) distribution. Analogous normal cases unified skew-normal (SUN), extended skew-normal (ESN), skew-normal (SN), and symmetric normal (N) are also included. Density, probabilities and random deviates are also offered for these members.
Details
Probabilities can be computed using the functions pmvSN
and pmvESN
for the normal cases SN and ESN and, pmvST
and pmvEST
for the t cases ST and EST respectively, which offer the option to return the logarithm in base 2 of the probability, useful when the true probability is too small for the machine precision. These functions above use methods in Genz (1992) through the mvtnorm
package (linked direclty to our C++
functions) and Cao et.al. (2019) through the package tlrmvnmvt
. For the double truncated Student-t cases SUT, EST, ST and T, decimal degrees of freedom are supported. Computation of arbitrary moments are based in the works of Kan & Robotti (2017) and Galarza et.al. (2021,2022a,2022b). Reference for the family of selection-elliptical distributions in this package can be found in Arellano-Valle & Genton (2005).
Author(s)
Christian E. Galarza [aut, cre, trl] (<https://orcid.org/0000-0002-4818-6006>), Raymond Kan [ctb] (<https://orcid.org/0000-0002-0578-9974>), Victor H. Lachos [aut, ths] (<https://orcid.org/0000-0002-7239-2459>)
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Arellano-Valle, R. B. & Genton, M. G. (2005). On fundamental skew distributions. Journal of Multivariate Analysis, 96, 93-116.
Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. (2019) "Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student-t Probabilities" <https://marcgenton.github.io/2019.CGKT.manuscript.pdf>.
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Genz, A., "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 (1992) <doi:10.1080/10618600.1992.10477010>.
Kan, R., & Robotti, C. (2017). On moments of folded and truncated multivariate normal distributions. Journal of Computational and Graphical Statistics, 26(4), 930-934.
See Also
onlymeanTMD
,meanvarTMD
,momentsTMD
,dmvSN
,pmvSN
,rmvSN
,dmvST
,pmvST
,rmvST
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
meanvarTMD(a,b,mu,Sigma,dist="normal") #normal case
meanvarTMD(mu = mu,Sigma = Sigma,lambda = c(-2,0,1),dist="SN") #skew normal with NO truncation
meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),nu = 4.87,dist = "ST") #skew t
momentsTMD(3,a,b,mu,Sigma,nu = 4,dist = "t") #t case, all moments or order <=3
Monte Carlo Mean and variance for doubly truncated multivariate distributions
Description
It computes the Monte Carlo mean vector and variance-covariance matrix for some doubly truncated skew-elliptical distributions. Monte Carlo simulations are performed via slice Sampling.
It supports the p
-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Unified Skew-normal (SUN) as well as the Student's-t, Skew-t (ST), Extended Skew-t (EST) and Unified Skew-t (SUT) distribution.
Usage
MCmeanvarTMD(lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),mu,Sigma
,lambda = NULL,tau = NULL,Gamma = NULL,nu = NULL,dist,n = 10000)
Arguments
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric matrix of dimension |
tau |
a numeric vector of length |
Gamma |
a correlation matrix with dimension |
nu |
It represents the degrees of freedom for the Student's t-distribution being a positive real number. |
dist |
represents the truncated distribution to be used. The values are |
n |
number of Monte Carlo samples to be generated. |
Value
It returns a list with three elements:
mean |
the estimate for the mean vector of length |
EYY |
the estimate for the second moment matrix of dimensions |
varcov |
the estimate for the variance-covariance matrix of dimensions |
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Arellano-Valle, R. B. & Genton, M. G. (2005). On fundamental skew distributions. Journal of Multivariate Analysis, 96, 93-116.
Ho, H. J., Lin, T. I., Chen, H. Y., & Wang, W. L. (2012). Some results on the truncated multivariate t distribution. Journal of Statistical Planning and Inference, 142(1), 25-40.
See Also
meanvarTMD
, rmvSN
,rmvESN
,rmvST
, rmvEST
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
## Normal case
# Theoretical value
value1 = meanvarTMD(a,b,mu,Sigma,dist="normal")
#MC estimate
MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n = 10000
MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 10^5) #more precision
## Skew-t case
# Theoretical value
value2 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),nu = 4,dist = "ST")
#MC estimate
MC21 = MCmeanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),nu = 4,dist = "ST")
## More...
MC5 = MCmeanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
MC6 = MCmeanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 4,dist = "EST")
#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q
tau = c(-1,2) #A vector of extension parameters of dim q
MC7 = MCmeanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,dist = "SUN")
MC8 = MCmeanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,nu = 1,dist = "SUT")
Cumulative distribution function for folded multivariate distributions
Description
It computes the cumulative distribution function on x
for a folded p
-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Student's t-distribution.
Usage
cdfFMD(x,mu,Sigma,lambda = NULL,tau = NULL,dist,nu = NULL)
Arguments
x |
vector of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
dist |
represents the folded distribution to be computed. The values are |
nu |
It represents the degrees of freedom for the Student's t-distribution. |
Details
Normal case by default, i.e., when dist
is not provided. Univariate case is also considered, where Sigma
will be the variance \sigma^2
.
Value
It returns the distribution value for a single point x
.
Note
Degrees of freedom must be a positive integer. If nu >= 200
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
See Also
Examples
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,dist="normal")
cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,dist = "t",nu = 4)
cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,lambda = c(-2,0,2,1),dist = "SN")
cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,lambda = c(-2,0,2,1),tau = 1,dist = "ESN")
Multivariate Extended-Skew Normal Density, Probablilities and Random Deviates Generator
Description
These functions provide the density function, probabilities and a random number
generator for the multivariate extended-skew normal (ESN) distribution with mean vector mu
, scale matrix Sigma
, skewness parameter lambda
and extension parameter tau
.
Usage
dmvESN(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0)
pmvESN(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),
mu = rep(0,length(lambda)),Sigma,lambda,tau,log2 = FALSE)
rmvESN(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0)
Arguments
x |
vector or matrix of quantiles. If |
n |
number of observations. |
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
log2 |
a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision. |
Value
dmvESN
gives the density, pmvESN
gives the distribution function, and rmvESN
generates random deviates for the Multivariate Extended-Skew Normal Distribution.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Galarza, C.E., Matos, L.A. and Lachos, V.H. (2022c). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron. <doi:10.1007/s40300-021-00227-4>.
Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 <doi:10.1080/10618600.1992.10477010>.
See Also
dmvSN
, pmvSN
, rmvSN
, meanvarFMD
,meanvarTMD
,momentsTMD
Examples
#Univariate case
dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
rmvESN(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
tau = 2
#One observation
dmvESN(x = c(-2,-1,0,1),mu,Sigma,lambda,tau)
rmvESN(n = 100,mu,Sigma,lambda,tau)
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvESN(x = x,mu,Sigma,lambda,tau)
lower = rep(-Inf,4)
upper = c(-1,0,2,5)
pmvESN(lower,upper,mu,Sigma,lambda,tau)
Multivariate Extended-Skew t Density, Probablilities and Random Deviates Generator
Description
These functions provide the density function, probabilities and a random number
generator for the multivariate extended-skew t (EST) distribution with mean vector mu
, scale matrix Sigma
, skewness parameter lambda
, extension parameter tau
and degrees of freedom nu
.
Usage
dmvEST(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau=0,nu)
pmvEST(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),
mu = rep(0,length(lambda)),Sigma,lambda,tau,nu,log2 = FALSE)
rmvEST(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,tau,nu)
Arguments
x |
vector or matrix of quantiles. If |
n |
number of observations. |
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the EST distribution. If |
nu |
It represents the degrees of freedom of the Student's t-distribution. |
log2 |
a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision. |
Value
dmvEST
gives the density, pmvEST
gives the distribution function, and rmvEST
generates random deviates for the Multivariate Extended-Skew-t
Distribution.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 <doi:10.1080/10618600.1992.10477010>.
See Also
dmvST
, pmvST
, rmvST
, meanvarFMD
,meanvarTMD
,momentsTMD
Examples
#Univariate case
dmvEST(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)
rmvEST(n = 100,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu=4)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
tau = 2
#One observation
dmvEST(x = c(-2,-1,0,1),mu,Sigma,lambda,tau,nu=4)
rmvEST(n = 100,mu,Sigma,lambda,tau,nu=4)
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvEST(x = x,mu,Sigma,lambda,tau,nu=4)
lower = rep(-Inf,4)
upper = c(-1,0,2,5)
pmvEST(lower,upper,mu,Sigma,lambda,tau,nu=4)
Multivariate Skew Normal Density and Probabilities and Random Deviates
Description
These functions provide the density function and a random number
generator for the multivariate skew normal (SN) distribution with mean vector mu
, scale matrix Sigma
and skewness parameter lambda
.
Usage
dmvSN(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda)
pmvSN(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),
mu = rep(0,length(lambda)),Sigma,lambda,log2 = FALSE)
rmvSN(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda)
Arguments
x |
vector or matrix of quantiles. If |
n |
number of observations. |
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
log2 |
a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision. |
Value
dmvSN
gives the density, pmvSN
gives the distribution function, and rmvSN
generates random deviates for the Multivariate Skew-normal Distribution.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Galarza, C.E., Matos, L.A. and Lachos, V.H. (2022c). An EM algorithm for estimating the parameters of the multivariate skew-normal distribution with censored responses. Metron. <doi:10.1007/s40300-021-00227-4>.
Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 <doi:10.1080/10618600.1992.10477010>.
See Also
dmvESN
, pmvESN
, rmvESN
, meanvarFMD
,meanvarTMD
,momentsTMD
Examples
#Univariate case
dmvSN(x = -1,mu = 2,Sigma = 5,lambda = -2)
rmvSN(n = 100,mu = 2,Sigma = 5,lambda = -2)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
#One observation
dmvSN(x = c(-2,-1,0,1),mu,Sigma,lambda)
rmvSN(n = 100,mu,Sigma,lambda)
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvSN(x = x,mu,Sigma,lambda)
lower = rep(-Inf,4)
upper = c(-1,0,2,5)
pmvSN(lower,upper,mu,Sigma,lambda)
Multivariate Skew t Density, Probablilities and Random Deviates Generator
Description
These functions provide the density function, probabilities and a random number
generator for the multivariate skew t (EST) distribution with mean vector mu
, scale matrix Sigma
, skewness parameter lambda
and degrees of freedom nu
.
Usage
dmvST(x,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,nu)
pmvST(lower = rep(-Inf,length(lambda)),upper=rep(Inf,length(lambda)),
mu = rep(0,length(lambda)),Sigma,lambda,nu,log2 = FALSE)
rmvST(n,mu=rep(0,length(lambda)),Sigma=diag(length(lambda)),lambda,nu)
Arguments
x |
vector or matrix of quantiles. If |
n |
number of observations. |
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
nu |
It represents the degrees of freedom of the Student's t-distribution. |
log2 |
a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision. |
Value
dmvST
gives the density, pmvST
gives the distribution function, and rmvST
generates random deviates for the Multivariate Skew-t
Distribution.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Genz, A., (1992) "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 <doi:10.1080/10618600.1992.10477010>.
See Also
dmvST
, pmvST
, rmvST
, meanvarFMD
,meanvarTMD
,momentsTMD
Examples
#Univariate case
dmvST(x = -1,mu = 2,Sigma = 5,lambda = -2,nu=4)
rmvST(n = 100,mu = 2,Sigma = 5,lambda = -2,nu=4)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
#One observation
dmvST(x = c(-2,-1,0,1),mu,Sigma,lambda,nu=4)
rmvST(n = 100,mu,Sigma,lambda,nu=4)
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvST(x = x,mu,Sigma,lambda,nu=4)
lower = rep(-Inf,4)
upper = c(-1,0,2,5)
pmvST(lower,upper,mu,Sigma,lambda,nu=4)
Mean and variance for folded multivariate distributions
Description
It computes the mean vector and variance-covariance matrix for the folded p
-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Student's t-distribution.
Usage
meanvarFMD(mu,Sigma,lambda = NULL,tau = NULL,nu = NULL,dist)
Arguments
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
nu |
It represents the degrees of freedom for the Student's t-distribution. Must be an integer greater than 1. |
dist |
represents the folded distribution to be computed. The values are |
Details
Normal case by default, i.e., when dist
is not provided. Univariate case is also considered, where Sigma
will be the variance \sigma^2
.
Value
It returns a list with three elements:
mean |
the mean vector of length |
EYY |
the second moment matrix of dimensions |
varcov |
the variance-covariance matrix of dimensions |
Warning
The mean can only be provided when nu
is larger than 2. On the other hand, the varcov matrix can only be provided when nu
is larger than 3.
Note
Degree of freedom must be a positive integer. If nu >= 200
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
See Also
momentsFMD
, onlymeanTMD
,meanvarTMD
,momentsTMD
, dmvSN
,pmvSN
,rmvSN
, dmvESN
,pmvESN
,rmvESN
, dmvST
,pmvST
,rmvST
, dmvEST
,pmvEST
,rmvEST
Examples
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
value1 = meanvarFMD(mu,Sigma,dist="normal")
value2 = meanvarFMD(mu,Sigma,nu = 4,dist = "t")
value3 = meanvarFMD(mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = meanvarFMD(mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
Mean and variance for doubly truncated multivariate distributions
Description
It computes the mean vector and variance-covariance matrix for some doubly truncated skew-elliptical distributions. It supports the p
-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Unified Skew-normal (SUN) as well as the Student's-t, Skew-t (ST), Extended Skew-t (EST) and Unified Skew-t (SUT) distribution.
Usage
meanvarTMD(lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),mu,Sigma
,lambda = NULL,tau = NULL,Gamma = NULL,nu = NULL,dist)
Arguments
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric matrix of dimension |
tau |
a numeric vector of length |
Gamma |
a correlation matrix with dimension |
nu |
It represents the degrees of freedom for the Student's t-distribution being a positive real number. |
dist |
represents the truncated distribution to be used. The values are |
Details
Univariate case is also considered, where Sigma
will be the variance \sigma^2
. Normal case code is an R adaptation of the Matlab available function dtmvnmom.m
from Kan & Robotti (2017) and it is used for p<=3
. For higher dimensions we use an extension of the algorithm in Vaida (2009).
Value
It returns a list with three elements:
mean |
the mean vector of length |
EYY |
the second moment matrix of dimensions |
varcov |
the variance-covariance matrix of dimensions |
Warning
For the t
cases, the algorithm supports degrees of freedom nu <= 2
.
Note
If nu >= 300
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
See Also
MCmeanvarTMD
,
momentsTMD
, meanvarFMD
, meanvarFMD
,momentsFMD
, dmvSN
,pmvSN
,rmvSN
, dmvESN
,pmvESN
,rmvESN
, dmvST
,pmvST
,rmvST
, dmvEST
,pmvEST
,rmvEST
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
# Theoretical value
value1 = meanvarTMD(a,b,mu,Sigma,dist="normal")
#MC estimate
MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n = 10000
MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 10^5) #more precision
# Now works for for any nu>0
value2 = meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)
value3 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),nu = 4,dist = "ST")
value5 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
value6 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 4,dist = "EST")
#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q
tau = c(-1,2) #A vector of extension parameters of dim q
value7 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,dist = "SUN")
value8 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,nu = 4,dist = "SUT")
#The ESN and EST as particular cases of the SUN and SUT for q=1
Lambda = matrix(c(-2,0,1),3,1)
Gamma = 1
value9 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,dist = "SUN")
value10 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,nu = 4,dist = "SUT")
round(value5$varcov,2) == round(value9$varcov,2)
round(value6$varcov,2) == round(value10$varcov,2)
Moments for folded multivariate distributions
Description
It computes the kappa-th order moments for the folded p
-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Student's t-distribution. It also output other lower moments involved in the recurrence approach.
Usage
momentsFMD(kappa,mu,Sigma,lambda = NULL,tau = NULL,nu = NULL,dist)
Arguments
kappa |
moments vector of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
nu |
It represents the degrees of freedom for the Student's t-distribution. Must be an integer greater than 1. |
dist |
represents the folded distribution to be computed. The values are |
Details
Univariate case is also considered, where Sigma
will be the variance \sigma^2
.
Value
A data frame containing p+1
columns. The p
first containing the set of combinations of exponents summing up to kappa
and the last column containing the the expected value. Normal cases (ESN, SN and normal) return prod(kappa)+1
moments while the Student's t-distribution case returns all moments of order up to kappa
. See example section.
Warning
For the Student-t cases, including ST and EST, kappa
-th
order moments exist only for kappa < nu
.
Note
Degrees of freedom must be a positive integer. If nu >= 300
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850 <doi:10.1007/s00184-020-00802-1>.
Galarza, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
See Also
meanvarFMD
, onlymeanTMD
,meanvarTMD
,momentsTMD
, dmvSN
,pmvSN
,rmvSN
, dmvESN
,pmvESN
,rmvESN
, dmvST
,pmvST
,rmvST
, dmvEST
,pmvEST
,rmvEST
Examples
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
value1 = momentsFMD(c(2,0,1),mu,Sigma,dist="normal")
value2 = momentsFMD(3,mu,Sigma,dist = "t",nu = 7)
value3 = momentsFMD(c(2,0,1),mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = momentsFMD(c(2,0,1),mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
#T case with kappa vector input
value5 = momentsFMD(c(2,0,1),mu,Sigma,dist = "t",nu = 7)
Moments for doubly truncated multivariate distributions
Description
It computes kappa-th order moments for for some doubly truncated skew-elliptical distributions. It supports the p
-variate Normal, Skew-normal (SN) and Extended Skew-normal (ESN), as well as the Student's-t, Skew-t (ST) and the Extended Skew-t (EST) distribution.
Usage
momentsTMD(kappa,lower = rep(-Inf,length(mu)),upper = rep(Inf,length(mu)),mu,Sigma,
lambda = NULL,tau = NULL,nu = NULL,dist)
Arguments
kappa |
moments vector of length |
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
nu |
It represents the degrees of freedom for the Student's t-distribution being a positive real number. |
dist |
represents the truncated distribution to be used. The values are |
Details
Univariate case is also considered, where Sigma
will be the variance \sigma^2
.
Value
A data frame containing p+1
columns. The p
first containing the set of combinations of exponents summing up to kappa
and the last column containing the the expected value. Normal cases (ESN, SN and normal) return prod(kappa)+1
moments while the Student's t-distribution case returns all moments of order up to kappa
. See example section.
Note
If nu >= 300
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850.
Galarza-Morales, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Kan, R., & Robotti, C. (2017). On moments of folded and truncated multivariate normal distributions. Journal of Computational and Graphical Statistics, 26(4), 930-934.
See Also
onlymeanTMD
,meanvarTMD
,momentsFMD
,meanvarFMD
,dmvSN
,pmvSN
,rmvSN
, dmvESN
,pmvESN
,rmvESN
, dmvST
,pmvST
,rmvST
, dmvEST
,pmvEST
,rmvEST
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
value1 = momentsTMD(c(2,0,1),a,b,mu,Sigma,dist="normal")
value2 = momentsTMD(c(2,0,1),a,b,mu,Sigma,dist = "t",nu = 7)
value3 = momentsTMD(c(2,0,1),a,b,mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = momentsTMD(c(2,0,1),a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
#T cases with kappa scalar (all moments up to 3)
value5 = momentsTMD(3,a,b,mu,Sigma,nu = 7,dist = "t")
value6 = momentsTMD(3,a,b,mu,Sigma,lambda = c(-2,0,1),nu = 7,dist = "ST")
value7 = momentsTMD(3,a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 7,dist = "EST")
Mean for doubly truncated multivariate distributions
Description
It computes the mean vector for some doubly truncated skew-elliptical distributions. It supports the p
-variate Normal, Skew-normal (SN), Extended Skew-normal (ESN) and Unified Skew-normal (SUN) as well as the Student's-t, Skew-t (ST), Extended Skew-t (EST) and Unified Skew-t (SUT) distribution.
Usage
onlymeanTMD(lower = rep(-Inf, length(mu)),upper = rep(Inf,length(mu)),mu,Sigma,
lambda = NULL,tau = NULL,Gamma = NULL,nu = NULL,dist)
Arguments
lower |
the vector of lower limits of length |
upper |
the vector of upper limits of length |
mu |
a numeric vector of length |
Sigma |
a numeric positive definite matrix with dimension |
lambda |
a numeric vector of length |
tau |
It represents the extension parameter for the ESN distribution. If |
Gamma |
a correlation matrix with dimension |
nu |
It represents the degrees of freedom for the Student's t-distribution. |
dist |
represents the truncated distribution to be used. The values are |
Details
Univariate case is also considered, where Sigma
will be the variance \sigma^2
. Normal case code is an R adaptation of the Matlab available function dtmvnmom.m
from Kan & Robotti (2017) and it is used for p<=3
. For higher dimensions we use proposal in Galarza (2022b).
Value
It returns the mean vector of length p
.
Note
Degrees of freedom must be a positive integer. If nu >= 300
, Normal case is considered."
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850.
Galarza-Morales, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). "On moments of folded and doubly truncated multivariate extended skew-normal distributions." Journal of Computational and Graphical Statistics, 1-11 <doi:10.1080/10618600.2021.2000869>.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 <doi:10.1016/j.jmva.2021.104944>.
Kan, R., & Robotti, C. (2017). On moments of folded and truncated multivariate normal distributions. Journal of Computational and Graphical Statistics, 26(4), 930-934.
See Also
momentsTMD
, meanvarFMD
, momentsFMD
,dmvESN
,rmvESN
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
value1 = onlymeanTMD(a,b,mu,Sigma,dist="normal")
# Now works for for any nu>0
value2 = onlymeanTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)
value3 = onlymeanTMD(a,b,mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = onlymeanTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
value5 = onlymeanTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 4,dist = "EST")
#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q
tau = c(-1,2) #A vector of extension parameters of dim q
value6 = onlymeanTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,dist = "SUN")
value7 = onlymeanTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,nu = 4,dist = "SUT")
#The ESN and EST as particular cases of the SUN and SUT for q=1
Lambda = matrix(c(-2,0,1),3,1)
Gamma = 1
value8 = onlymeanTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,dist = "SUN")
value9 = onlymeanTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,nu = 4,dist = "SUT")
round(value4,2) == round(value8,2)
round(value5,2) == round(value9,2)
Multivariate normal and Student-t probabilities
Description
Computation of Multivariate normal and Student-t probabilities using the classic Genz method form packages mvtnorm
and tlrmvnmvt
packages. In order to save computational effort, it chooses whether to use the function pmvtnorm
(pmvt
) from mvtnorm
, or functions pmvn
(pmvt
) from the tlrmvnmvt
package, depending of the vector size p
, real or integer degrees of freedom nu
.
Usage
pmvnormt(lower = rep(-Inf,ncol(sigma)),upper = rep(Inf,ncol(sigma)),
mean = rep(0,ncol(sigma)),sigma,nu = NULL,uselog2 = FALSE)
Arguments
lower |
lower integration limits, a numeric vector of length p |
upper |
upper integration limits, a numeric vector of length p |
mean |
the location parameter, a numeric vector of length p |
sigma |
the scale matrix, a square matrix that matches the length of 'lower' |
nu |
degrees of freedom, a positive real number. If |
uselog2 |
a boolean variable, indicating if the log2 result should be returned. This is useful when the true probability is too small for the machine precision |
Value
The estimated probability or its log2 if uselog2 == TRUE
Note
If is.null(nu)
, normal case is considered.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com> and Victor H. Lachos <hlachos@uconn.edu>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Genz, A. (1992), "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149.
Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. "Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student- t Probabilities" (2019) <https://marcgenton.github.io/2019.CGKT.manuscript.pdf>
See Also
onlymeanTMD
,meanvarTMD
,momentsFMD
,momentsTMD
,meanvarFMD
,dmvSN
,pmvSN
,rmvSN
, dmvESN
,pmvESN
,rmvESN
, dmvST
,pmvST
,rmvST
, dmvEST
,pmvEST
,rmvEST
Examples
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
pmvnormt(lower = a,upper = b,mean = mu,sigma = Sigma) #normal case
pmvnormt(lower = a,upper = b,mean = mu,sigma = Sigma,nu = 4.23) #t case
pmvnormt(lower = a,upper = b,mean = mu,sigma = Sigma,nu = 4.23,uselog2 = TRUE)