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BayesFactor Create an object of class BayesFactor from MCMCpack output

Description

This function creates an object of class BayesFactor from MCMCpack output.

Usage

BayesFactor(...)

is.BayesFactor(BF)

Arguments

... MCMCpack output objects. These have to be of class mcmc and have a logmarglike
attribute. In what follows, we let M denote the total number of models to be com-
pared.

BF An object to be checked for membership in class
BayesFactor.

Value

An object of class BayesFactor. A BayesFactor object has four attributes. They are: BF.mat an
M × M matrix in which element i, j contains the Bayes factor for model i relative to model j;
BF.log.mat an M×M matrix in which element i, j contains the natural log of the Bayes factor for
model i relative to model j; BF.logmarglike an M vector containing the log marginal likelihoods
for models 1 through M ; and BF.call an M element list containing the calls used to fit models 1
through M .

See Also

MCMCregress

Examples

## Not run:
data(birthwt)

model1 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke + ht,
data=birthwt, b0=c(2700, 0, 0, -500, -500,

-500, -500),
B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5,

1.6e-5), c0=10, d0=4500000,
marginal.likelihood="Chib95", mcmc=10000)

model2 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke,
data=birthwt, b0=c(2700, 0, 0, -500, -500,
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-500),
B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5),
c0=10, d0=4500000,
marginal.likelihood="Chib95", mcmc=10000)

model3 <- MCMCregress(bwt~as.factor(race) + smoke + ht,
data=birthwt, b0=c(2700, -500, -500,

-500, -500),
B0=c(1e-6, 1.6e-5, 1.6e-5, 1.6e-5,

1.6e-5), c0=10, d0=4500000,
marginal.likelihood="Chib95", mcmc=10000)

BF <- BayesFactor(model1, model2, model3)
print(BF)

## End(Not run)

choicevar Handle Choice-Specific Covariates in Multinomial Choice Models

Description

This function handles choice-specific covariates in multinomial choice models. See the example for
an example of useage.

Usage

choicevar(var, varname, choicelevel)

Arguments

var The is the name of the variable in the dataframe.

varname The name of the new variable to be created.

choicelevel The level of y that the variable corresponds to.

Value

The new variable used by the MCMCmnl() function.

See Also

MCMCmnl
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Dirichlet The Dirichlet Distribution

Description

Density function and random generation from the Dirichlet distribution.

Usage

ddirichlet(x, alpha)

rdirichlet(n, alpha)

Arguments

x A vector containing a single deviate or matrix containing one random deviate
per row.

alpha Vector of shape parameters, or matrix of shape parameters corresponding to the
number of draw.

n Number of random vectors to generate.

Details

The Dirichlet distribution is the multidimensional generalization of the beta distribution.

Value

ddirichlet gives the density. rdirichlet returns a matrix with n rows, each containing a single
Dirichlet random deviate.

Author(s)

Code is taken from Greg’s Miscellaneous Functions (gregmisc). His code was based on code posted
by Ben Bolker to R-News on 15 Dec 2000.

See Also

Beta

Examples

density <- ddirichlet(c(.1,.2,.7), c(1,1,1))
draws <- rdirichlet(20, c(1,1,1) )
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dtomogplot Dynamic Tomography Plot

Description

dtomogplot is used to produce a tomography plot (see King, 1997) for a series of temporally or-
dered, partially observed 2 x 2 contingency tables.

Usage

dtomogplot(
r0,
r1,
c0,
c1,
time.vec = NA,
delay = 0,
xlab = "fraction of r0 in c0 (p0)",
ylab = "fraction of r1 in c0 (p1)",
color.palette = heat.colors,
bgcol = "black",
...

)

Arguments

r0 An (ntables× 1) vector of row sums from row 0.

r1 An (ntables× 1) vector of row sums from row 1.

c0 An (ntables× 1) vector of column sums from column 0.

c1 An (ntables× 1) vector of column sums from column 1.

time.vec Vector of time periods that correspond to the elements of r0, r1, c0, and c1.

delay Time delay in seconds between the plotting of the tomography lines. Setting a
positive delay is useful for visualizing temporal dependence.

xlab The x axis label for the plot.

ylab The y axis label for the plot.

color.palette Color palette to be used to encode temporal patterns.

bgcol The background color for the plot.

... further arguments to be passed

Details

Consider the following partially observed 2 by 2 contingency table:
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| Y = 0 | Y = 1 |
——— ——— ——— ———
X = 0 | Y0 | | r0
——— ——— ——— ———
X = 1 | Y1 | | r1
——— ——— ——— ———

| c0 | c1 | N

where r0, r1, c0, c1, and N are non-negative integers that are observed. The interior cell entries are
not observed. It is assumed that Y0|r0 ∼ Binomial(r0, p0) and Y1|r1 ∼ Binomial(r1, p1).

This function plots the bounds on the maximum likelihood estimates for (p0, p1) and color codes
them by the elements of time.vec.

References

Gary King, 1997. A Solution to the Ecological Inference Problem. Princeton: Princeton University
Press.

Jonathan C. Wakefield. 2004. “Ecological Inference for 2 x 2 Tables.” Journal of the Royal Statis-
tical Society, Series A. 167(3): 385445.

Kevin Quinn. 2004. “Ecological Inference in the Presence of Temporal Dependence." In Ecological
Inference: New Methodological Strategies. Gary King, Ori Rosen, and Martin A. Tanner (eds.).
New York: Cambridge University Press.

See Also

MCMChierEI, MCMCdynamicEI,tomogplot

Examples

## Not run:
## simulated data example 1
set.seed(3920)
n <- 100
r0 <- rpois(n, 2000)
r1 <- round(runif(n, 100, 4000))
p0.true <- pnorm(-1.5 + 1:n/(n/2))
p1.true <- pnorm(1.0 - 1:n/(n/4))
y0 <- rbinom(n, r0, p0.true)
y1 <- rbinom(n, r1, p1.true)
c0 <- y0 + y1
c1 <- (r0+r1) - c0

## plot data
dtomogplot(r0, r1, c0, c1, delay=0.1)

## simulated data example 2
set.seed(8722)
n <- 100
r0 <- rpois(n, 2000)
r1 <- round(runif(n, 100, 4000))
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p0.true <- pnorm(-1.0 + sin(1:n/(n/4)))
p1.true <- pnorm(0.0 - 2*cos(1:n/(n/9)))
y0 <- rbinom(n, r0, p0.true)
y1 <- rbinom(n, r1, p1.true)
c0 <- y0 + y1
c1 <- (r0+r1) - c0

## plot data
dtomogplot(r0, r1, c0, c1, delay=0.1)

## End(Not run)

Euro2016 Euro 2016 data

Description

Data on head-to-head outcomes from the 2016 UEFA European Football Championship.

Format

This dataframe contains all of the head-to-head results from Euro 2016. This includes results from
both the group stage and the knock-out rounds.

dummy.rater An artificial "dummy" rater equal to 1 for all matches. Included so that Euro2016
can be used directly with MCMCpack’s models for pairwise comparisons.

team1 The home team

team2 The away team

winner The winner of the match. NA if a draw.

Source

https://en.wikipedia.org/wiki/UEFA_Euro_2016

HDPHMMnegbin Markov Chain Monte Carlo for sticky HDP-HMM with a Negative
Binomial outcome distribution

Description

This function generates a sample from the posterior distribution of a (sticky) HDP-HMM with a
Negative Binomial outcome distribution (Fox et al, 2011). The user supplies data and priors, and
a sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

https://en.wikipedia.org/wiki/UEFA_Euro_2016
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Usage

HDPHMMnegbin(
formula,
data = parent.frame(),
K = 10,
b0 = 0,
B0 = 1,
a.theta = 50,
b.theta = 5,
a.alpha = 1,
b.alpha = 0.1,
a.gamma = 1,
b.gamma = 0.1,
e = 2,
f = 2,
g = 10,
burnin = 1000,
mcmc = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
P.start = NA,
rho.start = NA,
rho.step,
nu.start = NA,
gamma.start = 0.5,
theta.start = 0.98,
ak.start = 100,
...

)

Arguments

formula Model formula.

data Data frame.

K The number of regimes under consideration. This should be larger than the
hypothesized number of regimes in the data. Note that the sampler will likely
visit fewer than K regimes.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.
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a.theta, b.theta
Paramaters for the Beta prior on θ, which captures the strength of the self-
transition bias.

a.alpha, b.alpha
Shape and scale parameters for the Gamma distribution on α+ κ.

a.gamma, b.gamma
Shape and scale parameters for the Gamma distribution on γ.

e The hyperprior for the distribution ρ See details.

f The hyperprior for the distribution ρ. See details.

g The hyperprior for the distribution ρ. See details.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value for
all regimes.

P.start Initial transition matrix between regimes. Should be a K by K matrix. If not
provided, the default value will be place theta.start along the diagonal and
the rest of the mass even distributed within rows.

rho.start The starting value for the ρ variable. This can either be a scalar or a column
vector with dimension equal to the number of regimes. If the value is scalar, it
will be used for all regimes. The default value is a vector of ones.

rho.step Tuning parameter for the slice sampling approach to sampling rho. Determines
the size of the step-out used to find the correct slice to draw from. Lower values
are more accurate, but will take longer (up to a fixed searching limit). Default is
0.1.

nu.start The starting values for the random effect, ν. The default value is a vector of
ones.

theta.start, ak.start, gamma.start
Scalar starting values for the θ, α+ κ, and γ parameters.

... further arguments to be passed.
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Details

HDPHMMnegbin simulates from the posterior distribution of a sticky HDP-HMM with a Negative
Binomial outcome distribution, allowing for multiple, arbitrary changepoints in the model. The
details of the model are discussed in Blackwell (2017). The implementation here is based on a
weak-limit approximation, where there is a large, though finite number of regimes that can be
switched between. Unlike other changepoint models in MCMCpack, the HDP-HMM approach allows
for the state sequence to return to previous visited states.

The model takes the following form, where we show the fixed-limit version:

yt ∼ Poisson(νtµt)

µt = x′
tβm, m = 1, . . . ,M

νt ∼ Gamma(ρm, ρm)

Where M is an upper bound on the number of states and βm and ρm are parameters when a state is
m at t.

The transition probabilities between states are assumed to follow a heirarchical Dirichlet process:

πm ∼ Dirichlet(αδ1, . . . , αδj + κ, . . . , αδM )

δ ∼ Dirichlet(γ/M, . . . , γ/M)

The κ value here is the sticky parameter that encourages self-transitions. The sampler follows Fox et
al (2011) and parameterizes these priors with α+κ and θ = κ/(α+κ), with the latter representing
the degree of self-transition bias. Gamma priors are assumed for (α+ κ) and γ.

We assume Gaussian distribution for prior of β:

βm ∼ N (b0, B
−1
0 ), m = 1, . . . ,M

The overdispersion parameters have a prior with the following form:

f(ρm|e, f, g) ∝ ρe−1(ρ+ g)−(e+f)

The model is simulated via blocked Gibbs conditonal on the states. The β being simulated via the
auxiliary mixture sampling method of Fuerhwirth-Schanetter et al. (2009). The ρ is updated via
slice sampling. The νi are updated their (conjugate) full conditional, which is also Gamma. The
states are updated as in Fox et al (2011), supplemental materials.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.
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Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Sylvia Fruehwirth-Schnatter, Rudolf Fruehwirth, Leonhard Held, and Havard Rue. 2009. “Im-
proved auxiliary mixture sampling for hierarchical models of non-Gaussian data”, Statistics and
Computing 19(4): 479-492. <doi:10.1007/s11222-008-9109-4>
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Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. 2011.. “A sticky HDP-
HMM with application to speaker diarization.” The Annals of Applied Statistics, 5(2A), 1020-1056.
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See Also

MCMCnegbinChange, HDPHMMpoisson

Examples

## Not run:
n <- 150
reg <- 3
true.s <- gl(reg, n/reg, n)
rho.true <- c(1.5, 0.5, 3)
b1.true <- c(1, -2, 2)
x1 <- runif(n, 0, 2)
nu.true <- rgamma(n, rho.true[true.s], rho.true[true.s])
mu <- nu.true * exp(1 + x1 * b1.true[true.s])
y <- rpois(n, mu)

posterior <- HDPHMMnegbin(y ~ x1, K = 10, verbose = 1000,
e = 2, f = 2, g = 10,
a.theta = 100, b.theta = 1,
b0 = rep(0, 2), B0 = (1/9) * diag(2),
rho.step = rep(0.75, times = 10),
seed = list(NA, 2),
theta.start = 0.95, gamma.start = 10,
ak.start = 10)

plotHDPChangepoint(posterior, ylab="Density", start=1)

## End(Not run)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
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HDPHMMpoisson Markov Chain Monte Carlo for sticky HDP-HMM with a Poisson out-
come distribution

Description

This function generates a sample from the posterior distribution of a (sticky) HDP-HMM with a
Poisson outcome distribution (Fox et al, 2011). The user supplies data and priors, and a sample
from the posterior distribution is returned as an mcmc object, which can be subsequently analyzed
with functions provided in the coda package.

Usage

HDPHMMpoisson(
formula,
data = parent.frame(),
K = 10,
b0 = 0,
B0 = 1,
a.alpha = 1,
b.alpha = 0.1,
a.gamma = 1,
b.gamma = 0.1,
a.theta = 50,
b.theta = 5,
burnin = 1000,
mcmc = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
P.start = NA,
gamma.start = 0.5,
theta.start = 0.98,
ak.start = 100,
...

)

Arguments

formula Model formula.

data Data frame.

K The number of regimes under consideration. This should be larger than the
hypothesized number of regimes in the data. Note that the sampler will likely
visit fewer than K regimes.
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b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

a.alpha, b.alpha
Shape and scale parameters for the Gamma distribution on α+ κ.

a.gamma, b.gamma
Shape and scale parameters for the Gamma distribution on γ.

a.theta, b.theta
Paramaters for the Beta prior on θ, which captures the strength of the self-
transition bias.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value for
all regimes.

P.start Initial transition matrix between regimes. Should be a K by K matrix. If not
provided, the default value will be place theta.start along the diagonal and
the rest of the mass even distributed within rows.

theta.start, ak.start, gamma.start
Scalar starting values for the θ, α+ κ, and γ parameters.

... further arguments to be passed.

Details

HDPHMMpoisson simulates from the posterior distribution of a sticky HDP-HMM with a Poisson
outcome distribution, allowing for multiple, arbitrary changepoints in the model. The details of
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the model are discussed in Blackwell (2017). The implementation here is based on a weak-limit
approximation, where there is a large, though finite number of regimes that can be switched be-
tween. Unlike other changepoint models in MCMCpack, the HDP-HMM approach allows for the
state sequence to return to previous visited states.

The model takes the following form, where we show the fixed-limit version:

yt ∼ Poisson(µt)

µt = x′
tβm, m = 1, . . . ,M

Where M is an upper bound on the number of states and βm are parameters when a state is m at t.

The transition probabilities between states are assumed to follow a heirarchical Dirichlet process:

πm ∼ Dirichlet(αδ1, . . . , αδj + κ, . . . , αδM )

δ ∼ Dirichlet(γ/M, . . . , γ/M)

The κ value here is the sticky parameter that encourages self-transitions. The sampler follows Fox et
al (2011) and parameterizes these priors with α+κ and θ = κ/(α+κ), with the latter representing
the degree of self-transition bias. Gamma priors are assumed for (α+ κ) and γ.

We assume Gaussian distribution for prior of β:

βm ∼ N (b0, B
−1
0 ), m = 1, . . . ,M

The model is simulated via blocked Gibbs conditonal on the states. The β being simulated via the
auxiliary mixture sampling method of Fuerhwirth-Schanetter et al. (2009). The states are updated
as in Fox et al (2011), supplemental materials.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Sylvia Fruehwirth-Schnatter, Rudolf Fruehwirth, Leonhard Held, and Havard Rue. 2009. “Im-
proved auxiliary mixture sampling for hierarchical models of non-Gaussian data”, Statistics and
Computing 19(4): 479-492. <doi:10.1007/s11222-008-9109-4>

Matthew Blackwell. 2017. “Game Changers: Detecting Shifts in Overdispersed Count Data,”
Political Analysis 26(2), 230-239. <doi:10.1017/pan.2017.42>

Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. 2011.. “A sticky HDP-
HMM with application to speaker diarization.” The Annals of Applied Statistics, 5(2A), 1020-1056.
<doi:10.1214/10-AOAS395>
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See Also

MCMCpoissonChange, HDPHMMnegbin

Examples

## Not run:
n <- 150
reg <- 3
true.s <- gl(reg, n/reg, n)
b1.true <- c(1, -2, 2)
x1 <- runif(n, 0, 2)
mu <- exp(1 + x1 * b1.true[true.s])
y <- rpois(n, mu)

posterior <- HDPHMMpoisson(y ~ x1, K = 10, verbose = 1000,
a.theta = 100, b.theta = 1,
b0 = rep(0, 2), B0 = (1/9) * diag(2),
seed = list(NA, 2),
theta.start = 0.95, gamma.start = 10,
ak.start = 10)

plotHDPChangepoint(posterior, ylab="Density", start=1)

## End(Not run)

HDPHSMMnegbin Markov Chain Monte Carlo for HDP-HSMM with a Negative Bino-
mial outcome distribution

Description

This function generates a sample from the posterior distribution of a Hidden Semi-Markov Model
with a Heirarchical Dirichlet Process and a Negative Binomial outcome distribution (Johnson and
Willsky, 2013). The user supplies data and priors, and a sample from the posterior distribution is
returned as an mcmc object, which can be subsequently analyzed with functions provided in the
coda package.

Usage

HDPHSMMnegbin(
formula,
data = parent.frame(),
K = 10,
b0 = 0,
B0 = 1,
a.alpha = 1,
b.alpha = 0.1,
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a.gamma = 1,
b.gamma = 0.1,
a.omega,
b.omega,
e = 2,
f = 2,
g = 10,
r = 1,
burnin = 1000,
mcmc = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
P.start = NA,
rho.start = NA,
rho.step,
nu.start = NA,
omega.start = NA,
gamma.start = 0.5,
alpha.start = 100,
...

)

Arguments

formula Model formula.

data Data frame.

K The number of regimes under consideration. This should be larger than the
hypothesized number of regimes in the data. Note that the sampler will likely
visit fewer than K regimes.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

a.alpha, b.alpha
Shape and scale parameters for the Gamma distribution on α.

a.gamma, b.gamma
Shape and scale parameters for the Gamma distribution on γ.

a.omega, b.omega
Paramaters for the Beta prior on ω, which determines the regime length distri-
bution, which is Negative Binomial, with parameters r and omega.

e The hyperprior for the distribution ρ See details.
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f The hyperprior for the distribution ρ. See details.

g The hyperprior for the distribution ρ. See details.

r Parameter of the Negative Binomial prior for regime durations. It is the target
number of successful trials. Must be strictly positive. Higher values increase the
variance of the duration distributions.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value for
all regimes.

P.start Initial transition matrix between regimes. Should be a K by K matrix. If not
provided, the default value will be uniform transition distributions.

rho.start The starting value for the ρ variable. This can either be a scalar or a column
vector with dimension equal to the number of regimes. If the value is scalar, it
will be used for all regimes. The default value is a vector of ones.

rho.step Tuning parameter for the slice sampling approach to sampling rho. Determines
the size of the step-out used to find the correct slice to draw from. Lower values
are more accurate, but will take longer (up to a fixed searching limit). Default is
0.1.

nu.start The starting values for the random effect, ν. The default value is a vector of
ones.

omega.start A vector of starting values for the probability of success parameter in the Nega-
tive Binomial distribution that governs the duration distributions.

alpha.start, gamma.start
Scalar starting values for the α, and γ parameters.

... further arguments to be passed.
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Details

HDPHSMMnegbin simulates from the posterior distribution of a HDP-HSMM with a Negative Bino-
mial outcome distribution, allowing for multiple, arbitrary changepoints in the model. The details of
the model are discussed in Johnson & Willsky (2013). The implementation here is based on a weak-
limit approximation, where there is a large, though finite number of regimes that can be switched
between. Unlike other changepoint models in MCMCpack, the HDP-HSMM approach allows for the
state sequence to return to previous visited states.

The model takes the following form, where we show the fixed-limit version:

yt ∼ Poisson(νtµt)

µt = x′
tβk, k = 1, . . . ,K

νt ∼ Gamma(ρk, ρk)

Where K is an upper bound on the number of states and βk and ρk are parameters when a state is k
at t.

In the HDP-HSMM, there is a super-state sequence that, for a given observation, is drawn from the
transition distribution and then a duration is drawn from a duration distribution to determin how
long that state will stay active. After that duration, a new super-state is drawn from the transition
distribution, where self-transitions are disallowed. The transition probabilities between states are
assumed to follow a heirarchical Dirichlet process:

πk ∼ Dirichlet(αδ1, . . . , αδK)

δ ∼ Dirichlet(γ/K, . . . , γ/K)

In the algorithm itself, these π vectors are modified to remove self-transitions as discussed above.
There is a unique duration distribution for each regime with the following parameters:

Dk ∼ N egBin(r, ωk)

ωk ∼ Beta(aω,k, bω,k)

We assume Gaussian distribution for prior of β:

βk ∼ N (b0, B
−1
0 ), m = 1, . . . ,K

The overdispersion parameters have a prior with the following form:

f(ρk|e, f, g) ∝ ρe−1(ρ+ g)−(e+f)

The model is simulated via blocked Gibbs conditonal on the states. The β being simulated via the
auxiliary mixture sampling method of Fuerhwirth-Schanetter et al. (2009). The ρ is updated via
slice sampling. The νt are updated their (conjugate) full conditional, which is also Gamma. The
states and their durations are drawn as in Johnson & Willsky (2013).
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Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Sylvia Fruehwirth-Schnatter, Rudolf Fruehwirth, Leonhard Held, and Havard Rue. 2009. “Im-
proved auxiliary mixture sampling for hierarchical models of non-Gaussian data”, Statistics and
Computing 19(4): 479-492. <doi:10.1007/s11222-008-9109-4>

Matthew Blackwell. 2017. “Game Changers: Detecting Shifts in Overdispersed Count Data,”
Political Analysis 26(2), 230-239. <doi:10.1017/pan.2017.42>

Matthew J. Johnson and Alan S. Willsky. 2013. “Bayesian Nonparametric Hidden Semi-Markov
Models.” Journal of Machine Learning Research, 14(Feb), 673-701.

See Also

MCMCnegbinChange, HDPHMMnegbin,

Examples

## Not run:
n <- 150
reg <- 3
true.s <- gl(reg, n/reg, n)
rho.true <- c(1.5, 0.5, 3)
b1.true <- c(1, -2, 2)
x1 <- runif(n, 0, 2)
nu.true <- rgamma(n, rho.true[true.s], rho.true[true.s])
mu <- nu.true * exp(1 + x1 * b1.true[true.s])
y <- rpois(n, mu)

posterior <- HDPHSMMnegbin(y ~ x1, K = 10, verbose = 1000,
e = 2, f = 2, g = 10,
b0 = 0, B0 = 1/9,
a.omega = 1, b.omega = 100, r = 1,
rho.step = rep(0.75, times = 10),
seed = list(NA, 2),
omega.start = 0.05, gamma.start = 10,
alpha.start = 5)

plotHDPChangepoint(posterior, ylab="Density", start=1)

## End(Not run)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
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HMMpanelFE Markov Chain Monte Carlo for the Hidden Markov Fixed-effects
Model

Description

HMMpanelFE generates a sample from the posterior distribution of the fixed-effects model with
varying individual effects model discussed in Park (2011). The code works for both balanced and
unbalanced panel data as long as there is no missing data in the middle of each group. This model
uses a multivariate Normal prior for the fixed effects parameters and varying individual effects, an
Inverse-Gamma prior on the residual error variance, and Beta prior for transition probabilities. The
user supplies data and priors, and a sample from the posterior distribution is returned as an mcmc
object, which can be subsequently analyzed with functions provided in the coda package.

Usage

HMMpanelFE(
subject.id,
y,
X,
m,
mcmc = 1000,
burnin = 1000,
thin = 1,
verbose = 0,
b0 = 0,
B0 = 0.001,
c0 = 0.001,
d0 = 0.001,
delta0 = 0,
Delta0 = 0.001,
a = NULL,
b = NULL,
seed = NA,
...

)

Arguments

subject.id A numeric vector indicating the group number. It should start from 1.

y The response variable.

X The model matrix excluding the constant.

m A vector of break numbers for each subject in the panel.

mcmc The number of MCMC iterations after burn-in.

burnin The number of burn-in iterations for the sampler.
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thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0, the iteration number and the posterior
density samples are printed to the screen every verboseth iteration.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, d0 acts like the sum
of squared errors from the c0 pseudo-observations.

delta0 The prior mean of α.

Delta0 The prior precision of α.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

seed The seed for the random number generator. If NA, current R system seed is
used.

... further arguments to be passed

Details

HMMpanelFE simulates from the fixed-effect hidden Markov pbject level:

εit ∼ N (αim, σ2
im)

We assume standard, semi-conjugate priors:

β ∼ N (b0, B
−1
0 )

And:
σ−2 ∼ Gamma(c0/2, d0/2)

And:
α ∼ N (delta0, Delta−1

0 )

β, α and σ−2 are assumed a priori independent.
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And:
pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

OLS estimates are used for starting values.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute sigma storage matrix that contains
time-varying residual variance, an attribute state storage matrix that contains posterior samples of
hidden states, and an attribute delta storage matrix containing time-varying intercepts.

References

Jong Hee Park, 2012. “Unified Method for Dynamic and Cross-Sectional Heterogeneity: Introduc-
ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241. <doi: 10.1016/S0304-4076(97)00115-2>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Examples

## Not run:
## data generating
set.seed(1974)
N <- 30
T <- 80
NT <- N*T

## true parameter values
true.beta <- c(1, 1)
true.sigma <- 3
x1 <- rnorm(NT)
x2 <- runif(NT, 2, 4)

## group-specific breaks
break.point = rep(T/2, N); break.sigma=c(rep(1, N));
break.list <- rep(1, N)

X <- as.matrix(cbind(x1, x2), NT, );
y <- rep(NA, NT)
id <- rep(1:N, each=NT/N)
K <- ncol(X);
true.beta <- as.matrix(true.beta, K, 1)

## compute the break probability
ruler <- c(1:T)
W.mat <- matrix(NA, T, N)

https://doi.org/10.18637/jss.v042.i09
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for (i in 1:N){
W.mat[, i] <- pnorm((ruler-break.point[i])/break.sigma[i])

}
Weight <- as.vector(W.mat)

## draw time-varying individual effects and sample y
j = 1
true.sigma.alpha <- 30
true.alpha1 <- true.alpha2 <- rep(NA, N)
for (i in 1:N){

Xi <- X[j:(j+T-1), ]
true.mean <- Xi %*% true.beta
weight <- Weight[j:(j+T-1)]
true.alpha1[i] <- rnorm(1, 0, true.sigma.alpha)
true.alpha2[i] <- -1*true.alpha1[i]
y[j:(j+T-1)] <- ((1-weight)*true.mean + (1-weight)*rnorm(T, 0, true.sigma) +

(1-weight)*true.alpha1[i]) +
(weight*true.mean + weight*rnorm(T, 0, true.sigma) + weight*true.alpha2[i])

j <- j + T
}

## extract the standardized residuals from the OLS with fixed-effects
FEols <- lm(y ~ X + as.factor(id) -1 )
resid.all <- rstandard(FEols)
time.id <- rep(1:80, N)

## model fitting
G <- 100
BF <- testpanelSubjectBreak(subject.id=id, time.id=time.id,

resid= resid.all, max.break=3, minimum = 10,
mcmc=G, burnin = G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, Time = time.id)

## get the estimated break numbers
estimated.breaks <- make.breaklist(BF, threshold=3)

## model fitting
out <- HMMpanelFE(subject.id = id, y, X=X, m = estimated.breaks,

mcmc=G, burnin=G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, delta0=0, Delta0=1/100)

## print out the slope estimate
## true values are 1 and 1
summary(out)

## compare them with the result from the constant fixed-effects
summary(FEols)

## End(Not run)
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HMMpanelRE Markov Chain Monte Carlo for the Hidden Markov Random-effects
Model

Description

HMMpanelRE generates a sample from the posterior distribution of the hidden Markov random-
effects model discussed in Park (2011). The code works for panel data with the same starting point.
The sampling of panel parameters is based on Algorithm 2 of Chib and Carlin (1999). This model
uses a multivariate Normal prior for the fixed effects parameters and varying individual effects, an
Inverse-Wishart prior on the random-effects parameters, an Inverse-Gamma prior on the residual
error variance, and Beta prior for transition probabilities. The user supplies data and priors, and a
sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

Usage

HMMpanelRE(
subject.id,
time.id,
y,
X,
W,
m = 1,
mcmc = 1000,
burnin = 1000,
thin = 1,
verbose = 0,
b0 = 0,
B0 = 0.001,
c0 = 0.001,
d0 = 0.001,
r0,
R0,
a = NULL,
b = NULL,
seed = NA,
beta.start = NA,
sigma2.start = NA,
D.start = NA,
P.start = NA,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

subject.id A numeric vector indicating the group number. It should start from 1.
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time.id A numeric vector indicating the time unit. It should start from 1.
y The dependent variable
X The model matrix of the fixed-effects
W The model matrix of the random-effects. W should be a subset of X.
m The number of changepoints.
mcmc The number of MCMC iterations after burn-in.
burnin The number of burn-in iterations for the sampler.
thin The thinning interval used in the simulation. The number of MCMC iterations

must be divisible by this value.
verbose A switch which determines whether or not the progress of the sampler is printed

to the screen. If verbose is greater than 0, the iteration number and the posterior
density samples are printed to the screen every verboseth iteration.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, d0 acts like the sum
of squared errors from the c0 pseudo-observations.

r0 The shape parameter for the Inverse-Wishart prior on variance matrix for the
random effects. Set r=q for an uninformative prior where q is the number of
random effects

R0 The scale matrix for the Inverse-Wishart prior on variance matrix for the ran-
dom effects. This must be a square q-dimension matrix. Use plausible variance
regarding random effects for the diagonal of R.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

seed The seed for the random number generator. If NA, current R system seed is
used.

beta.start The starting values for the beta vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of NA
will use draws from the Uniform distribution with the same boundary with the
data as the starting value. If this is a scalar, that value will serve as the starting
value mean for all of the betas. When there is no covariate, the log value of
means should be used.
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sigma2.start The starting values for σ2. This can either be a scalar or a column vector with
dimension equal to the number of states.

D.start The starting values for the beta vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of NA
will use draws from the Uniform distribution with the same boundary with the
data as the starting value. If this is a scalar, that value will serve as the starting
value mean for all of the betas. When there is no covariate, the log value of
means should be used.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from
the Beta(0.9,0.1) are used to construct a proper transition matrix for each raw
except the last raw.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated and Chib95 in which case the
method of Chib (1995) is used.

... further arguments to be passed

Details

HMMpanelRE simulates from the random-effect hidden Markov panel model introduced by Park
(2011).

The model takes the following form:

yi = Xiβm +Wibi + εi m = 1, . . . ,M

Where each group i have ki observations. Random-effects parameters are assumed to be time-
varying at the system level:

bi ∼ Nq(0, Dm)

εi ∼ N (0, σ2
mIki

)

And the errors: We assume standard, conjugate priors:

β ∼ Np(b0, B0)

And:
σ2 ∼ IGamma(c0/2, d0/2)

And:
D ∼ IWishart(r0, R0)

See Chib and Carlin (1999) for more details.

And:
pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

NOTE: We do not provide default parameters for the priors on the precision matrix for the random
effects. When fitting one of these models, it is of utmost importance to choose a prior that reflects
your prior beliefs about the random effects. Using the dwish and rwish functions might be useful
in choosing these values.
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Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, and the log-marginal likelihood of the model
(logmarglike).

References

Jong Hee Park, 2012. “Unified Method for Dynamic and Cross-Sectional Heterogeneity: Introduc-
ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241. <doi: 10.1016/S0304-4076(97)00115-2>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Examples

## Not run:
## data generating
set.seed(1977)
Q <- 3
true.beta1 <- c(1, 1, 1) ; true.beta2 <- c(-1, -1, -1)
true.sigma2 <- c(2, 5); true.D1 <- diag(.5, Q); true.D2 <- diag(2.5, Q)
N=30; T=100;
NT <- N*T
x1 <- runif(NT, 1, 2)
x2 <- runif(NT, 1, 2)
X <- cbind(1, x1, x2); W <- X; y <- rep(NA, NT)

## true break numbers are one and at the center
break.point = rep(T/2, N); break.sigma=c(rep(1, N));
break.list <- rep(1, N)
id <- rep(1:N, each=NT/N)
K <- ncol(X);
ruler <- c(1:T)

## compute the weight for the break
W.mat <- matrix(NA, T, N)
for (i in 1:N){
W.mat[, i] <- pnorm((ruler-break.point[i])/break.sigma[i])

}
Weight <- as.vector(W.mat)

## data generating by weighting two means and variances
j = 1
for (i in 1:N){

Xi <- X[j:(j+T-1), ]
Wi <- W[j:(j+T-1), ]
true.V1 <- true.sigma2[1]*diag(T) + Wi%*%true.D1%*%t(Wi)

https://doi.org/10.18637/jss.v042.i09
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true.V2 <- true.sigma2[2]*diag(T) + Wi%*%true.D2%*%t(Wi)
true.mean1 <- Xi%*%true.beta1
true.mean2 <- Xi%*%true.beta2
weight <- Weight[j:(j+T-1)]
y[j:(j+T-1)] <- (1-weight)*true.mean1 + (1-weight)*chol(true.V1)%*%rnorm(T) +

weight*true.mean2 + weight*chol(true.V2)%*%rnorm(T)
j <- j + T

}
## model fitting
subject.id <- c(rep(1:N, each=T))
time.id <- c(rep(1:T, N))

## model fitting
G <- 100
b0 <- rep(0, K) ; B0 <- solve(diag(100, K))
c0 <- 2; d0 <- 2
r0 <- 5; R0 <- diag(c(1, 0.1, 0.1))
subject.id <- c(rep(1:N, each=T))
time.id <- c(rep(1:T, N))
out1 <- HMMpanelRE(subject.id, time.id, y, X, W, m=1,

mcmc=G, burnin=G, thin=1, verbose=G,
b0=b0, B0=B0, c0=c0, d0=d0, r0=r0, R0=R0)

## latent state changes
plotState(out1)

## print mcmc output
summary(out1)

## End(Not run)

InvGamma The Inverse Gamma Distribution

Description

Density function and random generation from the inverse gamma distribution.

Usage

dinvgamma(x, shape, scale = 1)

rinvgamma(n, shape, scale = 1)
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Arguments

x Scalar location to evaluate density.

shape Scalar shape parameter.

scale Scalar scale parameter (default value one).

n Number of draws from the distribution.

Details

An inverse gamma random variable with shape a and scale b has mean b
a−1 (assuming a > 1) and

variance b2

(a−1)2(a−2) (assuming a > 2).

Value

dinvgamma evaluates the density at x.

rinvgamma takes n draws from the inverse Gamma distribution. The parameterization is consistent
with the Gamma Distribution in the stats package.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. 2004. Bayesian Data Analysis.
2nd Edition. Boca Raton: Chapman & Hall.

See Also

GammaDist

Examples

density <- dinvgamma(4.2, 1.1)
draws <- rinvgamma(10, 3.2)

InvWishart The Inverse Wishart Distribution

Description

Density function and random generation from the Inverse Wishart distribution.

Usage

riwish(v, S)

diwish(W, v, S)
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Arguments

v Degrees of freedom (scalar).

S Scale matrix (p× p).

W Positive definite matrix W (p× p).

Details

The mean of an inverse Wishart random variable with v degrees of freedom and scale matrix S is
(v − p− 1)−1S.

Value

diwish evaluates the density at positive definite matrix W. riwish generates one random draw from
the distribution.

Examples

density <- diwish(matrix(c(2,-.3,-.3,4),2,2), 3, matrix(c(1,.3,.3,1),2,2))
draw <- riwish(3, matrix(c(1,.3,.3,1),2,2))

make.breaklist Vector of break numbers

Description

This function generates a vector of break numbers using the output of testpanelSubjectBreak.
The function performs a pairwise comparison of models using Bayes Factors.

Usage

make.breaklist(BF, threshold = 3)

Arguments

BF output of testpanelSubjectBreak.

threshold The Bayes Factor threshold to pick the best model. If a Bayes factor of two
models is smaller than threshold, the model with a smaller number of break is
chosen to avoid the over-identification problem. Users can change threshold into
any positive number. The default value of 3 is chosen as it indicates the existence
of "substantial evidence" in favor of the model in the numerator according to
Jeffreys’ scale.

Value

Vector fo break numbers.
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References

Jong Hee Park, 2012. “Unified Method for Dynamic and Cross-Sectional Heterogeneity: Introduc-
ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Harold Jeffreys, 1961. The Theory of Probability. Oxford University Press.

See Also

testpanelSubjectBreak

MCbinomialbeta Monte Carlo Simulation from a Binomial Likelihood with a Beta Prior

Description

This function generates a sample from the posterior distribution of a binomial likelihood with a
Beta prior.

Usage

MCbinomialbeta(y, n, alpha = 1, beta = 1, mc = 1000, ...)

Arguments

y The number of successes in the independent Bernoulli trials.

n The number of independent Bernoulli trials.

alpha Beta prior distribution alpha parameter.

beta Beta prior distribution beta parameter.

mc The number of Monte Carlo draws to make.

... further arguments to be passed

Details

MCbinomialbeta directly simulates from the posterior distribution. This model is designed primar-
ily for instructional use. π is the probability of success for each independent Bernoulli trial. We
assume a conjugate Beta prior:

π ∼ Beta(α, β)

y is the number of successes in n trials. By default, a uniform prior is used.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.
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See Also

plot.mcmc, summary.mcmc

Examples

## Not run:
posterior <- MCbinomialbeta(3,12,mc=5000)
summary(posterior)
plot(posterior)
grid <- seq(0,1,0.01)
plot(grid, dbeta(grid, 1, 1), type="l", col="red", lwd=3, ylim=c(0,3.6),

xlab="pi", ylab="density")
lines(density(posterior), col="blue", lwd=3)
legend(.75, 3.6, c("prior", "posterior"), lwd=3, col=c("red", "blue"))

## End(Not run)

MCMCbinaryChange Markov Chain Monte Carlo for a Binary Multiple Changepoint Model

Description

This function generates a sample from the posterior distribution of a binary model with multiple
changepoints. The function uses the Markov chain Monte Carlo method of Chib (1998). The user
supplies data and priors, and a sample from the posterior distribution is returned as an mcmc object,
which can be subsequently analyzed with functions provided in the coda package.

Usage

MCMCbinaryChange(
data,
m = 1,
c0 = 1,
d0 = 1,
a = NULL,
b = NULL,
burnin = 10000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
phi.start = NA,
P.start = NA,
marginal.likelihood = c("none", "Chib95"),
...

)
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Arguments

data The data.

m The number of changepoints.

c0 c0 is the shape1 parameter for Beta prior on ϕ (the mean).

d0 d0 is the shape2 parameter for Beta prior on ϕ (the mean).

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burn-in.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0, the iteration number and the posterior
density samples are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, current R system seed is
used.

phi.start The starting values for the mean. The default value of NA will use draws from
the Uniform distribution.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from
the Beta(0.9,0.1) are used to construct a proper transition matrix for each raw
except the last raw.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, and Chib95 in which case
the method of Chib (1995) is used.

... further arguments to be passed

Details

MCMCbinaryChange simulates from the posterior distribution of a binary model with multiple change-
points.

The model takes the following form:

Yt ∼ Bernoulli(ϕi), i = 1, . . . , k

Where k is the number of states.

We assume Beta priors for ϕi and for transition probabilities:

ϕi ∼ Beta(c0, d0)
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And:
pmm ∼ Betaab, m = 1, . . . , k

Where M is the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, and the log-marginal likelihood of the model
(logmarglike).

References

Jong Hee Park. 2011. “Changepoint Analysis of Binary and Ordinal Probit Models: An Appli-
cation to Bank Rate Policy Under the Interwar Gold Standard." Political Analysis. 19: 188-204.
<doi:10.1093/pan/mpr007>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Siddhartha Chib. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American
Statistical Association. 90: 1313-1321. <doi: 10.1080/01621459.1995.10476635>

See Also

MCMCpoissonChange,plotState, plotChangepoint

Examples

## Not run:
set.seed(19173)
true.phi<- c(0.5, 0.8, 0.4)

## two breaks at c(80, 180)
y1 <- rbinom(80, 1, true.phi[1])
y2 <- rbinom(100, 1, true.phi[2])
y3 <- rbinom(120, 1, true.phi[3])
y <- as.ts(c(y1, y2, y3))

model0 <- MCMCbinaryChange(y, m=0, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
marginal.likelihood = "Chib95")

model1 <- MCMCbinaryChange(y, m=1, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
marginal.likelihood = "Chib95")

model2 <- MCMCbinaryChange(y, m=2, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
marginal.likelihood = "Chib95")

model3 <- MCMCbinaryChange(y, m=3, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
marginal.likelihood = "Chib95")

model4 <- MCMCbinaryChange(y, m=4, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
marginal.likelihood = "Chib95")

model5 <- MCMCbinaryChange(y, m=5, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
marginal.likelihood = "Chib95")

https://doi.org/10.18637/jss.v042.i09
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print(BayesFactor(model0, model1, model2, model3, model4, model5))

## plot two plots in one screen
par(mfrow=c(attr(model2, "m") + 1, 1), mai=c(0.4, 0.6, 0.3, 0.05))
plotState(model2, legend.control = c(1, 0.6))
plotChangepoint(model2, verbose = TRUE, ylab="Density", start=1, overlay=TRUE)

## End(Not run)

MCMCdynamicEI Markov Chain Monte Carlo for Quinn’s Dynamic Ecological Infer-
ence Model

Description

MCMCdynamicEI is used to fit Quinn’s dynamic ecological inference model for partially observed
2 x 2 contingency tables.

Usage

MCMCdynamicEI(
r0,
r1,
c0,
c1,
burnin = 5000,
mcmc = 50000,
thin = 1,
verbose = 0,
seed = NA,
W = 0,
a0 = 0.825,
b0 = 0.0105,
a1 = 0.825,
b1 = 0.0105,
...

)

Arguments

r0 (ntables× 1) vector of row sums from row 0.

r1 (ntables× 1) vector of row sums from row 1.

c0 (ntables× 1) vector of column sums from column 0.

c1 (ntables× 1) vector of column sums from column 1.

burnin The number of burn-in scans for the sampler.
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mcmc The number of mcmc scans to be saved.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 then every verboseth iteration will
be printed to the screen.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

W Weight (not precision) matrix structuring the temporal dependence among ele-
ments of θ0 and θ1. The default value of 0 will construct a weight matrix that
corresponds to random walk priors for θ0 and θ1. The default assumes that the
tables are equally spaced throughout time and that the elements of r0, r1, c0,
and c1 are temporally ordered.

a0 a0/2 is the shape parameter for the inverse-gamma prior on the σ2
0 parameter.

b0 b0/2 is the scale parameter for the inverse-gamma prior on the σ2
0 parameter.

a1 a1/2 is the shape parameter for the inverse-gamma prior on the σ2
1 parameter.

b1 b1/2 is the scale parameter for the inverse-gamma prior on the σ2
1 parameter.

... further arguments to be passed

Details

Consider the following partially observed 2 by 2 contingency table for unit t where t = 1, . . . , ntables:

| Y = 0 | Y = 1 |
——— ———— ———— ————
X = 0 | Y0t | | r0t
——— ———— ———— ————
X = 1 | Y1t | | r1t
——— ———— ———— ————

| c0t | c1t | Nt

Where r0t, r1t, c0t, c1t, and Nt are non-negative integers that are observed. The interior cell entries
are not observed. It is assumed that Y0t|r0t ∼ Binomial(r0t, p0t) and Y1t|r1t ∼ Binomial(r1t, p1t).
Let θ0t = log(p0t/(1− p0t)), and θ1t = log(p1t/(1− p1t)).

The following prior distributions are assumed:

p(θ0|σ2
0) ∝ σ−ntables

0 exp

(
− 1

2σ2
0

θ′0Pθ0

)
and



MCMCdynamicEI 39

p(θ1|σ2
1) ∝ σ−ntables

1 exp

(
− 1

2σ2
1

θ′1Pθ1

)
where Pts = −Wts for t not equal to s and Ptt =

∑
s̸=t Wts. The θ0t is assumed to be a priori inde-

pendent of θ1t for all t. In addition, the following hyperpriors are assumed: σ2
0 ∼ IG(a0/2, b0/2),

and σ2
1 ∼ IG(a1/2, b1/2).

Inference centers on p0, p1, σ2
0 , and σ2

1 . Univariate slice sampling (Neal, 2003) together with Gibbs
sampling is used to sample from the posterior distribution.

Value

An mcmc object that contains the sample from the posterior distribution. This object can be sum-
marized by functions provided by the coda package.

References

Kevin Quinn. 2004. “Ecological Inference in the Presence of Temporal Dependence." In Ecological
Inference: New Methodological Strategies. Gary King, Ori Rosen, and Martin A. Tanner (eds.).
New York: Cambridge University Press.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Radford Neal. 2003. “Slice Sampling" (with discussion). Annals of Statistics, 31: 705-767.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Jonathan C. Wakefield. 2004. “Ecological Inference for 2 x 2 Tables.” Journal of the Royal Statis-
tical Society, Series A. 167(3): 385445.

See Also

MCMChierEI, plot.mcmc,summary.mcmc

Examples

## Not run:
## simulated data example 1
set.seed(3920)
n <- 100
r0 <- rpois(n, 2000)
r1 <- round(runif(n, 100, 4000))
p0.true <- pnorm(-1.5 + 1:n/(n/2))
p1.true <- pnorm(1.0 - 1:n/(n/4))
y0 <- rbinom(n, r0, p0.true)
y1 <- rbinom(n, r1, p1.true)
c0 <- y0 + y1
c1 <- (r0+r1) - c0

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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## plot data
dtomogplot(r0, r1, c0, c1, delay=0.1)

## fit dynamic model
post1 <- MCMCdynamicEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,

seed=list(NA, 1))

## fit exchangeable hierarchical model
post2 <- MCMChierEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,

seed=list(NA, 2))

p0meanDyn <- colMeans(post1)[1:n]
p1meanDyn <- colMeans(post1)[(n+1):(2*n)]
p0meanHier <- colMeans(post2)[1:n]
p1meanHier <- colMeans(post2)[(n+1):(2*n)]

## plot truth and posterior means
pairs(cbind(p0.true, p0meanDyn, p0meanHier, p1.true, p1meanDyn, p1meanHier))

## simulated data example 2
set.seed(8722)
n <- 100
r0 <- rpois(n, 2000)
r1 <- round(runif(n, 100, 4000))
p0.true <- pnorm(-1.0 + sin(1:n/(n/4)))
p1.true <- pnorm(0.0 - 2*cos(1:n/(n/9)))
y0 <- rbinom(n, r0, p0.true)
y1 <- rbinom(n, r1, p1.true)
c0 <- y0 + y1
c1 <- (r0+r1) - c0

## plot data
dtomogplot(r0, r1, c0, c1, delay=0.1)

## fit dynamic model
post1 <- MCMCdynamicEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,

seed=list(NA, 1))

## fit exchangeable hierarchical model
post2 <- MCMChierEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,

seed=list(NA, 2))

p0meanDyn <- colMeans(post1)[1:n]
p1meanDyn <- colMeans(post1)[(n+1):(2*n)]
p0meanHier <- colMeans(post2)[1:n]
p1meanHier <- colMeans(post2)[(n+1):(2*n)]

## plot truth and posterior means
pairs(cbind(p0.true, p0meanDyn, p0meanHier, p1.true, p1meanDyn, p1meanHier))

## End(Not run)
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MCMCdynamicIRT1d_b Markov Chain Monte Carlo for Dynamic One Dimensional Item Re-
sponse Theory Model

Description

This function generates a sample from the posterior distribution of a dynamic one dimensional item
response theory (IRT) model, with Normal random walk priors on the subject abilities (ideal points),
and multivariate Normal priors on the item parameters. The user supplies data and priors, and a
sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

Usage

MCMCdynamicIRT1d_b(
datamatrix,
item.time.map,
theta.constraints = list(),
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
theta.start = NA,
alpha.start = NA,
beta.start = NA,
tau2.start = 1,
a0 = 0,
A0 = 0.1,
b0 = 0,
B0 = 0.1,
c0 = -1,
d0 = -1,
e0 = 0,
E0 = 1,
store.ability = TRUE,
store.item = TRUE,
...

)

MCMCdynamicIRT1d(
datamatrix,
item.time.map,
theta.constraints = list(),
burnin = 1000,
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mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
theta.start = NA,
alpha.start = NA,
beta.start = NA,
tau2.start = 1,
a0 = 0,
A0 = 0.1,
b0 = 0,
B0 = 0.1,
c0 = -1,
d0 = -1,
e0 = 0,
E0 = 1,
store.ability = TRUE,
store.item = TRUE,
...

)

Arguments

datamatrix The matrix of data. Must be 0, 1, or missing values. The rows of datamatrix
correspond to subjects and the columns correspond to items.

item.time.map A vector that relates each item to a time period. Each element of item.time.map
gives the time period of the corresponding column of datamatrix. It is assumed
that the minimum value of item.time.map is 1.

theta.constraints

A list specifying possible simple equality or inequality constraints on the ability
parameters. A typical entry in the list has one of three forms: varname=c which
will constrain the ability parameter for the subject named varname to be equal
to c, varname="+" which will constrain the ability parameter for the subject
named varname to be positive, and varname="-" which will constrain the ability
parameter for the subject named varname to be negative. If x is a matrix without
row names defaults names of “V1",“V2", ... , etc will be used. See Rivers (2003)
for a thorough discussion of identification of IRT models.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Gibbs iterations for the sampler.

thin The thinning interval used in the simulation. The number of Gibbs iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 then every verboseth iteration will
be printed to the screen.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
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random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

theta.start The starting values for the subject abilities (ideal points). This can either be a
scalar or a column vector with dimension equal to the number of voters. If this
takes a scalar value, then that value will serve as the starting value for all of
the thetas. The default value of NA will choose the starting values based on an
eigenvalue-eigenvector decomposition of the aggreement score matrix formed
from the datamatrix.

alpha.start The starting values for the α difficulty parameters. This can either be a scalar
or a column vector with dimension equal to the number of items. If this takes a
scalar value, then that value will serve as the starting value for all of the alphas.
The default value of NA will set the starting values based on a series of probit
regressions that condition on the starting values of theta.

beta.start The starting values for the β discrimination parameters. This can either be a
scalar or a column vector with dimension equal to the number of items. If this
takes a scalar value, then that value will serve as the starting value for all of the
betas. The default value of NA will set the starting values based on a series of
probit regressions that condition on the starting values of theta.

tau2.start The starting values for the evolution variances (the variance of the random walk
increments for the ability parameters / ideal points. Order corresponds to the
rows of datamatrix.

a0 A vector containing the prior mean of each of the difficulty parameters α. Should
have as many elements as items / roll calls. Order corresponds to the columns of
datamatrix. If a scalar is passed it is assumed that all elements of a0 are equal
to the scalar.

A0 A vector containing the prior precision (inverse variance) of each of the diffi-
culty parameters α. Should have as many elements as items / roll calls. Order
corresponds to the columns of datamatrix. If a scalar is passed it is assumed
that all elements of A0 are equal to the scalar.

b0 A vector containing the prior mean of each of the discrimination parameters β.
Should have as many elements as items / roll calls. Order corresponds to the
columns of datamatrix. If a scalar is passed it is assumed that all elements of
b0 are equal to the scalar.

B0 A vector containing the prior precision (inverse variance) of each of the discrim-
ination parameters β. Should have as many elements as items / roll calls. Order
corresponds to the columns of datamatrix. If a scalar is passed it is assumed
that all elements of B0 are equal to the scalar.

c0 c0/2 is the shape parameter for the inverse Gamma prior on τ2 (the variance of
the random walk increments). The amount of information in the inverse Gamma
prior is something like that from c0 pseudo-observations. c0 can be either a
vector with an element for each subject or a scalar. If c0 is negative then τ2 is
not estimated– the values in tau2.start are used throughout the sampling.

d0 d0/2 is the scale parameter for the inverse Gamma prior on τ2 (the variance of
the random walk increments). In constructing the inverse Gamma prior, d0 acts
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like the sum of squared errors from the c0 pseudo-observations. d0 can be either
a vector with an element for each subject or a scalar. If d0 is negative then τ2 is
not estimated– the values in tau2.start are used throughout the sampling.

e0 A vector containing the prior mean of the initial ability parameter / ideal point
for each subject. Should have as many elements as subjects. Order corresponds
to the rows of datamatrix. If a scalar is passed it is assumed that all elements
of e0 are equal to the scalar.

E0 A vector containing the prior variance of the initial ability parameter / ideal point
for each subject. Should have as many elements as subjects. Order corresponds
to the rows of datamatrix. If a scalar is passed it is assumed that all elements
of E0 are equal to the scalar.

store.ability A switch that determines whether or not to store the ability parameters for pos-
terior analysis. NOTE: In situations with many individuals storing the ability
parameters takes an enormous amount of memory, so store.ability should
only be TRUE if the chain is thinned heavily, or for applications with a small
number of individuals. By default, the item parameters are stored.

store.item A switch that determines whether or not to store the item parameters for poste-
rior analysis. NOTE: In situations with many items storing the item parameters
takes an enormous amount of memory, so store.item should only be FALSE if
the chain is thinned heavily, or for applications with a small number of items.
By default, the item parameters are not stored.

... further arguments to be passed

Details

MCMCdynamicIRT1d simulates from the posterior distribution using the algorithm of Martin and
Quinn (2002). The simulation proper is done in compiled C++ code to maximize efficiency. Please
consult the coda documentation for a comprehensive list of functions that can be used to analyze
the posterior sample.

The model takes the following form. We assume that each subject has an subject ability (ideal point)
denoted θj,t (where j indexes subjects and t indexes time periods) and that each item has a difficulty
parameter αi and discrimination parameter βi. The observed choice by subject j on item i is the
observed data matrix which is (I × J). We assume that the choice is dictated by an unobserved
utility:

zi,j,t = −αi + βiθj,t + εi,j,t

Where the disturbances are assumed to be distributed standard Normal. The parameters of interest
are the subject abilities (ideal points) and the item parameters.

We assume the following priors. For the subject abilities (ideal points):

θj,t ∼ N (θj,t−1, τ
2
j )

with

θj,0 ∼ N (e0, E0)
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.

The evolution variance has the following prior:

τ2j ∼ IG(c0/2, d0/2)

.

For the item parameters in the standard model, the prior is:

αi ∼ N (a0, A0−1)

and

βi ∼ N (b0, B0−1)

.

The model is identified by the proper priors on the item parameters and constraints placed on the
ability parameters.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the item parameters.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

Author(s)

Kevin M. Quinn

References

Andrew D. Martin and Kevin M. Quinn. 2002. "Dynamic Ideal Point Estimation via Markov
Chain Monte Carlo for the U.S. Supreme Court, 1953-1999." Political Analysis. 10: 134-153.
<doi:10.1093/pan/10.2.134>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

See Also

plot.mcmc,summary.mcmc, MCMCirt1d

Examples

## Not run:
data(Rehnquist)

## assign starting values
theta.start <- rep(0, 9)
theta.start[2] <- -3 ## Stevens

https://doi.org/10.18637/jss.v042.i09


46 MCMCfactanal

theta.start[7] <- 2 ## Thomas

out <- MCMCdynamicIRT1d(t(Rehnquist[,1:9]),
item.time.map=Rehnquist$time,
theta.start=theta.start,
mcmc=50000, burnin=20000, thin=5,
verbose=500, tau2.start=rep(0.1, 9),
e0=0, E0=1,
a0=0, A0=1,
b0=0, B0=1, c0=-1, d0=-1,
store.item=FALSE,
theta.constraints=list(Stevens="-", Thomas="+"))

summary(out)

## End(Not run)

MCMCfactanal Markov Chain Monte Carlo for Normal Theory Factor Analysis Model

Description

This function generates a sample from the posterior distribution of a normal theory factor analysis
model. Normal priors are assumed on the factor loadings and factor scores while inverse Gamma
priors are assumed for the uniquenesses. The user supplies data and parameters for the prior distri-
butions, and a sample from the posterior distribution is returned as an mcmc object, which can be
subsequently analyzed with functions provided in the coda package.

Usage

MCMCfactanal(
x,
factors,
lambda.constraints = list(),
data = NULL,
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
lambda.start = NA,
psi.start = NA,
l0 = 0,
L0 = 0,
a0 = 0.001,
b0 = 0.001,
store.scores = FALSE,
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std.var = TRUE,
...

)

Arguments

x Either a formula or a numeric matrix containing the manifest variables.

factors The number of factors to be fitted.
lambda.constraints

List of lists specifying possible simple equality or inequality constraints on the
factor loadings. A typical entry in the list has one of three forms: varname=list(d,c)
which will constrain the dth loading for the variable named varname to be equal
to c, varname=list(d,"+") which will constrain the dth loading for the vari-
able named varname to be positive, and varname=list(d, "-") which will
constrain the dth loading for the variable named varname to be negative. If
x is a matrix without column names defaults names of “V1",“V2", ... , etc will
be used.

data A data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of iterations for the sampler.

thin The thinning interval used in the simulation. The number of iterations must be
divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number and the factor
loadings and uniquenesses are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

lambda.start Starting values for the factor loading matrix Lambda. If lambda.start is set
to a scalar the starting value for all unconstrained loadings will be set to that
scalar. If lambda.start is a matrix of the same dimensions as Lambda then
the lambda.start matrix is used as the starting values (except for equality-
constrained elements). If lambda.start is set to NA (the default) then starting
values for unconstrained elements are set to 0, and starting values for inequality
constrained elements are set to either 0.5 or -0.5 depending on the nature of the
constraints.

psi.start Starting values for the uniquenesses. If psi.start is set to a scalar then the
starting value for all diagonal elements of Psi are set to this value. If psi.start
is a k-vector (where k is the number of manifest variables) then the staring value
of Psi has psi.start on the main diagonal. If psi.start is set to NA (the
default) the starting values of all the uniquenesses are set to 0.5.
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l0 The means of the independent Normal prior on the factor loadings. Can be either
a scalar or a matrix with the same dimensions as Lambda.

L0 The precisions (inverse variances) of the independent Normal prior on the factor
loadings. Can be either a scalar or a matrix with the same dimensions as Lambda.

a0 Controls the shape of the inverse Gamma prior on the uniqueness. The actual
shape parameter is set to a0/2. Can be either a scalar or a k-vector.

b0 Controls the scale of the inverse Gamma prior on the uniquenesses. The actual
scale parameter is set to b0/2. Can be either a scalar or a k-vector.

store.scores A switch that determines whether or not to store the factor scores for posterior
analysis. NOTE: This takes an enormous amount of memory, so should only be
used if the chain is thinned heavily, or for applications with a small number of
observations. By default, the factor scores are not stored.

std.var If TRUE (the default) the manifest variables are rescaled to have zero mean and
unit variance. Otherwise, the manifest variables are rescaled to have zero mean
but retain their observed variances.

... further arguments to be passed

Details

The model takes the following form:

xi = Λϕi + ϵi

ϵi ∼ N (0,Ψ)

where xi is the k-vector of observed variables specific to observation i, Λ is the k × d matrix of
factor loadings, ϕi is the d-vector of latent factor scores, and Ψ is a diagonal, positive definite
matrix. Traditional factor analysis texts refer to the diagonal elements of Ψ as uniquenesses.

The implementation used here assumes independent conjugate priors for each element of Λ each
ϕi, and each diagonal element of Ψ. More specifically we assume:

Λij ∼ N (l0ij , L
−1
0ij

), i = 1, . . . , k, j = 1, . . . , d

ϕi ∼ N (0, I), i = 1, . . . , n

Ψii ∼ IG(a0i/2, b0i/2), i = 1, . . . , k

MCMCfactanal simulates from the posterior distribution using standard Gibbs sampling. The simu-
lation proper is done in compiled C++ code to maximize efficiency. Please consult the coda docu-
mentation for a comprehensive list of functions that can be used to analyze the posterior sample.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the scores.
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Value

An mcmc object that contains the sample from the posterior distribution. This object can be sum-
marized by functions provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc,factanal

Examples

## Not run:
### An example using the formula interface
data(swiss)
posterior <- MCMCfactanal(~Agriculture+Examination+Education+Catholic

+Infant.Mortality, factors=2,
lambda.constraints=list(Examination=list(1,"+"),

Examination=list(2,"-"), Education=c(2,0),
Infant.Mortality=c(1,0)),

verbose=0, store.scores=FALSE, a0=1, b0=0.15,
data=swiss, burnin=5000, mcmc=50000, thin=20)

plot(posterior)
summary(posterior)

### An example using the matrix interface
Y <- cbind(swiss$Agriculture, swiss$Examination,

swiss$Education, swiss$Catholic,
swiss$Infant.Mortality)

colnames(Y) <- c("Agriculture", "Examination", "Education", "Catholic",
"Infant.Mortality")

post <- MCMCfactanal(Y, factors=2,
lambda.constraints=list(Examination=list(1,"+"),

Examination=list(2,"-"), Education=c(2,0),
Infant.Mortality=c(1,0)),

verbose=0, store.scores=FALSE, a0=1, b0=0.15,
burnin=5000, mcmc=50000, thin=20)

## End(Not run)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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MCMChierEI Markov Chain Monte Carlo for Wakefield’s Hierarchial Ecological In-
ference Model

Description

‘MCMChierEI’ is used to fit Wakefield’s hierarchical ecological inference model for partially ob-
served 2 x 2 contingency tables.

Usage

MCMChierEI(
r0,
r1,
c0,
c1,
burnin = 5000,
mcmc = 50000,
thin = 1,
verbose = 0,
seed = NA,
m0 = 0,
M0 = 2.287656,
m1 = 0,
M1 = 2.287656,
a0 = 0.825,
b0 = 0.0105,
a1 = 0.825,
b1 = 0.0105,
...

)

Arguments

r0 (ntables× 1) vector of row sums from row 0.

r1 (ntables× 1) vector of row sums from row 1.

c0 (ntables× 1) vector of column sums from column 0.

c1 (ntables× 1) vector of column sums from column 1.

burnin The number of burn-in scans for the sampler.

mcmc The number of mcmc scans to be saved.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 then every verboseth iteration will
be printed to the screen.



MCMChierEI 51

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

m0 Prior mean of the µ0 parameter.

M0 Prior variance of the µ0 parameter.

m1 Prior mean of the µ1 parameter.

M1 Prior variance of the µ1 parameter.

a0 a0/2 is the shape parameter for the inverse-gamma prior on the σ2
0 parameter.

b0 b0/2 is the scale parameter for the inverse-gamma prior on the σ2
0 parameter.

a1 a1/2 is the shape parameter for the inverse-gamma prior on the σ2
1 parameter.

b1 b1/2 is the scale parameter for the inverse-gamma prior on the σ2
1 parameter.

... further arguments to be passed

Details

Consider the following partially observed 2 by 2 contingency table for unit t where t = 1, . . . , ntables:

| Y = 0 | Y = 1 |
——— ———— ———— ————
X = 0 | Y0t | | r0t
——— ———— ———— ————
X = 1 | Y1t | | r1t
——— ———— ———— ————

| c0t | c1t | Nt

Where r0t, r1t, c0t, c1t, and Nt are non-negative integers that are observed. The interior cell entries
are not observed. It is assumed that Y0t|r0t ∼ Binomial(r0t, p0t) and Y1t|r1t ∼ Binomial(r1t, p1t).
Let θ0t = log(p0t/(1− p0t)), and θ1t = log(p1t/(1− p1t)).

The following prior distributions are assumed: θ0t ∼ N (µ0, σ
2
0), θ1t ∼ N (µ1, σ

2
1). θ0t is assumed

to be a priori independent of θ1t for all t. In addition, we assume the following hyperpriors: µ0 ∼
N (m0,M0), µ1 ∼ N (m1,M1), σ2

0 ∼ IG(a0/2, b0/2), and σ2
1 ∼ IG(a1/2, b1/2).

The default priors have been chosen to make the implied prior distribution for p0 and p1 approxi-
mately uniform on (0,1).

Inference centers on p0, p1, µ0, µ1, σ2
0 , and σ2

1 . Univariate slice sampling (Neal, 2003) along with
Gibbs sampling is used to sample from the posterior distribution.

See Section 5.4 of Wakefield (2003) for discussion of the priors used here. MCMChierEI departs
from the Wakefield model in that the mu0 and mu1 are here assumed to be drawn from independent
normal distributions whereas Wakefield assumes they are drawn from logistic distributions.
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Value

An mcmc object that contains the sample from the posterior distribution. This object can be sum-
marized by functions provided by the coda package.

References

Jonathan C. Wakefield. 2004. “Ecological Inference for 2 x 2 Tables.” Journal of the Royal Statis-
tical Society, Series A. 167(3): 385445.

Radford Neal. 2003. “Slice Sampling" (with discussion). Annals of Statistics, 31: 705-767.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

MCMCdynamicEI, plot.mcmc,summary.mcmc

Examples

## Not run:
## simulated data example
set.seed(3920)
n <- 100
r0 <- round(runif(n, 400, 1500))
r1 <- round(runif(n, 100, 4000))
p0.true <- pnorm(rnorm(n, m=0.5, s=0.25))
p1.true <- pnorm(rnorm(n, m=0.0, s=0.10))
y0 <- rbinom(n, r0, p0.true)
y1 <- rbinom(n, r1, p1.true)
c0 <- y0 + y1
c1 <- (r0+r1) - c0

## plot data
tomogplot(r0, r1, c0, c1)

## fit exchangeable hierarchical model
post <- MCMChierEI(r0,r1,c0,c1, mcmc=40000, thin=5, verbose=100,

seed=list(NA, 1))

p0meanHier <- colMeans(post)[1:n]
p1meanHier <- colMeans(post)[(n+1):(2*n)]

## plot truth and posterior means
pairs(cbind(p0.true, p0meanHier, p1.true, p1meanHier))

## End(Not run)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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MCMChlogit Markov Chain Monte Carlo for the Hierarchical Binomial Linear Re-
gression Model using the logit link function

Description

MCMChlogit generates a sample from the posterior distribution of a Hierarchical Binomial Linear
Regression Model using the logit link function and Algorithm 2 of Chib and Carlin (1999). This
model uses a multivariate Normal prior for the fixed effects parameters, an Inverse-Wishart prior
on the random effects variance matrix, and an Inverse-Gamma prior on the variance modelling
over-dispersion. The user supplies data and priors, and a sample from the posterior distribution is
returned as an mcmc object, which can be subsequently analyzed with functions provided in the
coda package.

Usage

MCMChlogit(
fixed,
random,
group,
data,
burnin = 5000,
mcmc = 10000,
thin = 10,
verbose = 1,
seed = NA,
beta.start = NA,
sigma2.start = NA,
Vb.start = NA,
mubeta = 0,
Vbeta = 1e+06,
r,
R,
nu = 0.001,
delta = 0.001,
FixOD = 0,
...

)

Arguments

fixed A two-sided linear formula of the form ’y~x1+...+xp’ describing the fixed-effects
part of the model, with the response on the left of a ’~’ operator and the p fixed
terms, separated by ’+’ operators, on the right. Response variable y must be 0
or 1 (Binomial process).
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random A one-sided formula of the form ’~x1+...+xq’ specifying the model for the ran-
dom effects part of the model, with the q random terms, separated by ’+’ opera-
tors.

group String indicating the name of the grouping variable in data, defining the hierar-
chical structure of the model.

data A data frame containing the variables in the model.

burnin The number of burnin iterations for the sampler.

mcmc The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+mcmc. burnin+mcmc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister.

beta.start The starting values for the β vector. This can either be a scalar or a p-length
vector. The default value of NA will use the OLS β estimate of the correspond-
ing Gaussian Linear Regression without random effects. If this is a scalar, that
value will serve as the starting value mean for all of the betas.

sigma2.start Scalar for the starting value of the residual error variance. The default value of
NA will use the OLS estimates of the corresponding Gaussian Linear Regression
without random effects.

Vb.start The starting value for variance matrix of the random effects. This must be a
square q-dimension matrix. Default value of NA uses an identity matrix.

mubeta The prior mean of β. This can either be a scalar or a p-length vector. If this takes
a scalar value, then that value will serve as the prior mean for all of the betas.
The default value of 0 will use a vector of zeros for an uninformative prior.

Vbeta The prior variance of β. This can either be a scalar or a square p-dimension
matrix. If this takes a scalar value, then that value times an identity matrix
serves as the prior variance of beta. Default value of 1.0E6 will use a diagonal
matrix with very large variance for an uninformative flat prior.

r The shape parameter for the Inverse-Wishart prior on variance matrix for the
random effects. r must be superior or equal to q. Set r=q for an uninformative
prior. See the NOTE for more details

R The scale matrix for the Inverse-Wishart prior on variance matrix for the ran-
dom effects. This must be a square q-dimension matrix. Use plausible variance
regarding random effects for the diagonal of R. See the NOTE for more details

nu The shape parameter for the Inverse-Gamma prior on the residual error variance.
Default value is nu=delta=0.001 for uninformative prior.

delta The rate (1/scale) parameter for the Inverse-Gamma prior on the residual error
variance. Default value is nu=delta=0.001 for uninformative prior.
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FixOD A switch (0,1) which determines whether or not the variance for over-dispersion
(sigma2) should be fixed (1) or not (0). Default is 0, parameter sigma2 is esti-
mated. If FixOD=1, sigma2 is fixed to the value provided for sigma2.start.

... further arguments to be passed

Details

MCMChlogit simulates from the posterior distribution sample using the blocked Gibbs sampler of
Chib and Carlin (1999), Algorithm 2. The simulation is done in compiled C++ code to maximize
efficiency. Please consult the coda documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

yi ∼ Bernoulli(θi)

With latent variables ϕ(θi), ϕ being the logit link function:

ϕ(θi) = Xiβ +Wibi + εi

Where each group i have ki observations.

Where the random effects:

bi ∼ Nq(0, Vb)

And the over-dispersion terms:

εi ∼ N (0, σ2Iki)

We assume standard, conjugate priors:

β ∼ Np(µβ , Vβ)

And:

σ2 ∼ IGamma(ν, 1/δ)

And:

Vb ∼ IWishart(r, rR)

See Chib and Carlin (1999) for more details.

NOTE: We do not provide default parameters for the priors on the precision matrix for the random
effects. When fitting one of these models, it is of utmost importance to choose a prior that reflects
your prior beliefs about the random effects. Using the dwish and rwish functions might be useful
in choosing these values.
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Value

mcmc An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = −2 log(

∏
i P (yi|θi)), is also provided.

theta.pred Predictive posterior mean for the inverse-logit of the latent variables. The ap-
proximation of Diggle et al. (2004) is used to marginalized with respect to
over-dispersion terms:

E[θi|β, bi, σ2] = ϕ−1((Xiβ +Wibi)/

√
(16

√
3/15π)2σ2 + 1)

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Siddhartha Chib and Bradley P. Carlin. 1999. “On MCMC Sampling in Hierarchical Longitudinal
Models.” Statistics and Computing. 9: 17-26.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Andrew D. Martin and Kyle L. Saunders. 2002. “Bayesian Inference for Political Science Panel
Data.” Paper presented at the 2002 Annual Meeting of the American Political Science Association.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Diggle P., Heagerty P., Liang K., and Zeger S. 2004. “Analysis of Longitudinal Data.” Oxford
University Press, 2sd Edition.

See Also

plot.mcmc, summary.mcmc

Examples

## Not run:
#========================================
# Hierarchical Binomial Linear Regression
#========================================

#== inv.logit function
inv.logit <- function(x, min=0, max=1) {

p <- exp(x)/(1+exp(x))
p <- ifelse( is.na(p) & !is.na(x), 1, p ) # fix problems with +Inf
return(p*(max-min)+min)

}

#== Generating data

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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# Constants
nobs <- 1000
nspecies <- 20
species <- c(1:nspecies,sample(c(1:nspecies),(nobs-nspecies),replace=TRUE))

# Covariates
X1 <- runif(n=nobs,min=-10,max=10)
X2 <- runif(n=nobs,min=-10,max=10)
X <- cbind(rep(1,nobs),X1,X2)
W <- X

# Target parameters
# beta
beta.target <- matrix(c(0.3,0.2,0.1),ncol=1)
# Vb
Vb.target <- c(0.5,0.05,0.05)
# b
b.target <- cbind(rnorm(nspecies,mean=0,sd=sqrt(Vb.target[1])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[2])),
rnorm(nspecies,mean=0,sd=sqrt(Vb.target[3])))

# Response
theta <- vector()
Y <- vector()
for (n in 1:nobs) {

theta[n] <- inv.logit(X[n,]%*%beta.target+W[n,]%*%b.target[species[n],])
Y[n] <- rbinom(n=1,size=1,prob=theta[n])

}

# Data-set
Data <- as.data.frame(cbind(Y,theta,X1,X2,species))
plot(Data$X1,Data$theta)

#== Call to MCMChlogit
model <- MCMChlogit(fixed=Y~X1+X2, random=~X1+X2, group="species",

data=Data, burnin=5000, mcmc=1000, thin=1,verbose=1,
seed=NA, beta.start=0, sigma2.start=1,
Vb.start=1, mubeta=0, Vbeta=1.0E6,
r=3, R=diag(c(1,0.1,0.1)), nu=0.001, delta=0.001, FixOD=1)

#== MCMC analysis

# Graphics
pdf("Posteriors-MCMChlogit.pdf")
plot(model$mcmc)
dev.off()

# Summary
summary(model$mcmc)

# Predictive posterior mean for each observation
model$theta.pred
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# Predicted-Observed
plot(Data$theta,model$theta.pred)
abline(a=0,b=1)

## #Not run
## #You can also compare with lme4 results
## #== lme4 resolution
## library(lme4)
## model.lme4 <- lmer(Y~X1+X2+(1+X1+X2|species),data=Data,family="binomial")
## summary(model.lme4)
## plot(fitted(model.lme4),model$theta.pred,main="MCMChlogit/lme4")
## abline(a=0,b=1)

## End(Not run)

MCMChpoisson Markov Chain Monte Carlo for the Hierarchical Poisson Linear Re-
gression Model using the log link function

Description

MCMChpoisson generates a sample from the posterior distribution of a Hierarchical Poisson Linear
Regression Model using the log link function and Algorithm 2 of Chib and Carlin (1999). This
model uses a multivariate Normal prior for the fixed effects parameters, an Inverse-Wishart prior
on the random effects variance matrix, and an Inverse-Gamma prior on the variance modelling
over-dispersion. The user supplies data and priors, and a sample from the posterior distribution is
returned as an mcmc object, which can be subsequently analyzed with functions provided in the
coda package.

Usage

MCMChpoisson(
fixed,
random,
group,
data,
burnin = 5000,
mcmc = 10000,
thin = 10,
verbose = 1,
seed = NA,
beta.start = NA,
sigma2.start = NA,
Vb.start = NA,
mubeta = 0,
Vbeta = 1e+06,
r,
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R,
nu = 0.001,
delta = 0.001,
FixOD = 0,
...

)

Arguments

fixed A two-sided linear formula of the form ’y~x1+...+xp’ describing the fixed-effects
part of the model, with the response on the left of a ’~’ operator and the p fixed
terms, separated by ’+’ operators, on the right. Response variable y must be 0
or 1 (Binomial process).

random A one-sided formula of the form ’~x1+...+xq’ specifying the model for the ran-
dom effects part of the model, with the q random terms, separated by ’+’ opera-
tors.

group String indicating the name of the grouping variable in data, defining the hierar-
chical structure of the model.

data A data frame containing the variables in the model.

burnin The number of burnin iterations for the sampler.

mcmc The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+mcmc. burnin+mcmc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister.

beta.start The starting values for the β vector. This can either be a scalar or a p-length
vector. The default value of NA will use the OLS β estimate of the correspond-
ing Gaussian Linear Regression without random effects. If this is a scalar, that
value will serve as the starting value mean for all of the betas.

sigma2.start Scalar for the starting value of the residual error variance. The default value of
NA will use the OLS estimates of the corresponding Gaussian Linear Regression
without random effects.

Vb.start The starting value for variance matrix of the random effects. This must be a
square q-dimension matrix. Default value of NA uses an identity matrix.

mubeta The prior mean of β. This can either be a scalar or a p-length vector. If this takes
a scalar value, then that value will serve as the prior mean for all of the betas.
The default value of 0 will use a vector of zeros for an uninformative prior.
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Vbeta The prior variance of β. This can either be a scalar or a square p-dimension
matrix. If this takes a scalar value, then that value times an identity matrix
serves as the prior variance of beta. Default value of 1.0E6 will use a diagonal
matrix with very large variance for an uninformative flat prior.

r The shape parameter for the Inverse-Wishart prior on variance matrix for the
random effects. r must be superior or equal to q. Set r=q for an uninformative
prior. See the NOTE for more details.

R The scale matrix for the Inverse-Wishart prior on variance matrix for the ran-
dom effects. This must be a square q-dimension matrix. Use plausible variance
regarding random effects for the diagonal of R. See the NOTE for more details.

nu The shape parameter for the Inverse-Gamma prior on the residual error variance.
Default value is nu=delta=0.001 for uninformative prior.

delta The rate (1/scale) parameter for the Inverse-Gamma prior on the residual error
variance. Default value is nu=delta=0.001 for uninformative prior.

FixOD A switch (0,1) which determines whether or not the variance for over-dispersion
(sigma2) should be fixed (1) or not (0). Default is 0, parameter sigma2 is esti-
mated. If FixOD=1, sigma2 is fixed to the value provided for sigma2.start.

... further arguments to be passed

Details

MCMChpoisson simulates from the posterior distribution sample using the blocked Gibbs sampler of
Chib and Carlin (1999), Algorithm 2. The simulation is done in compiled C++ code to maximize
efficiency. Please consult the coda documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

yi ∼ Poisson(λi)

With latent variables ϕ(λi), ϕ being the log link function:

ϕ(λi) = Xiβ +Wibi + εi

Where each group i have ki observations.

Where the random effects:

bi ∼ Nq(0, Vb)

And the over-dispersion terms:

εi ∼ N (0, σ2Iki)

We assume standard, conjugate priors:

β ∼ Np(µβ , Vβ)
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And:

σ2 ∼ IGamma(ν, 1/δ)

And:

Vb ∼ IWishart(r, rR)

See Chib and Carlin (1999) for more details.

NOTE: We do not provide default parameters for the priors on the precision matrix for the random
effects. When fitting one of these models, it is of utmost importance to choose a prior that reflects
your prior beliefs about the random effects. Using the dwish and rwish functions might be useful
in choosing these values.

Value

mcmc An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = −2 log(

∏
i P (yi|λi)), is also provided.

lambda.pred Predictive posterior mean for the exponential of the latent variables. The ap-
proximation of Diggle et al. (2004) is used to marginalized with respect to
over-dispersion terms:

E[λi|β, bi, σ2] = ϕ−1((Xiβ +Wibi) + 0.5σ2)

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Siddhartha Chib and Bradley P. Carlin. 1999. “On MCMC Sampling in Hierarchical Longitudinal
Models.” Statistics and Computing. 9: 17-26.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Andrew D. Martin and Kyle L. Saunders. 2002. “Bayesian Inference for Political Science Panel
Data.” Paper presented at the 2002 Annual Meeting of the American Political Science Association.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc, summary.mcmc

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Examples

## Not run:
#========================================
# Hierarchical Poisson Linear Regression
#========================================

#== Generating data

# Constants
nobs <- 1000
nspecies <- 20
species <- c(1:nspecies,sample(c(1:nspecies),(nobs-nspecies),replace=TRUE))

# Covariates
X1 <- runif(n=nobs,min=-1,max=1)
X2 <- runif(n=nobs,min=-1,max=1)
X <- cbind(rep(1,nobs),X1,X2)
W <- X

# Target parameters
# beta
beta.target <- matrix(c(0.1,0.1,0.1),ncol=1)
# Vb
Vb.target <- c(0.05,0.05,0.05)
# b
b.target <- cbind(rnorm(nspecies,mean=0,sd=sqrt(Vb.target[1])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[2])),
rnorm(nspecies,mean=0,sd=sqrt(Vb.target[3])))

# Response
lambda <- vector()
Y <- vector()
for (n in 1:nobs) {

lambda[n] <- exp(X[n,]%*%beta.target+W[n,]%*%b.target[species[n],])
Y[n] <- rpois(1,lambda[n])

}

# Data-set
Data <- as.data.frame(cbind(Y,lambda,X1,X2,species))
plot(Data$X1,Data$lambda)

#== Call to MCMChpoisson
model <- MCMChpoisson(fixed=Y~X1+X2, random=~X1+X2, group="species",

data=Data, burnin=5000, mcmc=1000, thin=1,verbose=1,
seed=NA, beta.start=0, sigma2.start=1,
Vb.start=1, mubeta=0, Vbeta=1.0E6,
r=3, R=diag(c(0.1,0.1,0.1)), nu=0.001, delta=0.001, FixOD=1)

#== MCMC analysis

# Graphics
pdf("Posteriors-MCMChpoisson.pdf")
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plot(model$mcmc)
dev.off()

# Summary
summary(model$mcmc)

# Predictive posterior mean for each observation
model$lambda.pred

# Predicted-Observed
plot(Data$lambda,model$lambda.pred)
abline(a=0,b=1)

## #Not run
## #You can also compare with lme4 results
## #== lme4 resolution
## library(lme4)
## model.lme4 <- lmer(Y~X1+X2+(1+X1+X2|species),data=Data,family="poisson")
## summary(model.lme4)
## plot(fitted(model.lme4),model$lambda.pred,main="MCMChpoisson/lme4")
## abline(a=0,b=1)

## End(Not run)

MCMChregress Markov Chain Monte Carlo for the Hierarchical Gaussian Linear Re-
gression Model

Description

MCMChregress generates a sample from the posterior distribution of a Hierarchical Gaussian Lin-
ear Regression Model using Algorithm 2 of Chib and Carlin (1999). This model uses a multivariate
Normal prior for the fixed effects parameters, an Inverse-Wishart prior on the random effects vari-
ance matrix, and an Inverse-Gamma prior on the residual error variance. The user supplies data and
priors, and a sample from the posterior distribution is returned as an mcmc object, which can be
subsequently analyzed with functions provided in the coda package.

Usage

MCMChregress(
fixed,
random,
group,
data,
burnin = 1000,
mcmc = 10000,
thin = 10,
verbose = 1,
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seed = NA,
beta.start = NA,
sigma2.start = NA,
Vb.start = NA,
mubeta = 0,
Vbeta = 1e+06,
r,
R,
nu = 0.001,
delta = 0.001,
...

)

Arguments

fixed A two-sided linear formula of the form ’y~x1+...+xp’ describing the fixed-effects
part of the model, with the response on the left of a ’~’ operator and the p fixed
terms, separated by ’+’ operators, on the right.

random A one-sided formula of the form ’~x1+...+xq’ specifying the model for the ran-
dom effects part of the model, with the q random terms, separated by ’+’ opera-
tors.

group String indicating the name of the grouping variable in data, defining the hierar-
chical structure of the model.

data A data frame containing the variables in the model.

burnin The number of burnin iterations for the sampler.

mcmc The number of Gibbs iterations for the sampler. Total number of Gibbs iterations
is equal to burnin+mcmc. burnin+mcmc must be divisible by 10 and superior or
equal to 100 so that the progress bar can be displayed.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch (0,1) which determines whether or not the progress of the sampler is
printed to the screen. Default is 1: a progress bar is printed, indicating the step
(in %) reached by the Gibbs sampler.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister.

beta.start The starting values for the β vector. This can either be a scalar or a p-length
vector. The default value of NA will use the OLS β estimate of the correspond-
ing Gaussian Linear Regression without random effects. If this is a scalar, that
value will serve as the starting value mean for all of the betas.

sigma2.start Scalar for the starting value of the residual error variance. The default value of
NA will use the OLS estimates of the corresponding Gaussian Linear Regression
without random effects.

Vb.start The starting value for variance matrix of the random effects. This must be a
square q-dimension matrix. Default value of NA uses an identity matrix.
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mubeta The prior mean of β. This can either be a scalar or a p-length vector. If this takes
a scalar value, then that value will serve as the prior mean for all of the betas.
The default value of 0 will use a vector of zeros for an uninformative prior.

Vbeta The prior variance of β. This can either be a scalar or a square p-dimension
matrix. If this takes a scalar value, then that value times an identity matrix
serves as the prior variance of beta. Default value of 1.0E6 will use a diagonal
matrix with very large variance for an uninformative flat prior.

r The shape parameter for the Inverse-Wishart prior on variance matrix for the
random effects. r must be superior or equal to q. Set r=q for an uninformative
prior. See the NOTE for more details

R The scale matrix for the Inverse-Wishart prior on variance matrix for the ran-
dom effects. This must be a square q-dimension matrix. Use plausible variance
regarding random effects for the diagonal of R. See the NOTE for more details

nu The shape parameter for the Inverse-Gamma prior on the residual error variance.
Default value is nu=delta=0.001 for uninformative prior.

delta The rate (1/scale) parameter for the Inverse-Gamma prior on the residual error
variance. Default value is nu=delta=0.001 for uninformative prior.

... further arguments to be passed

Details

MCMChregress simulates from the posterior distribution sample using the blocked Gibbs sampler of
Chib and Carlin (1999), Algorithm 2. The simulation is done in compiled C++ code to maximize
efficiency. Please consult the coda documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

yi = Xiβ +Wibi + εi

Where each group i have ki observations.

Where the random effects:

bi ∼ Nq(0, Vb)

And the errors:

εi ∼ N (0, σ2Iki
)

We assume standard, conjugate priors:

β ∼ Np(µβ , Vβ)

And:
σ2 ∼ IGamma(ν, 1/δ)

And:
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Vb ∼ IWishart(r, rR)

See Chib and Carlin (1999) for more details.

NOTE: We do not provide default parameters for the priors on the precision matrix for the random
effects. When fitting one of these models, it is of utmost importance to choose a prior that reflects
your prior beliefs about the random effects. Using the dwish and rwish functions might be useful
in choosing these values.

Value

mcmc An mcmc object that contains the posterior sample. This object can be summa-
rized by functions provided by the coda package. The posterior sample of the
deviance D, with D = −2 log(

∏
i P (yi|β, bi, σ2)), is also provided.

Y.pred Predictive posterior mean for each observation.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

References

Siddhartha Chib and Bradley P. Carlin. 1999. “On MCMC Sampling in Hierarchical Longitudinal
Models.” Statistics and Computing. 9: 17-26.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Andrew D. Martin and Kyle L. Saunders. 2002. “Bayesian Inference for Political Science Panel
Data.” Paper presented at the 2002 Annual Meeting of the American Political Science Association.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc, summary.mcmc

Examples

## Not run:
#========================================
# Hierarchical Gaussian Linear Regression
#========================================

#== Generating data

# Constants
nobs <- 1000
nspecies <- 20
species <- c(1:nspecies,sample(c(1:nspecies),(nobs-nspecies),replace=TRUE))

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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# Covariates
X1 <- runif(n=nobs,min=0,max=10)
X2 <- runif(n=nobs,min=0,max=10)
X <- cbind(rep(1,nobs),X1,X2)
W <- X

# Target parameters
# beta
beta.target <- matrix(c(0.1,0.3,0.2),ncol=1)
# Vb
Vb.target <- c(0.5,0.2,0.1)
# b
b.target <- cbind(rnorm(nspecies,mean=0,sd=sqrt(Vb.target[1])),

rnorm(nspecies,mean=0,sd=sqrt(Vb.target[2])),
rnorm(nspecies,mean=0,sd=sqrt(Vb.target[3])))

# sigma2
sigma2.target <- 0.02

# Response
Y <- vector()
for (n in 1:nobs) {

Y[n] <- rnorm(n=1,
mean=X[n,]%*%beta.target+W[n,]%*%b.target[species[n],],
sd=sqrt(sigma2.target))

}

# Data-set
Data <- as.data.frame(cbind(Y,X1,X2,species))
plot(Data$X1,Data$Y)

#== Call to MCMChregress
model <- MCMChregress(fixed=Y~X1+X2, random=~X1+X2, group="species",

data=Data, burnin=1000, mcmc=1000, thin=1,verbose=1,
seed=NA, beta.start=0, sigma2.start=1,
Vb.start=1, mubeta=0, Vbeta=1.0E6,
r=3, R=diag(c(1,0.1,0.1)), nu=0.001, delta=0.001)

#== MCMC analysis

# Graphics
pdf("Posteriors-MCMChregress.pdf")
plot(model$mcmc)
dev.off()

# Summary
summary(model$mcmc)

# Predictive posterior mean for each observation
model$Y.pred

# Predicted-Observed
plot(Data$Y,model$Y.pred)
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abline(a=0,b=1)

## End(Not run)

MCMCirt1d Markov Chain Monte Carlo for One Dimensional Item Response The-
ory Model

Description

This function generates a sample from the posterior distribution of a one dimensional item response
theory (IRT) model, with Normal priors on the subject abilities (ideal points), and multivariate
Normal priors on the item parameters. The user supplies data and priors, and a sample from the
posterior distribution is returned as an mcmc object, which can be subsequently analyzed with
functions provided in the coda package.

Usage

MCMCirt1d(
datamatrix,
theta.constraints = list(),
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
theta.start = NA,
alpha.start = NA,
beta.start = NA,
t0 = 0,
T0 = 1,
ab0 = 0,
AB0 = 0.25,
store.item = FALSE,
store.ability = TRUE,
drop.constant.items = TRUE,
...

)

Arguments

datamatrix The matrix of data. Must be 0, 1, or missing values. The rows of datamatrix
correspond to subjects and the columns correspond to items.

theta.constraints

A list specifying possible simple equality or inequality constraints on the ability
parameters. A typical entry in the list has one of three forms: varname=c which
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will constrain the ability parameter for the subject named varname to be equal
to c, varname="+" which will constrain the ability parameter for the subject
named varname to be positive, and varname="-" which will constrain the ability
parameter for the subject named varname to be negative. If x is a matrix without
row names defaults names of “V1",“V2", ... , etc will be used. See Rivers (2003)
for a thorough discussion of identification of IRT models.

burnin The number of burn-in iterations for the sampler.
mcmc The number of Gibbs iterations for the sampler.
thin The thinning interval used in the simulation. The number of Gibbs iterations

must be divisible by this value.
verbose A switch which determines whether or not the progress of the sampler is printed

to the screen. If verbose is greater than 0 then every verboseth iteration will
be printed to the screen.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

theta.start The starting values for the subject abilities (ideal points). This can either be a
scalar or a column vector with dimension equal to the number of voters. If this
takes a scalar value, then that value will serve as the starting value for all of
the thetas. The default value of NA will choose the starting values based on an
eigenvalue-eigenvector decomposition of the aggreement score matrix formed
from the datamatrix.

alpha.start The starting values for the α difficulty parameters. This can either be a scalar
or a column vector with dimension equal to the number of items. If this takes a
scalar value, then that value will serve as the starting value for all of the alphas.
The default value of NA will set the starting values based on a series of probit
regressions that condition on the starting values of theta.

beta.start The starting values for the β discrimination parameters. This can either be a
scalar or a column vector with dimension equal to the number of items. If this
takes a scalar value, then that value will serve as the starting value for all of the
betas. The default value of NA will set the starting values based on a series of
probit regressions that condition on the starting values of theta.

t0 A scalar parameter giving the prior mean of the subject abilities (ideal points).
T0 A scalar parameter giving the prior precision (inverse variance) of the subject

abilities (ideal points).
ab0 The prior mean of (alpha, beta). Can be either a scalar or a 2-vector. If a

scalar both means will be set to the passed value. The prior mean is assumed to
be the same across all items.

AB0 The prior precision of (alpha, beta).This can either be ascalar or a 2 by 2
matrix. If this takes a scalar value, then that value times an identity matrix serves
as the prior precision. The prior precision is assumed to be the same across all
items.
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store.item A switch that determines whether or not to store the item parameters for poste-
rior analysis. NOTE: In situations with many items storing the item parameters
takes an enormous amount of memory, so store.item should only be FALSE if
the chain is thinned heavily, or for applications with a small number of items.
By default, the item parameters are not stored.

store.ability A switch that determines whether or not to store the ability parameters for pos-
terior analysis. NOTE: In situations with many individuals storing the ability
parameters takes an enormous amount of memory, so store.ability should
only be TRUE if the chain is thinned heavily, or for applications with a small
number of individuals. By default, the item parameters are stored.

drop.constant.items

A switch that determines whether or not items that have no variation should be
deleted before fitting the model. Default = TRUE.

... further arguments to be passed

Details

If you are interested in fitting K-dimensional item response theory models, or would rather identify
the model by placing constraints on the item parameters, please see MCMCirtKd.

MCMCirt1d simulates from the posterior distribution using standard Gibbs sampling using data aug-
mentation (a Normal draw for the subject abilities, a multivariate Normal draw for the item parame-
ters, and a truncated Normal draw for the latent utilities). The simulation proper is done in compiled
C++ code to maximize efficiency. Please consult the coda documentation for a comprehensive list
of functions that can be used to analyze the posterior sample.

The model takes the following form. We assume that each subject has an subject ability (ideal point)
denoted θj and that each item has a difficulty parameter αi and discrimination parameter βi. The
observed choice by subject j on item i is the observed data matrix which is (I × J). We assume
that the choice is dictated by an unobserved utility:

zi,j = −αi + βiθj + εi,j

Where the errors are assumed to be distributed standard Normal. The parameters of interest are the
subject abilities (ideal points) and the item parameters.

We assume the following priors. For the subject abilities (ideal points):

θj ∼ N (t0, T
−1
0 )

For the item parameters, the prior is:

[αi, βi]
′ ∼ N2(ab0, AB−1

0 )

The model is identified by the proper priors on the item parameters and constraints placed on the
ability parameters.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the item parameters.
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Value

An mcmc object that contains the sample from the posterior distribution. This object can be sum-
marized by functions provided by the coda package.

References

James H. Albert. 1992. “Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs
Sampling." Journal of Educational Statistics. 17: 251-269.

Joshua Clinton, Simon Jackman, and Douglas Rivers. 2004. “The Statistical Analysis of Roll Call
Data." American Political Science Review. 98: 355-370.

Valen E. Johnson and James H. Albert. 1999. “Ordinal Data Modeling." Springer: New York.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Douglas Rivers. 2004. “Identification of Multidimensional Item-Response Models." Stanford Uni-
versity, typescript.

See Also

plot.mcmc,summary.mcmc, MCMCirtKd

Examples

## Not run:
## US Supreme Court Example with inequality constraints
data(SupremeCourt)
posterior1 <- MCMCirt1d(t(SupremeCourt),

theta.constraints=list(Scalia="+", Ginsburg="-"),
B0.alpha=.2, B0.beta=.2,
burnin=500, mcmc=100000, thin=20, verbose=500,
store.item=TRUE)

geweke.diag(posterior1)
plot(posterior1)
summary(posterior1)

## US Senate Example with equality constraints
data(Senate)
Sen.rollcalls <- Senate[,6:677]
posterior2 <- MCMCirt1d(Sen.rollcalls,

theta.constraints=list(KENNEDY=-2, HELMS=2),
burnin=2000, mcmc=100000, thin=20, verbose=500)

geweke.diag(posterior2)
plot(posterior2)
summary(posterior2)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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## End(Not run)

MCMCirtHier1d Markov Chain Monte Carlo for Hierarchical One Dimensional Item
Response Theory Model, Covariates Predicting Latent Ideal Point
(Ability)

Description

This function generates a sample from the posterior distribution of a one dimensional item response
theory (IRT) model, with multivariate Normal priors on the item parameters, and a Normal-Inverse
Gamma hierarchical prior on subject ideal points (abilities). The user supplies item-response data,
subject covariates, and priors. Note that this identification strategy obviates the constraints used on
theta in MCMCirt1d. A sample from the posterior distribution is returned as an mcmc object, which
can be subsequently analyzed with functions provided in the coda package.

Usage

MCMCirtHier1d(
datamatrix,
Xjdata,
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
theta.start = NA,
a.start = NA,
b.start = NA,
beta.start = NA,
b0 = 0,
B0 = 0.01,
c0 = 0.001,
d0 = 0.001,
ab0 = 0,
AB0 = 0.25,
store.item = FALSE,
store.ability = TRUE,
drop.constant.items = TRUE,
marginal.likelihood = c("none", "Chib95"),
px = TRUE,
px_a0 = 10,
px_b0 = 10,
...

)
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Arguments

datamatrix The matrix of data. Must be 0, 1, or missing values. The rows of datamatrix
correspond to subjects and the columns correspond to items.

Xjdata A data.frame containing second-level predictor covariates for ideal points θ.
Predictors are modeled as a linear regression on the mean vector of θ; the pos-
terior sample contains regression coefficients β and common variance σ2. See
Rivers (2003) for a thorough discussion of identification of IRT models.

burnin The number of burn-in iterations for the sampler.
mcmc The number of Gibbs iterations for the sampler.
thin The thinning interval used in the simulation. The number of Gibbs iterations

must be divisible by this value.
verbose A switch which determines whether or not the progress of the sampler is printed

to the screen. If verbose is greater than 0 then every verboseth iteration will
be printed to the screen.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

theta.start The starting values for the subject abilities (ideal points). This can either be
a scalar or a column vector with dimension equal to the number of voters. If
this takes a scalar value, then that value will serve as the starting value for all
of the thetas. The default value of NA will choose the starting values based on
an eigenvalue-eigenvector decomposition of the agreement score matrix formed
from the datamatrix.

a.start The starting values for the a difficulty parameters. This can either be a scalar
or a column vector with dimension equal to the number of items. If this takes a
scalar value, then that value will serve as the starting value for all a. The default
value of NA will set the starting values based on a series of probit regressions
that condition on the starting values of theta.

b.start The starting values for the b discrimination parameters. This can either be a
scalar or a column vector with dimension equal to the number of items. If this
takes a scalar value, then that value will serve as the starting value for all b.
The default value of NA will set the starting values based on a series of probit
regressions that condition on the starting values of theta.

beta.start The starting values for the β regression coefficients that predict the means of
ideal points θ. This can either be a scalar or a column vector with length equal
to the number of covariates. If this takes a scalar value, then that value will
serve as the starting value for all of the betas. The default value of NA will
set the starting values based on a linear regression of the covariates on (either
provided or generated) theta.start.

b0 The prior mean of β. Can be either a scalar or a vector of length equal to the
number of subject covariates. If a scalar all means with be set to the passed
value.
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B0 The prior precision of β. This can either be a scalar or a square matrix with di-
mensions equal to the number of betas. If this takes a scalar value, then that value
times an identity matrix serves as the prior precision of beta. A default proper
but diffuse value of .01 ensures finite marginal likelihood for model comparison.
A value of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance of
θ). The amount of information in the inverse Gamma prior is something like
that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
θ). In constructing the inverse Gamma prior, d0 acts like the sum of squared
errors from the c0 pseudo-observations.

ab0 The prior mean of (a, b). Can be either a scalar or a 2-vector. If a scalar both
means will be set to the passed value. The prior mean is assumed to be the same
across all items.

AB0 The prior precision of (a, b).This can either be ascalar or a 2 by 2 matrix. If
this takes a scalar value, then that value times an identity matrix serves as the
prior precision. The prior precision is assumed to be the same across all items.

store.item A switch that determines whether or not to store the item parameters for poste-
rior analysis. NOTE: In situations with many items storing the item parameters
takes an enormous amount of memory, so store.item should only be TRUE if
the chain is thinned heavily, or for applications with a small number of items.
By default, the item parameters are not stored.

store.ability A switch that determines whether or not to store the ability parameters for pos-
terior analysis. NOTE: In situations with many individuals storing the ability
parameters takes an enormous amount of memory, so store.ability should
only be TRUE if the chain is thinned heavily, or for applications with a small
number of individuals. By default, ability parameters are stored.

drop.constant.items

A switch that determines whether or not items that have no variation should be
deleted before fitting the model. Default = TRUE.

marginal.likelihood

Should the marginal likelihood of the second-level model on ideal points be
calculated using the method of Chib (1995)? It is stored as an attribute of the
posterior mcmc object and suitable for comparison using BayesFactor.

px Use Parameter Expansion to reduce autocorrelation in the chain? PX introduces
an unidentified parameter alpha for the residual variance in the latent data (Liu
and Wu 1999). Default = TRUE

px_a0 Prior shape parameter for the inverse-gamma distribution on alpha, the residual
variance of the latent data. Default=10.

px_b0 Prior scale parameter for the inverse-gamma distribution on alpha, the residual
variance of the latent data. Default = 10

... further arguments to be passed
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Details

If you are interested in fitting K-dimensional item response theory models, or would rather identify
the model by placing constraints on the item parameters, please see MCMCirtKd.

MCMCirtHier1d simulates from the posterior distribution using standard Gibbs sampling using data
augmentation (a Normal draw for the subject abilities, a multivariate Normal draw for (second-
level) subject ability predictors, an Inverse-Gamma draw for the (second-level) variance of subject
abilities, a multivariate Normal draw for the item parameters, and a truncated Normal draw for the
latent utilities). The simulation proper is done in compiled C++ code to maximize efficiency. Please
consult the coda documentation for a comprehensive list of functions that can be used to analyze
the posterior sample.

The model takes the following form. We assume that each subject has an subject ability (ideal point)
denoted θj and that each item has a difficulty parameter ai and discrimination parameter bi. The
observed choice by subject j on item i is the observed data matrix which is (I × J). We assume
that the choice is dictated by an unobserved utility:

zi,j = −αi + βiθj + εi,j

Where the errors are assumed to be distributed standard Normal. This constitutes the measurement
or level-1 model. The subject abilities (ideal points) are modeled by a second level Normal linear
predictor for subject covariates Xjdata, with common variance σ2. The parameters of interest are
the subject abilities (ideal points), item parameters, and second-level coefficients.

We assume the following priors. For the subject abilities (ideal points):

θj ∼ N (µθ, T
−1
0 )

For the item parameters, the prior is:

[ai, bi]
′ ∼ N2(ab0, AB−1

0 )

The model is identified by the proper priors on the item parameters and constraints placed on the
ability parameters.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the item parameters.

Value

An mcmc object that contains the sample from the posterior distribution. This object can be summa-
rized by functions provided by the coda package. If marginal.likelihood = "Chib95" the object
will have attribute logmarglike.

Author(s)

Michael Malecki, <mike@crunch.io>, https://github.com/malecki.

https://github.com/malecki
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See Also

plot.mcmc,summary.mcmc, MCMCirtKd

Examples

## Not run:
data(SupremeCourt)

Xjdata <- data.frame(presparty= c(1,1,0,1,1,1,1,0,0),
sex= c(0,0,1,0,0,0,0,1,0))

## Parameter Expansion reduces autocorrelation.
posterior1 <- MCMCirtHier1d(t(SupremeCourt),

burnin=50000, mcmc=10000, thin=20,
verbose=10000,
Xjdata=Xjdata,
marginal.likelihood="Chib95",

px=TRUE)

## But, you can always turn it off.
posterior2 <- MCMCirtHier1d(t(SupremeCourt),

burnin=50000, mcmc=10000, thin=20,
verbose=10000,
Xjdata=Xjdata,
#marginal.likelihood="Chib95",

px=FALSE)
## Note that the hierarchical model has greater autocorrelation than
## the naive IRT model.

posterior0 <- MCMCirt1d(t(SupremeCourt),

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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theta.constraints=list(Scalia="+", Ginsburg="-"),
B0.alpha=.2, B0.beta=.2,
burnin=50000, mcmc=100000, thin=100, verbose=10000,
store.item=FALSE)

## Randomly 10% Missing -- this affects the expansion parameter, increasing
## the variance of the (unidentified) latent parameter alpha.

scMiss <- SupremeCourt
scMiss[matrix(as.logical(rbinom(nrow(SupremeCourt)*ncol(SupremeCourt), 1, .1)),

dim(SupremeCourt))] <- NA

posterior1.miss <- MCMCirtHier1d(t(scMiss),
burnin=80000, mcmc=10000, thin=20,
verbose=10000,
Xjdata=Xjdata,
marginal.likelihood="Chib95",

px=TRUE)

## End(Not run)

MCMCirtKd Markov Chain Monte Carlo for K-Dimensional Item Response Theory
Model

Description

This function generates a sample from the posterior distribution of a K-dimensional item response
theory (IRT) model, with standard normal priors on the subject abilities (ideal points), and normal
priors on the item parameters. The user supplies data and priors, and a sample from the posterior
distribution is returned as an mcmc object, which can be subsequently analyzed with functions
provided in the coda package.

Usage

MCMCirtKd(
datamatrix,
dimensions,
item.constraints = list(),
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
alphabeta.start = NA,
b0 = 0,
B0 = 0,
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store.item = FALSE,
store.ability = TRUE,
drop.constant.items = TRUE,
...

)

Arguments

datamatrix The matrix of data. Must be 0, 1, or missing values. It is of dimensionality
subjects by items.

dimensions The number of dimensions in the latent space.
item.constraints

List of lists specifying possible equality or simple inequality constraints on the
item parameters. A typical entry in the list has one of three forms: rowname=list(d,c)
which will constrain the dth item parameter for the item named rowname to be
equal to c, rowname=list(d,"+") which will constrain the dth item parameter
for the item named rowname to be positive, androwname=list(d, "-") which
will constrain the dth item parameter for the item named rowname to be neg-
ative. If x is a matrix without row names defaults names of “V1", “V2", ... ,
etc will be used. In a K dimensional model, the first item parameter for item
i is the difficulty parameter (αi), the second item parameter is the discrimation
parameter on dimension 1 (βi,1), the third item parameter is the discrimation
parameter on dimension 2 (βi,2), ..., and the (K+1)th item parameter is the dis-
crimation parameter on dimension K (βi,1). The item difficulty parameters (α)
should generally not be constrained.

burnin The number of burn-in iterations for the sampler.

mcmc The number of iterations for the sampler.

thin The thinning interval used in the simulation. The number of iterations must be
divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 then every verboseth iteration will
be printed to the screen.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

alphabeta.start

The starting values for the α and β difficulty and discrimination parameters.
If alphabeta.start is set to a scalar the starting value for all unconstrained
item parameters will be set to that scalar. If alphabeta.start is a matrix of
dimension (K + 1) × items then the alphabeta.start matrix is used as the
starting values (except for equality-constrained elements). If alphabeta.start
is set to NA (the default) then starting values for unconstrained elements are set
to values generated from a series of proportional odds logistic regression fits,
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and starting values for inequality constrained elements are set to either 1.0 or
-1.0 depending on the nature of the constraints.

b0 The prior means of the α and β difficulty and discrimination parameters, stacked
for all items. If a scalar is passed, it is used as the prior mean for all items.

B0 The prior precisions (inverse variances) of the independent normal prior on the
item parameters. Can be either a scalar or a matrix of dimension (K + 1) ×
items.

store.item A switch that determines whether or not to store the item parameters for pos-
terior analysis. NOTE: In applications with many items this takes an enormous
amount of memory. If you have many items and want to want to store the item
parameters you may want to thin the chain heavily. By default, the item param-
eters are not stored.

store.ability A switch that determines whether or not to store the subject abilities for posterior
analysis. NOTE: In applications with many subjects this takes an enormous
amount of memory. If you have many subjects and want to want to store the
ability parameters you may want to thin the chain heavily. By default, the ability
parameters are all stored.

drop.constant.items

A switch that determines whether or not items that have no variation should be
deleted before fitting the model. Default = TRUE.

... further arguments to be passed

Details

MCMCirtKd simulates from the posterior distribution using standard Gibbs sampling using data aug-
mentation (a normal draw for the subject abilities, a multivariate normal draw for the item parame-
ters, and a truncated normal draw for the latent utilities). The simulation proper is done in compiled
C++ code to maximize efficiency. Please consult the coda documentation for a comprehensive list
of functions that can be used to analyze the posterior sample.

The default number of burnin and mcmc iterations is much smaller than the typical default values in
MCMCpack. This is because fitting this model is extremely computationally expensive. It does not
mean that this small of a number of scans will yield good estimates. The priors of this model need
to be proper for identification purposes. The user is asked to provide prior means and precisions
(not variances) for the item parameters and the subject parameters.

The model takes the following form. We assume that each subject has an ability (ideal point)
denoted θj (K × 1), and that each item has a difficulty parameter αi and discrimination parameter
βi (K×1). The observed choice by subject j on item i is the observed data matrix which is (I×J).
We assume that the choice is dictated by an unobserved utility:

zi,j = −αi + β′
iθj + εi,j

Where the εi,js are assumed to be distributed standard normal. The parameters of interest are the
subject abilities (ideal points) and the item parameters.

We assume the following priors. For the subject abilities (ideal points) we assume independent
standard normal priors:
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θj,k ∼ N (0, 1)

These cannot be changed by the user. For each item parameter, we assume independent normal
priors:

[αi, βi]
′ ∼ N(K+1)(b0,i, B0,i)

Where B0,i is a diagonal matrix. One can specify a separate prior mean and precision for each item
parameter.

The model is identified by the constraints on the item parameters (see Jackman 2001). The user
cannot place constraints on the subject abilities. This identification scheme differs from that in
MCMCirt1d, which uses constraints on the subject abilities to identify the model. In our experience,
using subject ability constraints for models in greater than one dimension does not work particularly
well.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the item parameters.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.
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See Also

plot.mcmc,summary.mcmc, MCMCirt1d, MCMCordfactanal
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Examples

## Not run:
data(SupremeCourt)
# note that the rownames (the item names) are "1", "2", etc
posterior1 <- MCMCirtKd(t(SupremeCourt), dimensions=1,

burnin=5000, mcmc=50000, thin=10,
B0=.25, store.item=TRUE,
item.constraints=list("1"=list(2,"-")))

plot(posterior1)
summary(posterior1)

data(Senate)
Sen.rollcalls <- Senate[,6:677]
posterior2 <- MCMCirtKd(Sen.rollcalls, dimensions=2,

burnin=5000, mcmc=50000, thin=10,
item.constraints=list(rc2=list(2,"-"), rc2=c(3,0),

rc3=list(3,"-")),
B0=.25)

plot(posterior2)
summary(posterior2)

## End(Not run)

MCMCirtKdRob Markov Chain Monte Carlo for Robust K-Dimensional Item Response
Theory Model

Description

This function generates a posterior sample from a Robust K-dimensional item response theory (IRT)
model with logistic link, independent standard normal priors on the subject abilities (ideal points),
and independent normal priors on the item parameters. The user supplies data and priors, and a
sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

Usage

MCMCirtKdRob(
datamatrix,
dimensions,
item.constraints = list(),
ability.constraints = list(),
burnin = 500,
mcmc = 5000,
thin = 1,
interval.method = "step",
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theta.w = 0.5,
theta.mp = 4,
alphabeta.w = 1,
alphabeta.mp = 4,
delta0.w = NA,
delta0.mp = 3,
delta1.w = NA,
delta1.mp = 3,
verbose = FALSE,
seed = NA,
theta.start = NA,
alphabeta.start = NA,
delta0.start = NA,
delta1.start = NA,
b0 = 0,
B0 = 0,
k0 = 0.1,
k1 = 0.1,
c0 = 1,
d0 = 1,
c1 = 1,
d1 = 1,
store.item = TRUE,
store.ability = FALSE,
drop.constant.items = TRUE,
...

)

Arguments

datamatrix The matrix of data. Must be 0, 1, or missing values. It is of dimensionality
subjects by items.

dimensions The number of dimensions in the latent space.

item.constraints

List of lists specifying possible equality or simple inequality constraints on the
item parameters. A typical entry in the list has one of three forms: rowname=list(d,c)
which will constrain the dth item parameter for the item named rowname to be
equal to c, rowname=list(d,"+") which will constrain the dth item parameter
for the item named rowname to be positive, and rowname=list(d, "-") which
will constrain the dth item parameter for the item named rowname to be nega-
tive. If datamatrix is a matrix without row names defaults names of “V1", “V2",
... , etc will be used. In a K-dimensional model, the first item parameter for item
i is the difficulty parameter (αi), the second item parameter is the discrimation
parameter on dimension 1 (βi,1), the third item parameter is the discrimation
parameter on dimension 2 (βi,2), ..., and the (K + 1)th item parameter is the
discrimation parameter on dimension K (βi,K). The item difficulty parameters
(α) should generally not be constrained.
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ability.constraints

List of lists specifying possible equality or simple inequality constraints on the
ability parameters. A typical entry in the list has one of three forms: colname=list(d,c)
which will constrain the dth ability parameter for the subject named colname to
be equal to c, colname=list(d,"+") which will constrain the dth ability pa-
rameter for the subject named colname to be positive, and colname=list(d,
"-") which will constrain the dth ability parameter for the subject named col-
name to be negative. If datamatrix is a matrix without column names defaults
names of “V1", “V2", ... , etc will be used.

burnin The number of burn-in iterations for the sampler.

mcmc The number of iterations for the sampler after burn-in.

thin The thinning interval used in the simulation. The number of iterations must be
divisible by this value.

interval.method

Method for finding the slicing interval. Can be equal to either step in which case
the stepping out algorithm of Neal (2003) is used or doubling in which case
the doubling procedure of Neal (2003) is used. The stepping out method tends
to be faster on a per-iteration basis as it typically requires few function calls.
The doubling method expands the initial interval more quickly which makes the
Markov chain mix somewhat more quickly– at least in some situations.

theta.w The initial width of the slice sampling interval for each ability parameter (the
elements of θ)

theta.mp The parameter governing the maximum possible width of the slice interval for
each ability parameter (the elements of θ). If interval.method="step" then
the maximum width is theta.w * theta.mp.
If interval.method="doubling" then the maximum width is theta.w * 2^theta.mp.

alphabeta.w The initial width of the slice sampling interval for each item parameter (the
elements of α and β)

alphabeta.mp The parameter governing the maximum possible width of the slice interval for
each item parameters (the elements of α and β). If interval.method="step"
then the maximum width is alphabeta.w * alphabeta.mp.
If interval.method="doubling" then the maximum width is alphabeta.w *
2^alphabeta.mp.

delta0.w The initial width of the slice sampling interval for δ0
delta0.mp The parameter governing the maximum possible width of the slice interval for

δ0. If interval.method="step" then the maximum width is delta0.w * delta0.mp.
If interval.method="doubling" then the maximum width is delta0.w * 2^delta0.mp.

delta1.w The initial width of the slice sampling interval for δ1
delta1.mp The parameter governing the maximum possible width of the slice interval for

δ1. If interval.method="step" then the maximum width is delta1.w * delta1.mp.
If interval.method="doubling" then the maximum width is delta1.w * 2^delta1.mp.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose > 0, the iteration number with be printed to the screen
every verbose’th iteration.
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seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

theta.start The starting values for the ability parameters θ. Can be either a scalar or a matrix
with number of rows equal to the number of subjects and number of columns
equal to the dimension K of the latent space. If theta.start=NA then starting
values will be chosen that are 0 for unconstrained subjects, -0.5 for subjects
with negative inequality constraints and 0.5 for subjects with positive inequality
constraints.

alphabeta.start

The starting values for the α and β difficulty and discrimination parameters.
If alphabeta.start is set to a scalar the starting value for all unconstrained
item parameters will be set to that scalar. If alphabeta.start is a matrix of
dimension (K + 1) × items then the alphabeta.start matrix is used as the
starting values (except for equality-constrained elements). If alphabeta.start
is set to NA (the default) then starting values for unconstrained elements are set
to values generated from a series of proportional odds logistic regression fits,
and starting values for inequality constrained elements are set to either 1.0 or
-1.0 depending on the nature of the constraints.

delta0.start The starting value for the δ0 parameter.

delta1.start The starting value for the δ1 parameter.

b0 The prior means of the α and β difficulty and discrimination parameters, stacked
for all items. If a scalar is passed, it is used as the prior mean for all items.

B0 The prior precisions (inverse variances) of the independent Normal prior on the
item parameters. Can be either a scalar or a matrix of dimension (K + 1) ×
items.

k0 δ0 is constrained to lie in the interval between 0 and k0.

k1 δ1 is constrained to lie in the interval between 0 and k1.

c0 Parameter governing the prior for δ0. δ0 divided by k0 is assumed to be follow
a beta distribution with first parameter c0.

d0 Parameter governing the prior for δ0. δ0 divided by k0 is assumed to be follow
a beta distribution with second parameter d0.

c1 Parameter governing the prior for δ1. δ1 divided by k1 is assumed to be follow
a beta distribution with first parameter c1.

d1 Parameter governing the prior for δ1. δ1 divided by k1 is assumed to be follow
a beta distribution with second parameter d1.

store.item A switch that determines whether or not to store the item parameters for poste-
rior analysis. NOTE: This typically takes an enormous amount of memory, so
should only be used if the chain is thinned heavily, or for applications with a
small number of items. By default, the item parameters are not stored.
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store.ability A switch that determines whether or not to store the subject abilities for posterior
analysis. By default, the item parameters are all stored.

drop.constant.items

A switch that determines whether or not items that have no variation should be
deleted before fitting the model. Default = TRUE.

... further arguments to be passed

Details

MCMCirtKdRob simulates from the posterior using the slice sampling algorithm of Neal (2003).
The simulation proper is done in compiled C++ code to maximize efficiency. Please consult the
coda documentation for a comprehensive list of functions that can be used to analyze the posterior
sample.

The model takes the following form. We assume that each subject has an subject ability (ideal
point) denoted θj (K×1), and that each item has a scalar difficulty parameter αi and discrimination
parameter βi (K×1). The observed choice by subject j on item i is the observed data matrix which
is (I × J).

The probability that subject j answers item i correctly is assumed to be:

πij = δ0 + (1− δ0 − δ1)/(1 + exp(αi − βiθj))

This model was discussed in Bafumi et al. (2005).

We assume the following priors. For the subject abilities (ideal points) we assume independent
standard Normal priors:

θj,k ∼ N (0, 1)

These cannot be changed by the user. For each item parameter, we assume independent Normal
priors:

[αi, βi]
′ ∼ N(K+1)(b0,i, B0,i)

Where B0,i is a diagonal matrix. One can specify a separate prior mean and precision for each item
parameter. We also assume δ0/k0 ∼Beta(c0, d0) and δ1/k1 ∼Beta(c1, d1).

The model is identified by constraints on the item parameters and / or ability parameters. See Rivers
(2004) for a discussion of identification of IRT models.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the item parameters.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.
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See Also

plot.mcmc,summary.mcmc, MCMCirt1d, MCMCirtKd

Examples

## Not run:
## Court example with ability (ideal point) and
## item (case) constraints
data(SupremeCourt)
post1 <- MCMCirtKdRob(t(SupremeCourt), dimensions=1,

burnin=500, mcmc=5000, thin=1,
B0=.25, store.item=TRUE, store.ability=TRUE,
ability.constraints=list("Thomas"=list(1,"+"),
"Stevens"=list(1,-4)),
item.constraints=list("1"=list(2,"-")),
verbose=50)

plot(post1)
summary(post1)

## Senate example with ability (ideal point) constraints
data(Senate)
namestring <- as.character(Senate$member)
namestring[78] <- "CHAFEE1"
namestring[79] <- "CHAFEE2"
namestring[59] <- "SMITH.NH"

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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namestring[74] <- "SMITH.OR"
rownames(Senate) <- namestring
post2 <- MCMCirtKdRob(Senate[,6:677], dimensions=1,

burnin=1000, mcmc=5000, thin=1,
ability.constraints=list("KENNEDY"=list(1,-4),

"HELMS"=list(1, 4), "ASHCROFT"=list(1,"+"),
"BOXER"=list(1,"-"), "KERRY"=list(1,"-"),
"HATCH"=list(1,"+")),

B0=0.1, store.ability=TRUE, store.item=FALSE,
verbose=5, k0=0.15, k1=0.15,
delta0.start=0.13, delta1.start=0.13)

plot(post2)
summary(post2)

## End(Not run)

MCMClogit Markov Chain Monte Carlo for Logistic Regression

Description

This function generates a sample from the posterior distribution of a logistic regression model using
a random walk Metropolis algorithm. The user supplies data and priors, and a sample from the
posterior distribution is returned as an mcmc object, which can be subsequently analyzed with
functions provided in the coda package.

Usage

MCMClogit(
formula,
data = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
tune = 1.1,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
user.prior.density = NULL,
logfun = TRUE,
marginal.likelihood = c("none", "Laplace"),
...

)
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Arguments

formula Model formula.

data Data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

tune Metropolis tuning parameter. Can be either a positive scalar or a k-vector, where
k is the length of β.Make sure that the acceptance rate is satisfactory (typically
between 0.20 and 0.5) before using the posterior sample for inference.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value.

b0 If user.prior.density==NULL b0 is the prior mean of β under a multivariate
normal prior. This can either be a scalar or a column vector with dimension
equal to the number of betas. If this takes a scalar value, then that value will
serve as the prior mean for all of the betas.

B0 If user.prior.density==NULL B0 is the prior precision of β under a multivari-
ate normal prior. This can either be a scalar or a square matrix with dimensions
equal to the number of betas. If this takes a scalar value, then that value times an
identity matrix serves as the prior precision of β. Default value of 0 is equivalent
to an improper uniform prior for beta.

user.prior.density

If non-NULL, the prior (log)density up to a constant of proportionality. This
must be a function defined in R whose first argument is a continuous (possibly
vector) variable. This first argument is the point in the state space at which the
prior (log)density is to be evaluated. Additional arguments can be passed to
user.prior.density() by inserting them in the call to MCMClogit(). See the
Details section and the examples below for more information.

logfun Logical indicating whether use.prior.density() returns the natural log of a
density function (TRUE) or a density (FALSE).
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marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated or Laplace in which case the
Laplace approximation (see Kass and Raftery, 1995) is used.

... further arguments to be passed

Details

MCMClogit simulates from the posterior distribution of a logistic regression model using a random
walk Metropolis algorithm. The simulation proper is done in compiled C++ code to maximize
efficiency. Please consult the coda documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

yi ∼ Bernoulli(πi)

Where the inverse link function:

πi =
exp(x′

iβ)

1 + exp(x′
iβ)

By default, we assume a multivariate Normal prior on β:

β ∼ N (b0, B
−1
0 )

Additionally, arbitrary user-defined priors can be specified with the user.prior.density argu-
ment.

If the default multivariate normal prior is used, the Metropolis proposal distribution is centered
at the current value of β and has variance-covariance V = T (B0 + C−1)−1T , where T is a the
diagonal positive definite matrix formed from the tune, B0 is the prior precision, and C is the large
sample variance-covariance matrix of the MLEs. This last calculation is done via an initial call to
glm.

If a user-defined prior is used, the Metropolis proposal distribution is centered at the current value
of β and has variance-covariance V = TCT , where T is a the diagonal positive definite matrix
formed from the tune and C is the large sample variance-covariance matrix of the MLEs. This last
calculation is done via an initial call to glm.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References
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Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc, glm

Examples

## Not run:
## default improper uniform prior
data(birthwt)
posterior <- MCMClogit(low~age+as.factor(race)+smoke, data=birthwt)
plot(posterior)
summary(posterior)

## multivariate normal prior
data(birthwt)
posterior <- MCMClogit(low~age+as.factor(race)+smoke, b0=0, B0=.001,

data=birthwt)
plot(posterior)
summary(posterior)

## user-defined independent Cauchy prior
logpriorfun <- function(beta){

sum(dcauchy(beta, log=TRUE))
}

posterior <- MCMClogit(low~age+as.factor(race)+smoke,
data=birthwt, user.prior.density=logpriorfun,
logfun=TRUE)

plot(posterior)
summary(posterior)

## user-defined independent Cauchy prior with additional args
logpriorfun <- function(beta, location, scale){

sum(dcauchy(beta, location, scale, log=TRUE))
}

posterior <- MCMClogit(low~age+as.factor(race)+smoke,
data=birthwt, user.prior.density=logpriorfun,
logfun=TRUE, location=0, scale=10)

plot(posterior)
summary(posterior)

## End(Not run)

https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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MCMCmetrop1R Metropolis Sampling from User-Written R function

Description

This function allows a user to construct a sample from a user-defined continuous distribution using
a random walk Metropolis algorithm.

Usage

MCMCmetrop1R(
fun,
theta.init,
burnin = 500,
mcmc = 20000,
thin = 1,
tune = 1,
verbose = 0,
seed = NA,
logfun = TRUE,
force.samp = FALSE,
V = NULL,
optim.method = "BFGS",
optim.lower = -Inf,
optim.upper = Inf,
optim.control = list(fnscale = -1, trace = 0, REPORT = 10, maxit = 500),
...

)

Arguments

fun The unnormalized (log)density of the distribution from which to take a sample.
This must be a function defined in R whose first argument is a continuous (pos-
sibly vector) variable. This first argument is the point in the state space at which
the (log)density is to be evaluated. Additional arguments can be passed to fun()
by inserting them in the call to MCMCmetrop1R(). See the Details section and
the examples below for more information.

theta.init Starting values for the sampling. Must be of the appropriate dimension. It must
also be the case that fun(theta.init,...) is greater than -Inf if fun() is a
logdensity or greater than 0 if fun() is a density.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

tune The tuning parameter for the Metropolis sampling. Can be either a positive
scalar or a k-vector, where k is the length of θ.
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verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the θ vector, the
function value, and the Metropolis acceptance rate are sent to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

logfun Logical indicating whether fun returns the natural log of a density function
(TRUE) or a density (FALSE).

force.samp Logical indicating whether the sampling should proceed if the Hessian cal-
culated from the initial call to optim routine to maximize the (log)density is
not negative definite. If force.samp==TRUE and the Hessian from optim is
non-negative definite, the Hessian is rescaled by subtracting small values from
it’s main diagonal until it is negative definite. Sampling proceeds using this
rescaled Hessian in place of the original Hessian from optim. By default, if
force.samp==FALSE and the Hessian from optim is non-negative definite, an
error message is printed and the call to MCMCmetrop1R is terminated.
Please note that a non-negative Hessian at the mode is often an indication that
the function of interest is not a proper density. Thus, force.samp should only
be set equal to TRUE with great caution.

V The variance-covariance matrix for the Gaussian proposal distribution. Must be
a square matrix or NULL. If a square matrix, V must have dimension equal to
the length of theta.init. If NULL, V is calculated from tune and an initial call
to optim. See the Details section below for more information. Unless the log-
posterior is expensive to compute it will typically be best to use the default V =
NULL.

optim.method The value of the method parameter sent to optim during an initial maximization
of fun. See optim for more details.

optim.lower The value of the lower parameter sent to optim during an initial maximization
of fun. See optim for more details.

optim.upper The value of the upper parameter sent to optim during an initial maximization
of fun. See optim for more details.

optim.control The value of the control parameter sent to optim during an initial maximiza-
tion of fun. See optim for more details.

... Additional arguments.

Details

MCMCmetrop1R produces a sample from a user-defined distribution using a random walk Metropo-
lis algorithm with multivariate normal proposal distribution. See Gelman et al. (2003) and Robert
& Casella (2004) for details of the random walk Metropolis algorithm.
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The proposal distribution is centered at the current value of θ and has variance-covariance V . If V
is specified by the user to be NULL then V is calculated as: V = T (−1 ·H)−1T , where T is a the
diagonal positive definite matrix formed from the tune and H is the approximate Hessian of fun
evaluated at its mode. This last calculation is done via an initial call to optim.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References
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See Also

plot.mcmc, summary.mcmc, optim, metrop

Examples

## Not run:

## logistic regression with an improper uniform prior
## X and y are passed as args to MCMCmetrop1R

logitfun <- function(beta, y, X){
eta <- X %*% beta
p <- 1.0/(1.0+exp(-eta))
sum( y * log(p) + (1-y)*log(1-p) )

}

x1 <- rnorm(1000)
x2 <- rnorm(1000)
Xdata <- cbind(1,x1,x2)
p <- exp(.5 - x1 + x2)/(1+exp(.5 - x1 + x2))
yvector <- rbinom(1000, 1, p)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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post.samp <- MCMCmetrop1R(logitfun, theta.init=c(0,0,0),
X=Xdata, y=yvector,
thin=1, mcmc=40000, burnin=500,
tune=c(1.5, 1.5, 1.5),
verbose=500, logfun=TRUE)

raftery.diag(post.samp)
plot(post.samp)
summary(post.samp)
## ##################################################

## negative binomial regression with an improper unform prior
## X and y are passed as args to MCMCmetrop1R
negbinfun <- function(theta, y, X){

k <- length(theta)
beta <- theta[1:(k-1)]
alpha <- exp(theta[k])
mu <- exp(X %*% beta)
log.like <- sum(

lgamma(y+alpha) - lfactorial(y) - lgamma(alpha) +
alpha * log(alpha/(alpha+mu)) +
y * log(mu/(alpha+mu))

)
}

n <- 1000
x1 <- rnorm(n)
x2 <- rnorm(n)
XX <- cbind(1,x1,x2)
mu <- exp(1.5+x1+2*x2)*rgamma(n,1)
yy <- rpois(n, mu)

post.samp <- MCMCmetrop1R(negbinfun, theta.init=c(0,0,0,0), y=yy, X=XX,
thin=1, mcmc=35000, burnin=1000,
tune=1.5, verbose=500, logfun=TRUE,
seed=list(NA,1))

raftery.diag(post.samp)
plot(post.samp)
summary(post.samp)
## ##################################################

## sample from a univariate normal distribution with
## mean 5 and standard deviation 0.1
##
## (MCMC obviously not necessary here and this should
## really be done with the logdensity for better
## numerical accuracy-- this is just an illustration of how
## MCMCmetrop1R works with a density rather than logdensity)

post.samp <- MCMCmetrop1R(dnorm, theta.init=5.3, mean=5, sd=0.1,
thin=1, mcmc=50000, burnin=500,
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tune=2.0, verbose=5000, logfun=FALSE)

summary(post.samp)

## End(Not run)

MCMCmixfactanal Markov Chain Monte Carlo for Mixed Data Factor Analysis Model

Description

This function generates a sample from the posterior distribution of a mixed data (both continuous
and ordinal) factor analysis model. Normal priors are assumed on the factor loadings and factor
scores, improper uniform priors are assumed on the cutpoints, and inverse gamma priors are as-
sumed for the error variances (uniquenesses). The user supplies data and parameters for the prior
distributions, and a sample from the posterior distribution is returned as an mcmc object, which can
be subsequently analyzed with functions provided in the coda package.

Usage

MCMCmixfactanal(
x,
factors,
lambda.constraints = list(),
data = parent.frame(),
burnin = 1000,
mcmc = 20000,
thin = 1,
tune = NA,
verbose = 0,
seed = NA,
lambda.start = NA,
psi.start = NA,
l0 = 0,
L0 = 0,
a0 = 0.001,
b0 = 0.001,
store.lambda = TRUE,
store.scores = FALSE,
std.mean = TRUE,
std.var = TRUE,
...

)
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Arguments

x A one-sided formula containing the manifest variables. Ordinal (including di-
chotomous) variables must be coded as ordered factors. Each level of these
ordered factors must be present in the data passed to the function. NOTE:
data input is different in MCMCmixfactanal than in either MCMCfactanal or
MCMCordfactanal.

factors The number of factors to be fitted.
lambda.constraints

List of lists specifying possible equality or simple inequality constraints on the
factor loadings. A typical entry in the list has one of three forms: varname=list(d,c)
which will constrain the dth loading for the variable named varname to be equal
to c, varname=list(d,"+") which will constrain the dth loading for the vari-
able named varname to be positive, and varname=list(d, "-") which will con-
strain the dth loading for the variable named varname to be negative. If x is a
matrix without column names defaults names of “V1", “V2", ... , etc will be
used. Note that, unlike MCMCfactanal, the Λ matrix used here has factors+1
columns. The first column of Λ corresponds to negative item difficulty parame-
ters for ordinal manifest variables and mean parameters for continuous manifest
variables and should generally not be constrained directly by the user.

data A data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of iterations for the sampler.

thin The thinning interval used in the simulation. The number of iterations must be
divisible by this value.

tune The tuning parameter for the Metropolis-Hastings sampling. Can be either a
scalar or a k-vector (where k is the number of manifest variables). tune must
be strictly positive.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is great than 0 the iteration number and the Metropolis-
Hastings acceptance rate are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

lambda.start Starting values for the factor loading matrix Lambda. If lambda.start is set
to a scalar the starting value for all unconstrained loadings will be set to that
scalar. If lambda.start is a matrix of the same dimensions as Lambda then
the lambda.start matrix is used as the starting values (except for equality-
constrained elements). If lambda.start is set to NA (the default) then starting
values for unconstrained elements in the first column of Lambda are based on the
observed response pattern, the remaining unconstrained elements of Lambda are
set to 0, and starting values for inequality constrained elements are set to either
1.0 or -1.0 depending on the nature of the constraints.
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psi.start Starting values for the error variance (uniqueness) matrix. If psi.start is set
to a scalar then the starting value for all diagonal elements of Psi that represent
error variances for continuous variables are set to this value. If psi.start is a
k-vector (where k is the number of manifest variables) then the staring value of
Psi has psi.start on the main diagonal with the exception that entries corre-
sponding to error variances for ordinal variables are set to 1.. If psi.start is
set to NA (the default) the starting values of all the continuous variable unique-
nesses are set to 0.5. Error variances for ordinal response variables are always
constrained (regardless of the value of psi.start to have an error variance of 1
in order to achieve identification.

l0 The means of the independent Normal prior on the factor loadings. Can be either
a scalar or a matrix with the same dimensions as Lambda.

L0 The precisions (inverse variances) of the independent Normal prior on the factor
loadings. Can be either a scalar or a matrix with the same dimensions as Lambda.

a0 Controls the shape of the inverse Gamma prior on the uniqueness. The actual
shape parameter is set to a0/2. Can be either a scalar or a k-vector.

b0 Controls the scale of the inverse Gamma prior on the uniquenesses. The actual
scale parameter is set to b0/2. Can be either a scalar or a k-vector.

store.lambda A switch that determines whether or not to store the factor loadings for posterior
analysis. By default, the factor loadings are all stored.

store.scores A switch that determines whether or not to store the factor scores for posterior
analysis. NOTE: This takes an enormous amount of memory, so should only be
used if the chain is thinned heavily, or for applications with a small number of
observations. By default, the factor scores are not stored.

std.mean If TRUE (the default) the continuous manifest variables are rescaled to have zero
mean.

std.var If TRUE (the default) the continuous manifest variables are rescaled to have unit
variance.

... further arguments to be passed

Details

The model takes the following form:

Let i = 1, . . . , N index observations and j = 1, . . . ,K index response variables within an observa-
tion. An observed variable xij can be either ordinal with a total of Cj categories or continuous. The
distribution of X is governed by a N ×K matrix of latent variables X∗ and a series of cutpoints γ.
X∗ is assumed to be generated according to:

x∗
i = Λϕi + ϵi

ϵi ∼ N (0,Ψ)

where x∗
i is the k-vector of latent variables specific to observation i, Λ is the k × d matrix of factor

loadings, and ϕi is the d-vector of latent factor scores. It is assumed that the first element of ϕi is
equal to 1 for all i.
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If the jth variable is ordinal, the probability that it takes the value c in observation i is:

πijc = Φ(γjc − Λ′
jϕi)− Φ(γj(c−1) − Λ′

jϕi)

If the jth variable is continuous, it is assumed that x∗
ij = xij for all i.

The implementation used here assumes independent conjugate priors for each element of Λ and
each ϕi. More specifically we assume:

Λij ∼ N (l0ij , L
−1
0ij

), i = 1, . . . , k, j = 1, . . . , d

ϕi(2:d) ∼ N (0, I), i = 1, . . . , n

MCMCmixfactanal simulates from the posterior distribution using a Metropolis-Hastings within
Gibbs sampling algorithm. The algorithm employed is based on work by Cowles (1996). Note that
the first element of ϕi is a 1. As a result, the first column of Λ can be interpretated as negative item
difficulty parameters. Further, the first element γ1 is normalized to zero, and thus not returned in the
mcmc object. The simulation proper is done in compiled C++ code to maximize efficiency. Please
consult the coda documentation for a comprehensive list of functions that can be used to analyze
the posterior sample.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the scores.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Kevin M. Quinn. 2004. “Bayesian Factor Analysis for Mixed Ordinal and Continuous Responses.”
Political Analysis. 12: 338-353.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

M. K. Cowles. 1996. “Accelerating Monte Carlo Markov Chain Convergence for Cumulative-link
Generalized Linear Models." Statistics and Computing. 6: 101-110.

Valen E. Johnson and James H. Albert. 1999. “Ordinal Data Modeling." Springer: New York.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc, summary.mcmc, factanal, MCMCfactanal, MCMCordfactanal, MCMCirt1d, MCMCirtKd

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Examples

## Not run:
data(PErisk)

post <- MCMCmixfactanal(~courts+barb2+prsexp2+prscorr2+gdpw2,
factors=1, data=PErisk,
lambda.constraints = list(courts=list(2,"-")),
burnin=5000, mcmc=1000000, thin=50,
verbose=500, L0=.25, store.lambda=TRUE,
store.scores=TRUE, tune=1.2)

plot(post)
summary(post)

library(MASS)
data(Cars93)
attach(Cars93)
new.cars <- data.frame(Price, MPG.city, MPG.highway,

Cylinders, EngineSize, Horsepower,
RPM, Length, Wheelbase, Width, Weight, Origin)

rownames(new.cars) <- paste(Manufacturer, Model)
detach(Cars93)

# drop obs 57 (Mazda RX 7) b/c it has a rotary engine
new.cars <- new.cars[-57,]
# drop 3 cylinder cars
new.cars <- new.cars[new.cars$Cylinders!=3,]
# drop 5 cylinder cars
new.cars <- new.cars[new.cars$Cylinders!=5,]

new.cars$log.Price <- log(new.cars$Price)
new.cars$log.MPG.city <- log(new.cars$MPG.city)
new.cars$log.MPG.highway <- log(new.cars$MPG.highway)
new.cars$log.EngineSize <- log(new.cars$EngineSize)
new.cars$log.Horsepower <- log(new.cars$Horsepower)

new.cars$Cylinders <- ordered(new.cars$Cylinders)
new.cars$Origin <- ordered(new.cars$Origin)

post <- MCMCmixfactanal(~log.Price+log.MPG.city+
log.MPG.highway+Cylinders+log.EngineSize+
log.Horsepower+RPM+Length+
Wheelbase+Width+Weight+Origin, data=new.cars,
lambda.constraints=list(log.Horsepower=list(2,"+"),
log.Horsepower=c(3,0), weight=list(3,"+")),
factors=2,
burnin=5000, mcmc=500000, thin=100, verbose=500,
L0=.25, tune=3.0)
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plot(post)
summary(post)

## End(Not run)

MCMCmnl Markov Chain Monte Carlo for Multinomial Logistic Regression

Description

This function generates a sample from the posterior distribution of a multinomial logistic regression
model using either a random walk Metropolis algorithm or a slice sampler. The user supplies data
and priors, and a sample from the posterior distribution is returned as an mcmc object, which can
be subsequently analyzed with functions provided in the coda package.

Usage

MCMCmnl(
formula,
baseline = NULL,
data = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
mcmc.method = "IndMH",
tune = 1,
tdf = 6,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
...

)

Arguments

formula Model formula.
If the choicesets do not vary across individuals, the y variable should be a fac-
tor or numeric variable that gives the observed choice of each individual. If the
choicesets do vary across individuals, y should be a n× p matrix where n is the
number of individuals and p is the maximum number of choices in any choice-
set. Here each column of y corresponds to a particular observed choice and the
elements of y should be either 0 (not chosen but available), 1 (chosen), or -999
(not available).
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Choice-specific covariates have to be entered using the syntax: choicevar(cvar,
"var", "choice") where cvar is the name of a variable in data, "var" is the
name of the new variable to be created, and "choice" is the level of y that cvar
corresponds to. Specifying each choice-specific covariate will typically require
p calls to the choicevar function in the formula.
Individual specific covariates can be entered into the formula normally.
See the examples section below to see the syntax used to fit various models.

baseline The baseline category of the response variable.
baseline should be set equal to one of the observed levels of the response vari-
able. If left equal to NULL then the baseline level is set to the alpha-numerically
first element of the response variable. If the choicesets vary across individuals,
the baseline choice must be in the choiceset of each individual.

data The data frame used for the analysis. Each row of the dataframe should corre-
spond to an individual who is making a choice.

burnin The number of burn-in iterations for the sampler.

mcmc The number of iterations to run the sampler past burn-in.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

mcmc.method Can be set to either "IndMH" (default), "RWM", or "slice" to perform indepen-
dent Metropolis-Hastings sampling, random walk Metropolis sampling or slice
sampling respectively.

tune Metropolis tuning parameter. Can be either a positive scalar or a k-vector, where
k is the length of β. Make sure that the acceptance rate is satisfactory (typically
between 0.20 and 0.5) before using the posterior sample for inference.

tdf Degrees of freedom for the multivariate-t proposal distribution when mcmc.method
is set to "IndMH". Must be positive.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.
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B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of β. Default value
of 0 is equivalent to an improper uniform prior for beta.

... Further arguments to be passed.

Details

MCMCmnl simulates from the posterior distribution of a multinomial logistic regression model using
either a random walk Metropolis algorithm or a univariate slice sampler. The simulation proper is
done in compiled C++ code to maximize efficiency. Please consult the coda documentation for a
comprehensive list of functions that can be used to analyze the posterior sample.

The model takes the following form:

yi ∼ Multinomial(πi)

where:

πij =
exp(x′

ijβ)∑p
k=1 exp(x

′
ikβ)

We assume a multivariate Normal prior on β:

β ∼ N (b0, B
−1
0 )

The Metropolis proposal distribution is centered at the current value of β and has variance-covariance
V = T (B0 + C−1)−1T , where T is a the diagonal positive definite matrix formed from the tune,
B0 is the prior precision, and C is the large sample variance-covariance matrix of the MLEs. This
last calculation is done via an initial call to optim.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Radford Neal. 2003. “Slice Sampling” (with discussion). Annals of Statistics, 31: 705-767.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Siddhartha Chib, Edward Greenberg, and Yuxin Chen. 1998. “MCMC Methods for Fitting and
Comparing Multinomial Response Models."

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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See Also

plot.mcmc,summary.mcmc, multinom

Examples

## Not run:
data(Nethvote)

## just a choice-specific X var
post1 <- MCMCmnl(vote ~

choicevar(distD66, "sqdist", "D66") +
choicevar(distPvdA, "sqdist", "PvdA") +
choicevar(distVVD, "sqdist", "VVD") +
choicevar(distCDA, "sqdist", "CDA"),
baseline="D66", mcmc.method="IndMH", B0=0,
verbose=500, mcmc=100000, thin=10, tune=1.0,
data=Nethvote)

plot(post1)
summary(post1)

## just individual-specific X vars
post2<- MCMCmnl(vote ~

relig + class + income + educ + age + urban,
baseline="D66", mcmc.method="IndMH", B0=0,
verbose=500, mcmc=100000, thin=10, tune=0.5,
data=Nethvote)

plot(post2)
summary(post2)

## both choice-specific and individual-specific X vars
post3 <- MCMCmnl(vote ~

choicevar(distD66, "sqdist", "D66") +
choicevar(distPvdA, "sqdist", "PvdA") +
choicevar(distVVD, "sqdist", "VVD") +
choicevar(distCDA, "sqdist", "CDA") +
relig + class + income + educ + age + urban,
baseline="D66", mcmc.method="IndMH", B0=0,
verbose=500, mcmc=100000, thin=10, tune=0.5,
data=Nethvote)

plot(post3)
summary(post3)

## numeric y variable
nethvote$vote <- as.numeric(nethvote$vote)
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post4 <- MCMCmnl(vote ~
choicevar(distD66, "sqdist", "2") +
choicevar(distPvdA, "sqdist", "3") +
choicevar(distVVD, "sqdist", "4") +
choicevar(distCDA, "sqdist", "1") +
relig + class + income + educ + age + urban,
baseline="2", mcmc.method="IndMH", B0=0,
verbose=500, mcmc=100000, thin=10, tune=0.5,
data=Nethvote)

plot(post4)
summary(post4)

## Simulated data example with nonconstant choiceset
n <- 1000
y <- matrix(0, n, 4)
colnames(y) <- c("a", "b", "c", "d")
xa <- rnorm(n)
xb <- rnorm(n)
xc <- rnorm(n)
xd <- rnorm(n)
xchoice <- cbind(xa, xb, xc, xd)
z <- rnorm(n)
for (i in 1:n){
## randomly determine choiceset (c is always in choiceset)
choiceset <- c(3, sample(c(1,2,4), 2, replace=FALSE))
numer <- matrix(0, 4, 1)
for (j in choiceset){

if (j == 3){
numer[j] <- exp(xchoice[i, j] )

}
else {

numer[j] <- exp(xchoice[i, j] - z[i] )
}

}
p <- numer / sum(numer)
y[i,] <- rmultinom(1, 1, p)
y[i,-choiceset] <- -999

}

post5 <- MCMCmnl(y~choicevar(xa, "x", "a") +
choicevar(xb, "x", "b") +
choicevar(xc, "x", "c") +
choicevar(xd, "x", "d") + z,
baseline="c", verbose=500,
mcmc=100000, thin=10, tune=.85)

plot(post5)
summary(post5)
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## End(Not run)

MCMCnegbin Markov Chain Monte Carlo for Negative Binomial Regression

Description

This function generates a sample from the posterior distribution of a Negative Binomial regression
model via auxiliary mixture sampling. The user supplies data and priors, and a sample from the
posterior distribution is returned as an mcmc object, which can be subsequently analyzed with
functions provided in the coda package.

Usage

MCMCnegbin(
formula,
data = parent.frame(),
b0 = 0,
B0 = 1,
e = 2,
f = 2,
g = 10,
burnin = 1000,
mcmc = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
rho.start = NA,
rho.step = 0.1,
nu.start = NA,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

formula Model formula.
data Data frame.
b0 The prior mean of β. This can either be a scalar or a column vector with dimen-

sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of β. Default value
of 0 is equivalent to an improper uniform prior for beta.
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e The hyperprior for the distribution ρ. See details.

f The hyperprior for the distribution ρ. See details.

g The hyperprior for the distribution ρ. See details.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value.

rho.start The starting value for the ρ variable. The default value is 1.

rho.step Tuning parameter for the slice sampling approach to sampling rho. Determines
the size of the step-out used to find the correct slice to draw from. Lower values
are more accurate, but will take longer (up to a fixed searching limit). Default is
0.1.

nu.start The starting values for the random effect, ν. The default value is a vector of
ones.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated or Laplace in which case the
Laplace approximation (see Kass and Raftery, 1995) is used.

... further arguments to be passed.

Details

MCMCnegbin simulates from the posterior distribution of a Negative Binomial regression model
using a combination of auxiliary mixture sampling and slice sampling. The simulation proper is
done in compiled C++ code to maximize efficiency. Please consult the coda documentation for a
comprehensive list of functions that can be used to analyze the posterior sample.

The model takes the following form:

yi ∼ Poisson(νiµi)
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Where the inverse link function:

µi = exp(x′
iβ)

We assume a multivariate Normal prior on β:

β ∼ N (b0, B
−1
0 )

The unit-level random effect that handles overdispersion is assumed to be distributed Gamma:

νi ∼ Gamma(ρ, ρ)

The overdispersion parameter has a prior with the following form:

f(ρ|e, f, g) ∝ ρe−1(ρ+ g)−(e+f)

The model is simulated via blocked Gibbs, with the the β being simulated via the auxiliary mixture
sampling method of Fuerhwirth-Schanetter et al. (2009). The ρ is updated via slice sampling. The
νi are updated their (conjugate) full conditional, which is also Gamma.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
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Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Sylvia Fruehwirth-Schnatter, Rudolf Fruehwirth, Leonhard Held, and Havard Rue. 2009. “Im-
proved auxiliary mixture sampling for hierarchical models of non-Gaussian data”, Statistics and
Computing 19(4): 479-492. <doi:10.1007/s11222-008-9109-4>

See Also

plot.mcmc,summary.mcmc, glm.nb

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Examples

## Not run:
n <- 150
mcmcs <- 5000
burnin <- 5000
thin <- 5
x1 <- runif(n, 0, 2)
rho.true <- 1.5
nu.true <- rgamma(n, rho.true, rho.true)
mu <- nu.true * exp(1 + x1 * 1)
y <- rpois(n, mu)
posterior <- MCMCnegbin(y ~ x1)
plot(posterior)
summary(posterior)

## End(Not run)

MCMCnegbinChange Markov Chain Monte Carlo for Negative Binomial Regression
Changepoint Model

Description

This function generates a sample from the posterior distribution of a Negative Binomial regression
model with multiple changepoints. For the changepoints, the sampler uses the Markov Chain Monte
Carlo method of Chib (1998). The user supplies data and priors, and a sample from the posterior
distribution is returned as an mcmc object, which can be subsequently analyzed with functions
provided in the coda package.

Usage

MCMCnegbinChange(
formula,
data = parent.frame(),
m = 1,
fixed.m = TRUE,
b0 = 0,
B0 = 1,
a = NULL,
b = NULL,
e = 2,
f = 2,
g = 10,
burnin = 1000,
mcmc = 1000,
thin = 1,
verbose = 0,
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seed = NA,
beta.start = NA,
P.start = NA,
rho.start = NA,
rho.step,
nu.start = NA,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

formula Model formula.

data Data frame.

m The number of changepoints.

fixed.m A logical indicator for whether or not the number of changepoints in the sampler
should be exactly equal to m or if that is simply an upper bound. Setting fixed.m
to FALSE is equivalent to assuming a weak-limit approximation to a Dirichlet
process mixture.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

e The hyperprior for the distribution ρ See details.

f The hyperprior for the distribution ρ. See details.

g The hyperprior for the distribution ρ. See details.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.
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seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value for
all regimes.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from the
Beta(0.9, 0.1) are used to construct a proper transition matrix for each raw
except the last raw.

rho.start The starting value for the ρ variable. This can either be a scalar or a column
vector with dimension equal to the number of regimes. If the value is scalar, it
will be used for all regimes. The default value is a vector of ones.

rho.step Tuning parameter for the slice sampling approach to sampling rho. Determines
the size of the step-out used to find the correct slice to draw from. Lower values
are more accurate, but will take longer (up to a fixed searching limit). Default is
0.1.

nu.start The starting values for the random effect, ν. The default value is a vector of
ones.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated or Laplace in which case the
Laplace approximation (see Kass and Raftery, 1995) is used.

... further arguments to be passed.

Details

MCMCnegbinChangesimulates from the posterior distribution of a Negative Binomial regression
model with multiple changepoints using the methods of Chib (1998) and Fruehwirth-Schnatter et al
(2009). The details of the model are discussed in Blackwell (2017).

The model takes the following form:

yt ∼ Poisson(νtµt)

µt = x′
tβm, m = 1, . . . ,M

νt ∼ Gamma(ρm, ρm)

Where M is the number of states and βm and ρm are parameters when a state is m at t.
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We assume Gaussian distribution for prior of β:

βm ∼ N (b0, B
−1
0 ), m = 1, . . . ,M

And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

The overdispersion parameters have a prior with the following form:

f(ρm|e, f, g) ∝ ρe−1(ρ+ g)−(e+f)

The model is simulated via blocked Gibbs conditonal on the states. The β being simulated via the
auxiliary mixture sampling method of Fuerhwirth-Schanetter et al. (2009). The ρ is updated via
slice sampling. The νi are updated their (conjugate) full conditional, which is also Gamma. The
states are updated as in Chib (1998)

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Sylvia Fruehwirth-Schnatter, Rudolf Fruehwirth, Leonhard Held, and Havard Rue. 2009. “Im-
proved auxiliary mixture sampling for hierarchical models of non-Gaussian data”, Statistics and
Computing 19(4): 479-492. <doi:10.1007/s11222-008-9109-4>

Matthew Blackwell. 2017. “Game Changers: Detecting Shifts in Overdispersed Count Data,”
Political Analysis 26(2), 230-239. <doi:10.1017/pan.2017.42>

See Also

MCMCpoissonChange, plotState, plotChangepoint

Examples

## Not run:
n <- 150
reg <- 3
true.s <- gl(reg, n/reg, n)
rho.true <- c(1.5, 0.5, 3)
b0.true <- c(1, 3, 1)
b1.true <- c(1, -2, 2)
x1 <- runif(n, 0, 2)

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
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nu.true <- rgamma(n, rho.true[true.s], rho.true[true.s])
mu <- nu.true * exp(b0.true[true.s] + x1 * b1.true[true.s])
y <- rpois(n, mu)

posterior <- MCMCnegbinChange(y ~ x1, m = 2, verbose = 1000,
marginal.likelihood = "Chib95",
e = 2, f = 2, g = 10,
b0 = rep(0, 2), B0 = (1/9) * diag(2),
rho.step = rep(0.75, times = 3),
seed = list(NA, 2))

par(mfrow=c(attr(posterior, "m") + 1, 1), mai=c(0.4, 0.6, 0.3, 0.05))
plotState(posterior, legend.control = c(1, 0.6))
plotChangepoint(posterior, verbose = TRUE, ylab="Density",
start=1, overlay=TRUE)

open.ended <- MCMCnegbinChange(y ~ x1, m = 10, verbose = 1000,
fixed.m = FALSE, mcmc = 2000, burnin = 2000,
e = 2, f = 2, g = 10,
a = 100, b = 1,
b0 = rep(0, 2), B0 = (1/9) * diag(2),
rho.step = 0.75,
seed = list(NA, 2))

plotState(open.ended, legend.control = c(1, 0.6))

## End(Not run)

MCMCoprobit Markov Chain Monte Carlo for Ordered Probit Regression

Description

This function generates a sample from the posterior distribution of an ordered probit regression
model using the data augmentation approach of Albert and Chib (1993), with cut-points sampled
according to Cowles (1996) or Albert and Chib (2001). The user supplies data and priors, and a
sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

Usage

MCMCoprobit(
formula,
data = parent.frame(),
burnin = 1000,
mcmc = 10000,
thin = 1,
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tune = NA,
tdf = 1,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
a0 = 0,
A0 = 0,
mcmc.method = c("Cowles", "AC"),
...

)

Arguments

formula Model formula.

data Data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations for the sampler.

thin The thinning interval used in the simulation. The number of Gibbs iterations
must be divisible by this value.

tune The tuning parameter for the Metropolis-Hastings step. Default of NA corre-
sponds to a choice of 0.05 divided by the number of categories in the response
variable.

tdf Degrees of freedom for the multivariate-t proposal distribution when mcmc.method
is set to "IndMH". Must be positive.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the beta vec-
tor, and the Metropolis-Hastings acceptance rate are printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use rescaled estimates from an ordered logit model.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.
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B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of β. Default value
of 0 is equivalent to an improper uniform prior on β.

a0 The prior mean of γ. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

A0 The prior precision of γ. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of γ. Default value
of 0 is equivalent to an improper uniform prior on γ.

mcmc.method Can be set to either "Cowles" (default) or "AC" to perform posterior sampling
of cutpoints based on Cowles (1996) or Albert and Chib (2001) respectively.

... further arguments to be passed

Details

MCMCoprobit simulates from the posterior distribution of a ordered probit regression model using
data augmentation. The simulation proper is done in compiled C++ code to maximize efficiency.
Please consult the coda documentation for a comprehensive list of functions that can be used to
analyze the posterior sample.

The observed variable yi is ordinal with a total of C categories, with distribution governed by a
latent variable:

zi = x′
iβ + εi

The errors are assumed to be from a standard Normal distribution. The probabilities of observing
each outcome is governed by this latent variable and C − 1 estimable cutpoints, which are denoted
γc. The probability that individual i is in category c is computed by:

πic = Φ(γc − x′
iβ)− Φ(γc−1 − x′

iβ)

These probabilities are used to form the multinomial distribution that defines the likelihoods.

MCMCoprobit provides two ways to sample the cutpoints. Cowles (1996) proposes a sampling
scheme that groups sampling of a latent variable with cutpoints. In this case, for identification the
first element γ1 is normalized to zero. Albert and Chib (2001) show that we can sample cutpoints
indirectly without constraints by transforming cutpoints into real-valued parameters (α).

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Albert, J. H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.”
J. Amer. Statist. Assoc. 88, 669-679

M. K. Cowles. 1996. “Accelerating Monte Carlo Markov Chain Convergence for Cumulative-link
Generalized Linear Models." Statistics and Computing. 6: 101-110.
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Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Valen E. Johnson and James H. Albert. 1999. Ordinal Data Modeling. Springer: New York.

Albert, James and Siddhartha Chib. 2001. “Sequential Ordinal Modeling with Applications to
Survival Data." Biometrics. 57: 829-836.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc

Examples

## Not run:
x1 <- rnorm(100); x2 <- rnorm(100);
z <- 1.0 + x1*0.1 - x2*0.5 + rnorm(100);
y <- z; y[z < 0] <- 0; y[z >= 0 & z < 1] <- 1;
y[z >= 1 & z < 1.5] <- 2; y[z >= 1.5] <- 3;
out1 <- MCMCoprobit(y ~ x1 + x2, tune=0.3)
out2 <- MCMCoprobit(y ~ x1 + x2, tune=0.3, tdf=3, verbose=1000, mcmc.method="AC")
summary(out1)
summary(out2)
plot(out1)
plot(out2)

## End(Not run)

MCMCoprobitChange Markov Chain Monte Carlo for Ordered Probit Changepoint Regres-
sion Model

Description

This function generates a sample from the posterior distribution of an ordered probit regression
model with multiple parameter breaks. The function uses the Markov chain Monte Carlo method
of Chib (1998). The user supplies data and priors, and a sample from the posterior distribution is
returned as an mcmc object, which can be subsequently analyzed with functions provided in the
coda package.

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Usage

MCMCoprobitChange(
formula,
data = parent.frame(),
m = 1,
burnin = 1000,
mcmc = 1000,
thin = 1,
tune = NA,
verbose = 0,
seed = NA,
beta.start = NA,
gamma.start = NA,
P.start = NA,
b0 = NULL,
B0 = NULL,
a = NULL,
b = NULL,
marginal.likelihood = c("none", "Chib95"),
gamma.fixed = 0,
...

)

Arguments

formula Model formula.

data Data frame.

m The number of changepoints.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

tune The tuning parameter for the Metropolis-Hastings step. Default of NA corre-
sponds to a choice of 0.05 divided by the number of categories in the response
variable.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.
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beta.start The starting values for the β vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of of NA
will use the MLE estimate of β as the starting value. If this is a scalar, that value
will serve as the starting value mean for all of the betas.

gamma.start The starting values for the γ vector. This can either be a scalar or a column
vector with dimension equal to the number of gammas. The default value of of
NA will use the MLE estimate of γ as the starting value. If this is a scalar, that
value will serve as the starting value mean for all of the gammas.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from the
Beta(0.9, 0.1) are used to construct a proper transition matrix for each raw
except the last raw.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, and Chib95 in which case
the method of Chib (1995) is used.

gamma.fixed 1 if users want to constrain γ values to be constant. By default, γ values are
allowed to vary across regimes.

... further arguments to be passed

Details

MCMCoprobitChange simulates from the posterior distribution of an ordinal probit regression model
with multiple parameter breaks. The simulation of latent states is based on the linear approximation
method discussed in Park (2011).

The model takes the following form:

Pr(yt = 1) = Φ(γc,m − x′
iβm)− Φ(γc−1,m − x′

iβm) m = 1, . . . ,M

Where M is the number of states, and γc,m and βm are paramters when a state is m at t.

We assume Gaussian distribution for prior of β:
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βm ∼ N (b0, B
−1
0 ), m = 1, . . . ,M

And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

Note that when the fitted changepoint model has very few observations in any of states, the marginal
likelihood outcome can be “nan," which indicates that too many breaks are assumed given the model
and data.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, the log-likelihood of the model (loglike), and
the log-marginal likelihood of the model (logmarglike).

References

Jong Hee Park. 2011. “Changepoint Analysis of Binary and Ordinal Probit Models: An Appli-
cation to Bank Rate Policy Under the Interwar Gold Standard." Political Analysis. 19: 188-204.
<doi:10.1093/pan/mpr007>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241.

See Also

plotState, plotChangepoint

Examples

set.seed(1909)
N <- 200
x1 <- rnorm(N, 1, .5);

## set a true break at 100
z1 <- 1 + x1[1:100] + rnorm(100);
z2 <- 1 -0.2*x1[101:200] + rnorm(100);
z <- c(z1, z2);
y <- z

## generate y
y[z < 1] <- 1;
y[z >= 1 & z < 2] <- 2;
y[z >= 2] <- 3;

https://doi.org/10.18637/jss.v042.i09
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## inputs
formula <- y ~ x1

## fit multiple models with a varying number of breaks
out1 <- MCMCoprobitChange(formula, m=1,

mcmc=100, burnin=100, thin=1, tune=c(.5, .5), verbose=100,
b0=0, B0=0.1, marginal.likelihood = "Chib95")

out2 <- MCMCoprobitChange(formula, m=2,
mcmc=100, burnin=100, thin=1, tune=c(.5, .5, .5), verbose=100,
b0=0, B0=0.1, marginal.likelihood = "Chib95")

## Do model comparison
## NOTE: the chain should be run longer than this example!
BayesFactor(out1, out2)

## draw plots using the "right" model
plotState(out1)
plotChangepoint(out1)

MCMCordfactanal Markov Chain Monte Carlo for Ordinal Data Factor Analysis Model

Description

This function generates a sample from the posterior distribution of an ordinal data factor analysis
model. Normal priors are assumed on the factor loadings and factor scores while improper uniform
priors are assumed on the cutpoints. The user supplies data and parameters for the prior distribu-
tions, and a sample from the posterior distribution is returned as an mcmc object, which can be
subsequently analyzed with functions provided in the coda package.

Usage

MCMCordfactanal(
x,
factors,
lambda.constraints = list(),
data = parent.frame(),
burnin = 1000,
mcmc = 20000,
thin = 1,
tune = NA,
verbose = 0,
seed = NA,
lambda.start = NA,
l0 = 0,
L0 = 0,
store.lambda = TRUE,



120 MCMCordfactanal

store.scores = FALSE,
drop.constantvars = TRUE,
...

)

Arguments

x Either a formula or a numeric matrix containing the manifest variables.

factors The number of factors to be fitted.
lambda.constraints

List of lists specifying possible equality or simple inequality constraints on the
factor loadings. A typical entry in the list has one of three forms: varname=list(d,c)
which will constrain the dth loading for the variable named varname to be equal
to c, varname=list(d,"+") which will constrain the dth loading for the vari-
able named varname to be positive, and varname=list(d, "-") which will con-
strain the dth loading for the variable named varname to be negative. If x is a
matrix without column names defaults names of “V1", “V2", ... , etc will be
used. Note that, unlike MCMCfactanal, the Λ matrix used here has factors+1
columns. The first column of Λ corresponds to negative item difficulty parame-
ters and should generally not be constrained.

data A data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of iterations for the sampler.

thin The thinning interval used in the simulation. The number of iterations must be
divisible by this value.

tune The tuning parameter for the Metropolis-Hastings sampling. Can be either a
scalar or a k-vector. Must be strictly positive.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number and the Metropolis-
Hastings acceptance rate are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

lambda.start Starting values for the factor loading matrix Lambda. If lambda.start is set
to a scalar the starting value for all unconstrained loadings will be set to that
scalar. If lambda.start is a matrix of the same dimensions as Lambda then
the lambda.start matrix is used as the starting values (except for equality-
constrained elements). If lambda.start is set to NA (the default) then starting
values for unconstrained elements in the first column of Lambda are based on the
observed response pattern, the remaining unconstrained elements of Lambda are
set to , and starting values for inequality constrained elements are set to either
1.0 or -1.0 depending on the nature of the constraints.
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l0 The means of the independent Normal prior on the factor loadings. Can be either
a scalar or a matrix with the same dimensions as Lambda.

L0 The precisions (inverse variances) of the independent Normal prior on the factor
loadings. Can be either a scalar or a matrix with the same dimensions as Lambda.

store.lambda A switch that determines whether or not to store the factor loadings for posterior
analysis. By default, the factor loadings are all stored.

store.scores A switch that determines whether or not to store the factor scores for posterior
analysis. NOTE: This takes an enormous amount of memory, so should only be
used if the chain is thinned heavily, or for applications with a small number of
observations. By default, the factor scores are not stored.

drop.constantvars

A switch that determines whether or not manifest variables that have no variation
should be deleted before fitting the model. Default = TRUE.

... further arguments to be passed

Details

The model takes the following form:

Let i = 1, . . . , N index observations and j = 1, . . . ,K index response variables within an observa-
tion. The typical observed variable xij is ordinal with a total of Cj categories. The distribution of
X is governed by a N ×K matrix of latent variables X∗ and a series of cutpoints γ. X∗ is assumed
to be generated according to:

x∗
i = Λϕi + ϵi

ϵi ∼ N (0, I)

where x∗
i is the k-vector of latent variables specific to observation i, Λ is the k × d matrix of factor

loadings, and ϕi is the d-vector of latent factor scores. It is assumed that the first element of ϕi is
equal to 1 for all i.

The probability that the jth variable in observation i takes the value c is:

πijc = Φ(γjc − Λ′
jϕi)− Φ(γj(c−1) − Λ′

jϕi)

The implementation used here assumes independent conjugate priors for each element of Λ and
each ϕi. More specifically we assume:

Λij ∼ N (l0ij , L
−1
0ij

), i = 1, . . . , k, j = 1, . . . , d

ϕi(2:d) ∼ N (0, I), i = 1, . . . , n

The standard two-parameter item response theory model with probit link is a special case of the
model sketched above.

MCMCordfactanal simulates from the posterior distribution using a Metropolis-Hastings within
Gibbs sampling algorithm. The algorithm employed is based on work by Cowles (1996). Note
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that the first element of ϕi is a 1. As a result, the first column of Λ can be interpretated as item
difficulty parameters. Further, the first element γ1 is normalized to zero, and thus not returned in
the mcmc object. The simulation proper is done in compiled C++ code to maximize efficiency.
Please consult the coda documentation for a comprehensive list of functions that can be used to
analyze the posterior sample.

As is the case with all measurement models, make sure that you have plenty of free memory, espe-
cially when storing the scores.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Shawn Treier and Simon Jackman. 2008. “Democracy as a Latent Variable." American Journal of
Political Science. 52: 201-217.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

M. K. Cowles. 1996. “Accelerating Monte Carlo Markov Chain Convergence for Cumulative-link
Generalized Linear Models." Statistics and Computing. 6: 101-110.

Valen E. Johnson and James H. Albert. 1999. “Ordinal Data Modeling." Springer: New York.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc, summary.mcmc, factanal, MCMCfactanal, MCMCirt1d, MCMCirtKd

Examples

## Not run:
data(painters)
new.painters <- painters[,1:4]
cuts <- apply(new.painters, 2, quantile, c(.25, .50, .75))
for (i in 1:4){

new.painters[new.painters[,i]<cuts[1,i],i] <- 100
new.painters[new.painters[,i]<cuts[2,i],i] <- 200
new.painters[new.painters[,i]<cuts[3,i],i] <- 300
new.painters[new.painters[,i]<100,i] <- 400

}

posterior <- MCMCordfactanal(~Composition+Drawing+Colour+Expression,
data=new.painters, factors=1,
lambda.constraints=list(Drawing=list(2,"+")),
burnin=5000, mcmc=500000, thin=200, verbose=500,

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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L0=0.5, store.lambda=TRUE,
store.scores=TRUE, tune=1.2)

plot(posterior)
summary(posterior)

## End(Not run)

MCMCpaircompare Markov Chain Monte Carlo for a Pairwise Comparisons Model with
Probit Link

Description

This function generates a sample from the posterior distribution of a model for pairwise compar-
isons data with a probit link. Thurstone’s model is a special case of this model when the α parameter
is fixed at 1.

Usage

MCMCpaircompare(
pwc.data,
theta.constraints = list(),
alpha.fixed = FALSE,
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
alpha.start = NA,
a = 0,
A = 0.25,
store.theta = TRUE,
store.alpha = FALSE,
...

)

Arguments

pwc.data A data.frame containing the pairwise comparisons data. Each row of pwc.data
corresponds to a single pairwise comparison. pwc.data needs to have exactly
four columns. The first column contains a unique identifier for the rater. Column
two contains the unique identifier for the first item being compared. Column
three contains the unique identifier for the second item being compared. Column
four contains the unique identifier of the item selected from the two items being
compared. If a tie occurred, the entry in the fourth column should be NA. For
applications without raters (such as sports competitions) all entries in the first
column should be set to a single value and alpha.fixed (see below) should be
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set to TRUE. The identifiers in columns 2 through 4 must start with a letter.
Examples are provided below.

theta.constraints

A list specifying possible simple equality or inequality constraints on the item
parameters. A typical entry in the list has one of three forms: itemname=c
which will constrain the item parameter for the item named itemname to be
equal to c, itemname="+" which will constrain the item parameter for the item
named itemname to be positive, and itemname="-" which will constrain the
item parameter for the item named itemname to be negative.

alpha.fixed Should alpha be fixed to a constant value of 1 for all raters? Default is FALSE.
If set to FALSE, an alpha value is estimated for each rater.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Gibbs iterations for the sampler.

thin The thinning interval used in the simulation. The number of Gibbs iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 output is printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

alpha.start The starting value for the alpha vector. This can either be a scalar or a column
vector with dimension equal to the number of alphas. If this takes a scalar value,
then that value will serve as the starting value for all of the alphas. The default
value of NA will set the starting value of each alpha parameter to 1.

a The prior mean of alpha. Must be a scalar. Default is 0.

A The prior precision of alpha. Must be a positive scalar. Default is 0.25 (prior
variance is 4).

store.theta Should the theta draws be returned? Default is TRUE.

store.alpha Should the alpha draws be returned? Default is FALSE.

... further arguments to be passed

Details

MCMCpaircompare uses the data augmentation approach of Albert and Chib (1993). The user sup-
plies data and priors, and a sample from the posterior is returned as an mcmc object, which can be
subsequently analyzed in the coda package.

The simulation is done in compiled C++ code to maximize efficiency.

Please consult the coda package documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.
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The model takes the following form:

i = 1, ..., I (raters)

j = 1, ..., J (items)

Yijj′ = 1 if i chooses j over j′

Yijj′ = 0 if i chooses j′ over j

Yijj′ = NA if i chooses neither

Pr(Yijj′ = 1) = Φ(αi[θj − θj′ ])

The following Gaussian priors are assumed:

αi ∼ N (a,A−1)

θj ∼ N (0, 1)

For identification, some θjs are truncated above or below 0, or fixed to constants.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Albert, J. H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.”
J. Amer. Statist. Assoc. 88, 669-679

Yu, Qiushi and Kevin M. Quinn. 2021. “A Multidimensional Pairwise Comparison Model for
Heterogeneous Perception with an Application to Modeling the Perceived Truthfulness of Public
Statements on COVID-19.” University of Michigan Working Paper.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc, MCMCpaircompare2d, MCMCpaircompare2dDP

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Examples

## Not run:
## Euro 2016 example
data(Euro2016)

posterior1 <- MCMCpaircompare(pwc.data=Euro2016,
theta.constraints=list(Ukraine="-",

Portugal="+"),
alpha.fixed=TRUE,
verbose=10000,
burnin=10000, mcmc=500000, thin=100,
store.theta=TRUE, store.alpha=FALSE)

## alternative identification constraints
posterior2 <- MCMCpaircompare(pwc.data=Euro2016,

theta.constraints=list(Ukraine="-",
Portugal=1),

alpha.fixed=TRUE,
verbose=10000,
burnin=10000, mcmc=500000, thin=100,
store.theta=TRUE, store.alpha=FALSE)

## a synthetic data example with estimated rater-specific parameters
set.seed(123)

I <- 65 ## number of raters
J <- 50 ## number of items to be compared

## raters 1 to 5 have less sensitivity to stimuli than raters 6 through I
alpha.true <- c(rnorm(5, m=0.2, s=0.05), rnorm(I - 5, m=1, s=0.1))
theta.true <- sort(rnorm(J, m=0, s=1))

n.comparisons <- 125 ## number of pairwise comparisons for each rater

## generate synthetic data according to the assumed model
rater.id <- NULL
item.1.id <- NULL
item.2.id <- NULL
choice.id <- NULL
for (i in 1:I){

for (c in 1:n.comparisons){
rater.id <- c(rater.id, i+100)
item.numbers <- sample(1:J, size=2, replace=FALSE)
item.1 <- item.numbers[1]
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item.2 <- item.numbers[2]
item.1.id <- c(item.1.id, item.1)
item.2.id <- c(item.2.id, item.2)
eta <- alpha.true[i] * (theta.true[item.1] - theta.true[item.2])
prob.item.1.chosen <- pnorm(eta)
u <- runif(1)
if (u <= prob.item.1.chosen){

choice.id <- c(choice.id, item.1)
}
else{

choice.id <- c(choice.id, item.2)
}

}
}
item.1.id <- paste("item", item.1.id+100, sep=".")
item.2.id <- paste("item", item.2.id+100, sep=".")
choice.id <- paste("item", choice.id+100, sep=".")

sim.data <- data.frame(rater.id, item.1.id, item.2.id, choice.id)

## fit the model
posterior <- MCMCpaircompare(pwc.data=sim.data,

theta.constraints=list(item.101=-2,
item.150=2),

alpha.fixed=FALSE,
verbose=10000,
a=0, A=0.5,
burnin=10000, mcmc=200000, thin=100,
store.theta=TRUE, store.alpha=TRUE)

theta.draws <- posterior[, grep("theta", colnames(posterior))]
alpha.draws <- posterior[, grep("alpha", colnames(posterior))]

theta.post.med <- apply(theta.draws, 2, median)
alpha.post.med <- apply(alpha.draws, 2, median)

theta.post.025 <- apply(theta.draws, 2, quantile, prob=0.025)
theta.post.975 <- apply(theta.draws, 2, quantile, prob=0.975)
alpha.post.025 <- apply(alpha.draws, 2, quantile, prob=0.025)
alpha.post.975 <- apply(alpha.draws, 2, quantile, prob=0.975)

## compare estimates to truth
par(mfrow=c(1,2))
plot(theta.true, theta.post.med, xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),

col=rgb(0,0,0,0.3))
segments(x0=theta.true, x1=theta.true,

y0=theta.post.025, y1=theta.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

plot(alpha.true, alpha.post.med, xlim=c(0, 1.2), ylim=c(0, 3),
col=rgb(0,0,0,0.3))
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segments(x0=alpha.true, x1=alpha.true,
y0=alpha.post.025, y1=alpha.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

## End(Not run)

MCMCpaircompare2d Markov Chain Monte Carlo for the Two-Dimensional Pairwise Com-
parisons Model in Yu and Quinn (2021)

Description

This function generates a sample from the posterior distribution of a model for pairwise compar-
isons data with a probit link. Unlike standard models for pairwise comparisons data, in this model
the latent attribute of each item being compared is a vector in two-dimensional Euclidean space.

Usage

MCMCpaircompare2d(
pwc.data,
theta.constraints = list(),
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
gamma.start = NA,
theta.start = NA,
store.theta = TRUE,
store.gamma = TRUE,
tune = 0.3,
procrustes = FALSE,
...

)

Arguments

pwc.data A data.frame containing the pairwise comparisons data. Each row of pwc.data
corresponds to a single pairwise comparison. pwc.data needs to have exactly
four columns. The first column contains a unique identifier for the rater. Column
two contains the unique identifier for the first item being compared. Column
three contains the unique identifier for the second item being compared. Column
four contains the unique identifier of the item selected from the two items being
compared. If a tie occurred, the entry in the fourth column should be NA. The
identifiers in columns 2 through 4 must start with a letter. Examples are
provided below.
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theta.constraints

A list specifying possible simple equality or inequality constraints on the item
parameters. A typical entry in the list has one of three forms: itemname=list(d,c)
which will constrain the dth dimension of theta for the item named itemname to
be equal to c, itemname=list(d,"+") which will constrain the dth dimension
of theta for the item named itemname to be positive, and itemname=list(d,
"-") which will constrain the dth dimension of theta for the item named itemname
to be negative.

burnin The number of burn-in iterations for the sampler.
mcmc The number of Gibbs iterations for the sampler.
thin The thinning interval used in the simulation. The number of Gibbs iterations

must be divisible by this value.
verbose A switch which determines whether or not the progress of the sampler is printed

to the screen. If verbose is greater than 0 output is printed to the screen every
verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

gamma.start The starting value for the gamma vector. This can either be a scalar or a column
vector with dimension equal to the number of raters. If this takes a scalar value,
then that value will serve as the starting value for all of the gammas. The default
value of NA will set the starting value of each gamma parameter to π/4.

theta.start Starting values for the theta. Can be either a numeric scalar, a J by 2 matrix
(where J is the number of items compared), or NA. If a scalar, all theta values are
set to that value (except elements already specified via theta.contraints. If NA,
then non constrained elements of theta are set equal to 0, elements constrained to
be positive are set equal to 0.5, elements constrained to be negative are set equal
to -0.5 and elements with equality constraints are set to satisfy those constraints.

store.theta Should the theta draws be returned? Default is TRUE.
store.gamma Should the gamma draws be returned? Default is TRUE.
tune Tuning parameter for the random walk Metropolis proposal for each gamma_i.

tune is the width of the uniform proposal centered at the current value of gamma_i.
Must be a positive scalar.

procrustes Should the theta and gamma draws be post-processed with a Procrustes trans-
formation? Default is FALSE. The Procrustes target matrix is derived from the
constrained elements of theta. Each row of theta that has both theta values con-
strained is part of the of the target matrix. Elements with equality constraints
are set to those values. Elements constrained to be positive are set to 1. El-
ements constrained to be negative are set to -1. If procrustes is set to TRUE
theta.constraints must be set so that there are at least three rows of theta that
have both elements of theta constrained.

... further arguments to be passed
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Details

MCMCpaircompare2d uses the data augmentation approach of Albert and Chib (1993) in conjunction
with Gibbs and Metropolis-within-Gibbs steps to fit the model. The user supplies data and a sample
from the posterior is returned as an mcmc object, which can be subsequently analyzed in the coda
package.

The simulation is done in compiled C++ code to maximize efficiency.

Please consult the coda package documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

i = 1, ..., I (raters)

j = 1, ..., J (items)

Yijj′ = 1 if i chooses j over j′

Yijj′ = 0 if i chooses j′ over j

Yijj′ = NA if i chooses neither

Pr(Yijj′ = 1) = Φ(z′i[θj − θj′ ])

zi = [cos(γi), sin(γi)]
′

The following priors are assumed:
γi ∼ Unif(0, π/2)

θj ∼ N2(0, I2)

For identification, some θjs are truncated above or below 0, or fixed to constants.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

Author(s)

Qiushi Yu <yuqiushi@umich.edu> and Kevin M. Quinn <kmq@umich.edu>

References

Albert, J. H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.”
J. Amer. Statist. Assoc. 88, 669-679

Yu, Qiushi and Kevin M. Quinn. 2021. “A Multidimensional Pairwise Comparison Model for
Heterogeneous Perceptions with an Application to Modeling the Perceived Truthfulness of Public
Statements on COVID-19.” University of Michigan Working Paper.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

https://doi.org/10.18637/jss.v042.i09
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Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc, MCMCpaircompare, MCMCpaircompare2dDP

Examples

## Not run:
## a synthetic data example
set.seed(123)

I <- 65 ## number of raters
J <- 50 ## number of items to be compared

## raters 1 to 5 put most weight on dimension 1
## raters 6 to 10 put most weight on dimension 2
## raters 11 to I put substantial weight on both dimensions
gamma.true <- c(runif(5, 0, 0.1),

runif(5, 1.47, 1.57),
runif(I-10, 0.58, 0.98) )

theta1.true <- rnorm(J, m=0, s=1)
theta2.true <- rnorm(J, m=0, s=1)
theta1.true[1] <- 2
theta2.true[1] <- 2
theta1.true[2] <- -2
theta2.true[2] <- -2
theta1.true[3] <- 2
theta2.true[3] <- -2

n.comparisons <- 125 ## number of pairwise comparisons for each rater

## generate synthetic data according to the assumed model
rater.id <- NULL
item.1.id <- NULL
item.2.id <- NULL
choice.id <- NULL
for (i in 1:I){

for (c in 1:n.comparisons){
rater.id <- c(rater.id, i+100)
item.numbers <- sample(1:J, size=2, replace=FALSE)
item.1 <- item.numbers[1]
item.2 <- item.numbers[2]
item.1.id <- c(item.1.id, item.1)
item.2.id <- c(item.2.id, item.2)

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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z <- c(cos(gamma.true[i]), sin(gamma.true[i]))
eta <- z[1] * (theta1.true[item.1] - theta1.true[item.2]) +

z[2] * (theta2.true[item.1] - theta2.true[item.2])
prob.item.1.chosen <- pnorm(eta)
u <- runif(1)
if (u <= prob.item.1.chosen){

choice.id <- c(choice.id, item.1)
}
else{

choice.id <- c(choice.id, item.2)
}

}
}
item.1.id <- paste("item", item.1.id+100, sep=".")
item.2.id <- paste("item", item.2.id+100, sep=".")
choice.id <- paste("item", choice.id+100, sep=".")

sim.data <- data.frame(rater.id, item.1.id, item.2.id, choice.id)

## fit the model
posterior <- MCMCpaircompare2d(pwc.data=sim.data,

theta.constraints=list(item.101=list(1,2),
item.101=list(2,2),
item.102=list(1,-2),
item.102=list(2,-2),
item.103=list(1,"+"),
item.103=list(2,"-")),

verbose=1000,
burnin=500, mcmc=20000, thin=10,
store.theta=TRUE, store.gamma=TRUE, tune=0.5)

theta1.draws <- posterior[, grep("theta1", colnames(posterior))]
theta2.draws <- posterior[, grep("theta2", colnames(posterior))]
gamma.draws <- posterior[, grep("gamma", colnames(posterior))]

theta1.post.med <- apply(theta1.draws, 2, median)
theta2.post.med <- apply(theta2.draws, 2, median)
gamma.post.med <- apply(gamma.draws, 2, median)

theta1.post.025 <- apply(theta1.draws, 2, quantile, prob=0.025)
theta1.post.975 <- apply(theta1.draws, 2, quantile, prob=0.975)
theta2.post.025 <- apply(theta2.draws, 2, quantile, prob=0.025)
theta2.post.975 <- apply(theta2.draws, 2, quantile, prob=0.975)
gamma.post.025 <- apply(gamma.draws, 2, quantile, prob=0.025)
gamma.post.975 <- apply(gamma.draws, 2, quantile, prob=0.975)
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## compare estimates to truth
par(mfrow=c(2,2))
plot(theta1.true, theta1.post.med, xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),

col=rgb(0,0,0,0.3))
segments(x0=theta1.true, x1=theta1.true,

y0=theta1.post.025, y1=theta1.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

plot(theta2.true, theta2.post.med, xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),
col=rgb(0,0,0,0.3))

segments(x0=theta2.true, x1=theta2.true,
y0=theta2.post.025, y1=theta2.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

plot(gamma.true, gamma.post.med, xlim=c(0, 1.6), ylim=c(0, 1.6),
col=rgb(0,0,0,0.3))

segments(x0=gamma.true, x1=gamma.true,
y0=gamma.post.025, y1=gamma.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

## plot point estimates
plot(theta1.post.med, theta2.post.med,

xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),
col=rgb(0,0,0,0.3))

for (i in 1:length(gamma.post.med)){
arrows(x0=0, y0=0,

x1=cos(gamma.post.med[i]),
y1=sin(gamma.post.med[i]),
col=rgb(1,0,0,0.2), len=0.05, lwd=0.5)

}

## End(Not run)

MCMCpaircompare2dDP Markov Chain Monte Carlo for the Two-Dimensional Pairwise Com-
parisons Model with Dirichlet Process Prior in Yu and Quinn (2021)

Description

This function generates a sample from the posterior distribution of a model for pairwise compar-
isons data with a probit link. Unlike standard models for pairwise comparisons data, in this model
the latent attribute of each item being compared is a vector in two-dimensional Euclidean space.

Usage

MCMCpaircompare2dDP(
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pwc.data,
theta.constraints = list(),
burnin = 1000,
mcmc = 20000,
thin = 1,
verbose = 0,
seed = NA,
gamma.start = NA,
theta.start = NA,
store.theta = TRUE,
store.gamma = FALSE,
tune = 0.3,
procrustes = FALSE,
alpha.start = 1,
cluster.max = 100,
cluster.mcmc = 500,
alpha.fixed = TRUE,
a0 = 1,
b0 = 1,
...

)

Arguments

pwc.data A data.frame containing the pairwise comparisons data. Each row of pwc.data
corresponds to a single pairwise comparison. pwc.data needs to have exactly
four columns. The first column contains a unique identifier for the rater. Column
two contains the unique identifier for the first item being compared. Column
three contains the unique identifier for the second item being compared. Column
four contains the unique identifier of the item selected from the two items being
compared. If a tie occurred, the entry in the fourth column should be NA. The
identifiers in columns 2 through 4 must start with a letter. Examples are
provided below.

theta.constraints

A list specifying possible simple equality or inequality constraints on the item
parameters. A typical entry in the list has one of three forms: itemname=list(d,c)
which will constrain the dth dimension of theta for the item named itemname to
be equal to c, itemname=list(d,"+") which will constrain the dth dimension
of theta for the item named itemname to be positive, and itemname=list(d,
"-") which will constrain the dth dimension of theta for the item named itemname
to be negative.

burnin The number of burn-in iterations for the sampler.
mcmc The number of Gibbs iterations for the sampler.
thin The thinning interval used in the simulation. The number of Gibbs iterations

must be divisible by this value.
verbose A switch which determines whether or not the progress of the sampler is printed

to the screen. If verbose is greater than 0 output is printed to the screen every
verboseth iteration.
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seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

gamma.start The starting value for the gamma vector. This can either be a scalar or a column
vector with dimension equal to the number of raters. If this takes a scalar value,
then that value will serve as the starting value for all of the gammas. The default
value of NA will set the starting value of each gamma parameter to π/4.

theta.start Starting values for the theta. Can be either a numeric scalar, a J by 2 matrix
(where J is the number of items compared), or NA. If a scalar, all theta values are
set to that value (except elements already specified via theta.contraints. If NA,
then non constrained elements of theta are set equal to 0, elements constrained to
be positive are set equal to 0.5, elements constrained to be negative are set equal
to -0.5 and elements with equality constraints are set to satisfy those constraints.

store.theta Should the theta draws be returned? Default is TRUE.

store.gamma Should the gamma draws be returned? Default is TRUE.

tune Tuning parameter for the random walk Metropolis proposal for each gamma_i.
tune is the width of the uniform proposal centered at the current value of gamma_i.
Must be a positive scalar.

procrustes Should the theta and gamma draws be post-processed with a Procrustes trans-
formation? Default is FALSE. The Procrustes target matrix is derived from the
constrained elements of theta. Each row of theta that has both theta values con-
strained is part of the of the target matrix. Elements with equality constraints
are set to those values. Elements constrained to be positive are set to 1. El-
ements constrained to be negative are set to -1. If procrustes is set to TRUE
theta.constraints must be set so that there are at least three rows of theta that
have both elements of theta constrained.

alpha.start The starting value for the DP concentration parameter alpha. Must be a positive
scalar. Defaults to 1. If alpha.fixed is set equal to TRUE, then alpha is held
fixed at alpha.start.

cluster.max The maximum number of clusters allowed in the approximation to the DP prior
for gamma. Defaults to 100. Must be a positive integer.

cluster.mcmc The number of additional MCMC iterations that are done to sample each cluster-
specific gamma value within one main MCMC iteration. Must be a positive
integer. Defaults to 500. Setting this to a lower value speeds runtime at the cost
of (possibly) worse mixing.

alpha.fixed Logical value indicating whether the DP concentration parameter alpha be held
fixed (TRUE) or estimated (FALSE).

a0 The shape parameter of the gamma prior for alpha. This is the same parame-
terization of the gamma distribution as R’s internal rgamma() function. Only
relevant if alpha.fixed is set equal to FALSE. Defaults to 1.
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b0 The rate parameter of the gamma prior for alpha. This is the same parameteriza-
tion of the gamma distribution as R’s internal rgamma() function. Only relevant
if alpha.fixed is set equal to FALSE. Defaults to 1.

... further arguments to be passed

Details

MCMCpaircompare2d uses the data augmentation approach of Albert and Chib (1993) in conjunction
with Gibbs and Metropolis-within-Gibbs steps to fit the model. The user supplies data and a sample
from the posterior is returned as an mcmc object, which can be subsequently analyzed in the coda
package.

The simulation is done in compiled C++ code to maximize efficiency.

Please consult the coda package documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

i = 1, ..., I (raters)

j = 1, ..., J (items)

Yijj′ = 1 if i chooses j over j′

Yijj′ = 0 if i chooses j′ over j

Yijj′ = NA if i chooses neither

Pr(Yijj′ = 1) = Φ(z′i[θj − θj′ ])

zi = [cos(γi), sin(γi)]
′

The following priors are assumed:
γi ∼ G

G ∼ DP(αG0)

G0 = Unif(0, π/2)
α ∼ Gamma(a0, b0)

θj ∼ N2(0, I2)

For identification, some θjs are truncated above or below 0, or fixed to constants.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. Most of the column names of the mcmc object are self explanatory.
Note however that the columns with names of the form "cluster.[raterID]" give the cluster member-
ship of each rater at each stored MCMC iteration. Because of the possibility of label switching, the
particular values of these cluster membership variables are not meaningful. What is meaningful is
whether two raters share the same cluster membership value at a particular MCMC iteration. This
indicates that those two raters were clustered together during that iteration. Finally, note that the
"n.clusters" column gives the number of distinct gamma values at each iteration, i.e. the number of
clusters at that iteration.
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Author(s)

Qiushi Yu <yuqiushi@umich.edu> and Kevin M. Quinn <kmq@umich.edu>

References
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See Also

plot.mcmc,summary.mcmc, MCMCpaircompare, MCMCpaircompare2dDP

Examples

## Not run:
## a synthetic data example
set.seed(123)

I <- 65 ## number of raters
J <- 50 ## number of items to be compared

## 3 clusters:
## raters 1 to 5 put most weight on dimension 1
## raters 6 to 10 put most weight on dimension 2
## raters 11 to I put substantial weight on both dimensions
gamma.true <- c(rep(0.05, 5),

rep(1.50, 5),
rep(0.7, I-10) )

theta1.true <- rnorm(J, m=0, s=1)
theta2.true <- rnorm(J, m=0, s=1)
theta1.true[1] <- 2
theta2.true[1] <- 2
theta1.true[2] <- -2
theta2.true[2] <- -2
theta1.true[3] <- 2
theta2.true[3] <- -2

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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n.comparisons <- 125 ## number of pairwise comparisons for each rater

## generate synthetic data according to the assumed model
rater.id <- NULL
item.1.id <- NULL
item.2.id <- NULL
choice.id <- NULL
for (i in 1:I){

for (c in 1:n.comparisons){
rater.id <- c(rater.id, i+100)
item.numbers <- sample(1:J, size=2, replace=FALSE)
item.1 <- item.numbers[1]
item.2 <- item.numbers[2]
item.1.id <- c(item.1.id, item.1)
item.2.id <- c(item.2.id, item.2)
z <- c(cos(gamma.true[i]), sin(gamma.true[i]))
eta <- z[1] * (theta1.true[item.1] - theta1.true[item.2]) +

z[2] * (theta2.true[item.1] - theta2.true[item.2])
prob.item.1.chosen <- pnorm(eta)
u <- runif(1)
if (u <= prob.item.1.chosen){

choice.id <- c(choice.id, item.1)
}
else{

choice.id <- c(choice.id, item.2)
}

}
}
item.1.id <- paste("item", item.1.id+100, sep=".")
item.2.id <- paste("item", item.2.id+100, sep=".")
choice.id <- paste("item", choice.id+100, sep=".")

sim.data <- data.frame(rater.id, item.1.id, item.2.id, choice.id)

## fit the model (should be run for more than 10500 iterations)
posterior <- MCMCpaircompare2dDP(pwc.data=sim.data,

theta.constraints=list(item.101=list(1,2),
item.101=list(2,2),
item.102=list(1,-2),
item.102=list(2,-2),
item.103=list(1,"+"),
item.103=list(2,"-")),

verbose=100,
burnin=500, mcmc=10000, thin=5,
cluster.mcmc=10,
store.theta=TRUE, store.gamma=TRUE,
tune=0.1)
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theta1.draws <- posterior[, grep("theta1", colnames(posterior))]
theta2.draws <- posterior[, grep("theta2", colnames(posterior))]
gamma.draws <- posterior[, grep("gamma", colnames(posterior))]

theta1.post.med <- apply(theta1.draws, 2, median)
theta2.post.med <- apply(theta2.draws, 2, median)
gamma.post.med <- apply(gamma.draws, 2, median)

theta1.post.025 <- apply(theta1.draws, 2, quantile, prob=0.025)
theta1.post.975 <- apply(theta1.draws, 2, quantile, prob=0.975)
theta2.post.025 <- apply(theta2.draws, 2, quantile, prob=0.025)
theta2.post.975 <- apply(theta2.draws, 2, quantile, prob=0.975)
gamma.post.025 <- apply(gamma.draws, 2, quantile, prob=0.025)
gamma.post.975 <- apply(gamma.draws, 2, quantile, prob=0.975)

## compare estimates to truth
par(mfrow=c(2,2))
plot(theta1.true, theta1.post.med, xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),

col=rgb(0,0,0,0.3))
segments(x0=theta1.true, x1=theta1.true,

y0=theta1.post.025, y1=theta1.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

plot(theta2.true, theta2.post.med, xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),
col=rgb(0,0,0,0.3))

segments(x0=theta2.true, x1=theta2.true,
y0=theta2.post.025, y1=theta2.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

plot(gamma.true, gamma.post.med, xlim=c(0, 1.6), ylim=c(0, 1.6),
col=rgb(0,0,0,0.3))

segments(x0=gamma.true, x1=gamma.true,
y0=gamma.post.025, y1=gamma.post.975,
col=rgb(0,0,0,0.3))

abline(0, 1, col=rgb(1,0,0,0.5))

## plot point estimates
plot(theta1.post.med, theta2.post.med,

xlim=c(-2.5, 2.5), ylim=c(-2.5, 2.5),
col=rgb(0,0,0,0.3))

for (i in 1:length(gamma.post.med)){
arrows(x0=0, y0=0,

x1=cos(gamma.post.med[i]),
y1=sin(gamma.post.med[i]),
col=rgb(1,0,0,0.2), len=0.05, lwd=0.5)

}
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## End(Not run)

MCMCpoisson Markov Chain Monte Carlo for Poisson Regression

Description

This function generates a sample from the posterior distribution of a Poisson regression model
using a random walk Metropolis algorithm. The user supplies data and priors, and a sample from
the posterior distribution is returned as an mcmc object, which can be subsequently analyzed with
functions provided in the coda package.

Usage

MCMCpoisson(
formula,
data = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
tune = 1.1,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
marginal.likelihood = c("none", "Laplace"),
...

)

Arguments

formula Model formula.

data Data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Metropolis iterations for the sampler.

thin The thinning interval used in the simulation. The number of mcmc iterations
must be divisible by this value.

tune Metropolis tuning parameter. Can be either a positive scalar or a k-vector, where
k is the length of β.Make sure that the acceptance rate is satisfactory (typically
between 0.20 and 0.5) before using the posterior sample for inference.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the current
beta vector, and the Metropolis acceptance rate are printed to the screen every
verboseth iteration.
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seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of β. Default value
of 0 is equivalent to an improper uniform prior for beta.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated or Laplace in which case the
Laplace approximation (see Kass and Raftery, 1995) is used.

... further arguments to be passed.

Details

MCMCpoisson simulates from the posterior distribution of a Poisson regression model using a ran-
dom walk Metropolis algorithm. The simulation proper is done in compiled C++ code to maximize
efficiency. Please consult the coda documentation for a comprehensive list of functions that can be
used to analyze the posterior sample.

The model takes the following form:

yi ∼ Poisson(µi)

Where the inverse link function:

µi = exp(x′
iβ)

We assume a multivariate Normal prior on β:

β ∼ N (b0, B
−1
0 )

The Metropois proposal distribution is centered at the current value of θ and has variance-covariance
V = T (B0 + C−1)−1T where T is a the diagonal positive definite matrix formed from the tune,
B0 is the prior precision, and C is the large sample variance-covariance matrix of the MLEs. This
last calculation is done via an initial call to glm.
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Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc, glm

Examples

## Not run:
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
posterior <- MCMCpoisson(counts ~ outcome + treatment)
plot(posterior)
summary(posterior)

## End(Not run)

MCMCpoissonChange Markov Chain Monte Carlo for a Poisson Regression Changepoint
Model

Description

This function generates a sample from the posterior distribution of a Poisson regression model with
multiple changepoints. The function uses the Markov chain Monte Carlo method of Chib (1998).
The user supplies data and priors, and a sample from the posterior distribution is returned as an
mcmc object, which can be subsequently analyzed with functions provided in the coda package.

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Usage

MCMCpoissonChange(
formula,
data = parent.frame(),
m = 1,
b0 = 0,
B0 = 1,
a = NULL,
b = NULL,
c0 = NA,
d0 = NA,
lambda.mu = NA,
lambda.var = NA,
burnin = 1000,
mcmc = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
P.start = NA,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

formula Model formula.

data Data frame.

m The number of changepoints.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

c0 c0 is the shape parameter for Gamma prior on λ (the mean). When there is no
covariate, this should be provided by users. No default value is provided.

d0 d0 is the scale parameter for Gamma prior on λ (the mean). When there is no
covariate, this should be provided by users. No default value is provided.
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lambda.mu The mean of the Gamma prior on λ. sigma.mu and sigma.var allow users to
choose the Gamma prior by choosing its mean and variance.

lambda.var The variacne of the Gamma prior on λ. sigma.mu and sigma.var allow users
to choose the Gamma prior by choosing its mean and variance.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burn-in.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0, the iteration number and the posterior
density samples are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, current R system seed is
used.

beta.start The starting values for the beta vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of NA
will use draws from the Uniform distribution with the same boundary with the
data as the starting value. If this is a scalar, that value will serve as the starting
value mean for all of the betas. When there is no covariate, the log value of
means should be used.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from the
Beta(0.9, 0.1) are used to construct a proper transition matrix for each raw
except the last raw.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, and Chib95 in which case
the method of Chib (1995) is used.

... further arguments to be passed

Details

MCMCpoissonChange simulates from the posterior distribution of a Poisson regression model with
multiple changepoints using the methods of Chib (1998) and Fruhwirth-Schnatter and Wagner
(2006). The details of the model are discussed in Park (2010).

The model takes the following form:

yt ∼ Poisson(µt)

µt = x′
tβm, m = 1, . . . ,M

Where M is the number of states and βm is paramters when a state is m at t.

We assume Gaussian distribution for prior of β:

βm ∼ N (b0, B
−1
0 ), m = 1, . . . ,M
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And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, and the log-marginal likelihood of the model
(logmarglike).

References

Jong Hee Park. 2010. “Structural Change in the U.S. Presidents’ Use of Force Abroad.” American
Journal of Political Science 54: 766-782. <doi:10.1111/j.1540-5907.2010.00459.x>

Sylvia Fruhwirth-Schnatter and Helga Wagner 2006. “Auxiliary Mixture Sampling for Parameter-
driven Models of Time Series of Counts with Applications to State Space Modelling.” Biometrika.
93:827–841.

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241. <doi: 10.1016/S0304-4076(97)00115-2>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Siddhartha Chib. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American
Statistical Association. 90: 1313-1321. <doi: 10.1080/01621459.1995.10476635>

See Also

MCMCbinaryChange, plotState, plotChangepoint

Examples

## Not run:
set.seed(11119)
n <- 150
x1 <- runif(n, 0, 0.5)
true.beta1 <- c(1, 1)
true.beta2 <- c(1, -2)
true.beta3 <- c(1, 2)

## set true two breaks at (50, 100)
true.s <- rep(1:3, each=n/3)
mu1 <- exp(1 + x1[true.s==1]*1)
mu2 <- exp(1 + x1[true.s==2]*-2)
mu3 <- exp(1 + x1[true.s==3]*2)

y <- as.ts(c(rpois(n/3, mu1), rpois(n/3, mu2), rpois(n/3, mu3)))
formula = y ~ x1

https://doi.org/10.18637/jss.v042.i09


146 MCMCprobit

## fit multiple models with a varying number of breaks
model0 <- MCMCpoissonChange(formula, m=0,

mcmc = 1000, burnin = 1000, verbose = 500,
b0 = rep(0, 2), B0 = 1/5*diag(2), marginal.likelihood = "Chib95")

model1 <- MCMCpoissonChange(formula, m=1,
mcmc = 1000, burnin = 1000, verbose = 500,
b0 = rep(0, 2), B0 = 1/5*diag(2), marginal.likelihood = "Chib95")

model2 <- MCMCpoissonChange(formula, m=2,
mcmc = 1000, burnin = 1000, verbose = 500,
b0 = rep(0, 2), B0 = 1/5*diag(2), marginal.likelihood = "Chib95")

model3 <- MCMCpoissonChange(formula, m=3,
mcmc = 1000, burnin = 1000, verbose = 500,
b0 = rep(0, 2), B0 = 1/5*diag(2), marginal.likelihood = "Chib95")

model4 <- MCMCpoissonChange(formula, m=4,
mcmc = 1000, burnin = 1000, verbose = 500,
b0 = rep(0, 2), B0 = 1/5*diag(2), marginal.likelihood = "Chib95")

model5 <- MCMCpoissonChange(formula, m=5,
mcmc = 1000, burnin = 1000, verbose = 500,
b0 = rep(0, 2), B0 = 1/5*diag(2), marginal.likelihood = "Chib95")

## find the most reasonable one
print(BayesFactor(model0, model1, model2, model3, model4, model5))

## draw plots using the "right" model
par(mfrow=c(attr(model2, "m") + 1, 1), mai=c(0.4, 0.6, 0.3, 0.05))
plotState(model2, legend.control = c(1, 0.6))
plotChangepoint(model2, verbose = TRUE, ylab="Density", start=1, overlay=TRUE)

## No covariate case
model2.1 <- MCMCpoissonChange(y ~ 1, m = 2, c0 = 2, d0 = 1,

mcmc = 1000, burnin = 1000, verbose = 500,
marginal.likelihood = "Chib95")

print(BayesFactor(model2, model2.1))

## End(Not run)

MCMCprobit Markov Chain Monte Carlo for Probit Regression

Description

This function generates a sample from the posterior distribution of a probit regression model using
the data augmentation approach of Albert and Chib (1993). The user supplies data and priors, and
a sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

Usage

MCMCprobit(
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formula,
data = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
bayes.resid = FALSE,
marginal.likelihood = c("none", "Laplace", "Chib95"),
...

)

Arguments

formula Model formula.

data Data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of Gibbs iterations for the sampler.

thin The thinning interval used in the simulation. The number of Gibbs iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number and the betas are
printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting value for the β vector. This can either be a scalar or a column vector
with dimension equal to the number of betas. If this takes a scalar value, then
that value will serve as the starting value for all of the betas. The default value
of NA will use the maximum likelihood estimate of β as the starting value.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of β. Default value
of 0 is equivalent to an improper uniform prior on β.

bayes.resid Should latent Bayesian residuals (Albert and Chib, 1995) be returned? Default
is FALSE meaning no residuals should be returned. Alternatively, the user can
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specify an array of integers giving the observation numbers for which latent
residuals should be calculated and returned. TRUE will return draws of latent
residuals for all observations.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, Laplace in which case the
Laplace approximation (see Kass and Raftery, 1995) is used, or Chib95 in which
case Chib (1995) method is used.

... further arguments to be passed

Details

MCMCprobit simulates from the posterior distribution of a probit regression model using data aug-
mentation. The simulation proper is done in compiled C++ code to maximize efficiency. Please
consult the coda documentation for a comprehensive list of functions that can be used to analyze
the posterior sample.

The model takes the following form:

yi ∼ Bernoulli(πi)

Where the inverse link function:

πi = Φ(x′
iβ)

We assume a multivariate Normal prior on β:

β ∼ N (b0, B
−1
0 )

See Albert and Chib (1993) for estimation details.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Albert, J. H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.”
J. Amer. Statist. Assoc. 88, 669-679

Albert, J. H. and S. Chib. 1995. “Bayesian Residual Analysis for Binary Response Regression
Models.” Biometrika. 82, 747-759.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Siddhartha Chib. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American
Statistical Association. 90: 1313-1321. <doi: 10.1080/01621459.1995.10476635>

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
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Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc,summary.mcmc, glm

Examples

## Not run:
data(birthwt)
out1 <- MCMCprobit(low~as.factor(race)+smoke, data=birthwt,
b0 = 0, B0 = 10, marginal.likelihood="Chib95")
out2 <- MCMCprobit(low~age+as.factor(race), data=birthwt,
b0 = 0, B0 = 10, marginal.likelihood="Chib95")
out3 <- MCMCprobit(low~age+as.factor(race)+smoke, data=birthwt,
b0 = 0, B0 = 10, marginal.likelihood="Chib95")
BayesFactor(out1, out2, out3)
plot(out3)
summary(out3)

## End(Not run)

MCMCprobitChange Markov Chain Monte Carlo for a linear Gaussian Multiple Change-
point Model

Description

This function generates a sample from the posterior distribution of a linear Gaussian model with
multiple changepoints. The function uses the Markov chain Monte Carlo method of Chib (1998).
The user supplies data and priors, and a sample from the posterior distribution is returned as an
mcmc object, which can be subsequently analyzed with functions provided in the coda package.

Usage

MCMCprobitChange(
formula,
data = parent.frame(),
m = 1,
burnin = 10000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,

https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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P.start = NA,
b0 = NULL,
B0 = NULL,
a = NULL,
b = NULL,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

formula Model formula.

data Data frame.

m The number of changepoints.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting values for the β vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of of NA
will use the MLE estimate of β as the starting value. If this is a scalar, that value
will serve as the starting value mean for all of the betas.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from the
Beta(0.9, 0.1) are used to construct a proper transition matrix for each raw
except the last raw.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.
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b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, and Chib95 in which case
the method of Chib (1995) is used.

... further arguments to be passed

Details

MCMCprobitChange simulates from the posterior distribution of a probit regression model with
multiple parameter breaks. The simulation is based on Chib (1998) and Park (2011).

The model takes the following form:

Pr(yt = 1) = Φ(x′
iβm) m = 1, . . . ,M

Where M is the number of states, and βm is a parameter when a state is m at t.

We assume Gaussian distribution for prior of β:

βm ∼ N (b0, B
−1
0 ), m = 1, . . . ,M

And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, the log-likelihood of the model (loglike), and
the log-marginal likelihood of the model (logmarglike).

References

Jong Hee Park. 2011. “Changepoint Analysis of Binary and Ordinal Probit Models: An Appli-
cation to Bank Rate Policy Under the Interwar Gold Standard." Political Analysis. 19: 188-204.
<doi:10.1093/pan/mpr007>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241.

Albert, J. H. and S. Chib. 1993. “Bayesian Analysis of Binary and Polychotomous Response Data.”
J. Amer. Statist. Assoc. 88, 669-679

https://doi.org/10.18637/jss.v042.i09
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See Also

plotState, plotChangepoint

Examples

## Not run:
set.seed(1973)
x1 <- rnorm(300, 0, 1)
true.beta <- c(-.5, .2, 1)
true.alpha <- c(.1, -1., .2)
X <- cbind(1, x1)

## set two true breaks at 100 and 200
true.phi1 <- pnorm(true.alpha[1] + x1[1:100]*true.beta[1])
true.phi2 <- pnorm(true.alpha[2] + x1[101:200]*true.beta[2])
true.phi3 <- pnorm(true.alpha[3] + x1[201:300]*true.beta[3])

## generate y
y1 <- rbinom(100, 1, true.phi1)
y2 <- rbinom(100, 1, true.phi2)
y3 <- rbinom(100, 1, true.phi3)
Y <- as.ts(c(y1, y2, y3))

## fit multiple models with a varying number of breaks
out0 <- MCMCprobitChange(formula=Y~X-1, data=parent.frame(), m=0,

mcmc=1000, burnin=1000, thin=1, verbose=1000,
b0 = 0, B0 = 0.1, a = 1, b = 1, marginal.likelihood = c("Chib95"))

out1 <- MCMCprobitChange(formula=Y~X-1, data=parent.frame(), m=1,
mcmc=1000, burnin=1000, thin=1, verbose=1000,

b0 = 0, B0 = 0.1, a = 1, b = 1, marginal.likelihood = c("Chib95"))
out2 <- MCMCprobitChange(formula=Y~X-1, data=parent.frame(), m=2,

mcmc=1000, burnin=1000, thin=1, verbose=1000,
b0 = 0, B0 = 0.1, a = 1, b = 1, marginal.likelihood = c("Chib95"))

out3 <- MCMCprobitChange(formula=Y~X-1, data=parent.frame(), m=3,
mcmc=1000, burnin=1000, thin=1, verbose=1000,

b0 = 0, B0 = 0.1, a = 1, b = 1, marginal.likelihood = c("Chib95"))

## find the most reasonable one
BayesFactor(out0, out1, out2, out3)

## draw plots using the "right" model
plotState(out2)
plotChangepoint(out2)

## End(Not run)

MCMCquantreg Bayesian quantile regression using Gibbs sampling
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Description

This function fits quantile regression models under Bayesian inference. The function samples from
the posterior distribution using Gibbs sampling with data augmentation. A multivariate normal prior
is assumed for β. The user supplies the prior parameters. A sample of the posterior distribution is
returned as an mcmc object, which can then be analysed by functions in the coda package.

Usage

MCMCquantreg(
formula,
data = NULL,
tau = 0.5,
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = sample(1:1e+06, 1),
beta.start = NA,
b0 = 0,
B0 = 0,
...

)

Arguments

formula Model formula.

data Data frame.

tau The quantile of interest. Must be between 0 and 1. The default value of 0.5
corresponds to median regression.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number and the most
recently sampled values of β and σ are printed to the screen every verboseth
iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gen-
erator is used with default seed 12345; if an integer is passed it is used to seed
the Mersenne twister. The default value for this argument is a random integer
between 1 and 1,000,000. This default value ensures that if the function is used
again with a different value of τ , it is extremely unlikely that the seed will be
identical. The user can also pass a list of length two to use the L’Ecuyer random
number generator, which is suitable for parallel computation. The first element
of the list is the L’Ecuyer seed, which is a vector of length six or NA (if NA a
default seed of rep(12345,6) is used). The second element of list is a positive
substream number. See the MCMCpack specification for more details.
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beta.start The starting values for β. This can either be a scalar or a column vector with
dimension equal to the dimension of β. The default value of NA will use the
OLS estimate β̂ with σ̂Φ−1(τ) added on to the first element of β̂ as the starting
value. (σ̂2 denotes the usual unbiased estimator of σ2 under ordinary mean
regression and Φ−1(τ) denotes the inverse of the cumulative density function
of the standard normal distribution.) Note that the default value assume that an
intercept is included in the model. If a scalar is given, that value will serve as
the starting value for all β.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the dimension of
β. If this takes a scalar value, then that value will serve as the prior mean for all
β.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of β. Default value
of 0 is equivalent to an improper uniform prior for β.

... further arguments to be passed

Details

MCMCquantreg simulates from the posterior distribution using Gibbs sampling with data augmen-
tation (see http://people.brunel.ac.uk/~mastkky/). β are drawn from a multivariate normal
distribution. The augmented data are drawn conditionally from the inverse Gaussian distribution.
The simulation is carried out in compiled C++ code to maximise efficiency. Please consult the
coda documentation for a comprehensive list of functions that can be used to analyse the posterior
sample.

We assume the model

Qτ (yi|xi) = x′
iβ

where Qτ (yi|xi) denotes the conditional τ th quantile of yi given xi, and β = β(τ) are the regres-
sion parameters possibly dependent on τ . The likelihood is formed based on assuming independent
Asymmetric Laplace distributions on the yi with skewness parameter τ and location parameters
x′
iβ. This assumption ensures that the likelihood function is maximised by the τ th conditional

quantile of the response variable. We assume standard, semi-conjugate priors on β:

β ∼ N (b0, B
−1
0 )

Only starting values for β are allowed for this sampler.

Value

An mcmc object that contains the posterior sample. This object can be summarised by functions
provided by the coda package.

Author(s)

Craig Reed

http://people.brunel.ac.uk/~mastkky/
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References

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.2.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Craig Reed and Keming Yu. 2009. “An Efficient Gibbs Sampler for Bayesian Quantile Regression.”
Technical Report.

Keming Yu and Jin Zhang. 2005. “A Three Parameter Asymmetric Laplace Distribution and it’s
extensions.” Communications in Statistics - Theory and Methods, 34, 1867-1879.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

MCMCregress, plot.mcmc, summary.mcmc, lm, rq

Examples

## Not run:

x<-rep(1:10,5)
y<-rnorm(50,mean=x)
posterior_50 <- MCMCquantreg(y~x)
posterior_95 <- MCMCquantreg(y~x, tau=0.95, verbose=10000,

mcmc=50000, thin=10, seed=2)
plot(posterior_50)
plot(posterior_95)
raftery.diag(posterior_50)
autocorr.plot(posterior_95)
summary(posterior_50)
summary(posterior_95)

## End(Not run)

MCMCregress Markov Chain Monte Carlo for Gaussian Linear Regression

Description

This function generates a sample from the posterior distribution of a linear regression model with
Gaussian errors using Gibbs sampling (with a multivariate Gaussian prior on the beta vector, and
an inverse Gamma prior on the conditional error variance). The user supplies data and priors, and
a sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Usage

MCMCregress(
formula,
data = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
c0 = 0.001,
d0 = 0.001,
sigma.mu = NA,
sigma.var = NA,
marginal.likelihood = c("none", "Laplace", "Chib95"),
...

)

Arguments

formula Model formula.

data Data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting values for the β vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of of NA
will use the OLS estimate of β as the starting value. If this is a scalar, that value
will serve as the starting value mean for all of the betas.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.
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B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, d0 acts like the sum
of squared errors from the c0 pseudo-observations.

sigma.mu The mean of the inverse Gamma prior on σ2. sigma.mu and sigma.var allow
users to choose the inverse Gamma prior by choosing its mean and variance.

sigma.var The variacne of the inverse Gamma prior on σ2. sigma.mu and sigma.var al-
low users to choose the inverse Gamma prior by choosing its mean and variance.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, Laplace in which case the
Laplace approximation (see Kass and Raftery, 1995) is used, and Chib95 in
which case the method of Chib (1995) is used.

... further arguments to be passed.

Details

MCMCregress simulates from the posterior distribution using standard Gibbs sampling (a multivari-
ate Normal draw for the betas, and an inverse Gamma draw for the conditional error variance).
The simulation proper is done in compiled C++ code to maximize efficiency. Please consult the
coda documentation for a comprehensive list of functions that can be used to analyze the posterior
sample.

The model takes the following form:

yi = x′
iβ + εi

Where the errors are assumed to be Gaussian:

εi ∼ N (0, σ2)

We assume standard, semi-conjugate priors:

β ∼ N (b0, B
−1
0 )

And:

σ−2 ∼ Gamma(c0/2, d0/2)

Where β and σ−2 are assumed a priori independent. Note that only starting values for β are
allowed because simulation is done using Gibbs sampling with the conditional error variance as the
first block in the sampler.
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Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Siddhartha Chib. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American
Statistical Association. 90: 1313-1321.

Robert E. Kass and Adrian E. Raftery. 1995. “Bayes Factors.” Journal of the American Statistical
Association. 90: 773-795.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc, summary.mcmc, lm

Examples

## Not run:
line <- list(X = c(-2,-1,0,1,2), Y = c(1,3,3,3,5))
posterior <- MCMCregress(Y~X, b0=0, B0 = 0.1,

sigma.mu = 5, sigma.var = 25, data=line, verbose=1000)
plot(posterior)
raftery.diag(posterior)
summary(posterior)

## End(Not run)

MCMCregressChange Markov Chain Monte Carlo for a linear Gaussian Multiple Change-
point Model

Description

This function generates a sample from the posterior distribution of a linear Gaussian model with
multiple changepoints. The function uses the Markov chain Monte Carlo method of Chib (1998).
The user supplies data and priors, and a sample from the posterior distribution is returned as an
mcmc object, which can be subsequently analyzed with functions provided in the coda package.

https://doi.org/10.18637/jss.v042.i09
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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Usage

MCMCregressChange(
formula,
data = parent.frame(),
m = 1,
b0 = 0,
B0 = 0,
c0 = 0.001,
d0 = 0.001,
sigma.mu = NA,
sigma.var = NA,
a = NULL,
b = NULL,
mcmc = 1000,
burnin = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
P.start = NA,
random.perturb = FALSE,
WAIC = FALSE,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

formula Model formula.

data Data frame.

m The number of changepoints.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, d0 acts like the sum
of squared errors from the c0 pseudo-observations.

sigma.mu The mean of the inverse Gamma prior on σ2. sigma.mu and sigma.var allow
users to choose the inverse Gamma prior by choosing its mean and variance.
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sigma.var The variacne of the inverse Gamma prior on σ2. sigma.mu and sigma.var al-
low users to choose the inverse Gamma prior by choosing its mean and variance.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

mcmc The number of MCMC iterations after burnin.

burnin The number of burn-in iterations for the sampler.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting values for the β vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of of NA
will use the MLE estimate of β as the starting value. If this is a scalar, that value
will serve as the starting value mean for all of the betas.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from the
Beta(0.9, 0.1) are used to construct a proper transition matrix for each raw
except the last raw.

random.perturb If TRUE, randomly sample hidden states whenever regularly sampled hidden
states have at least one single observation state (SOS). SOS is a sign of overfit-
ting in non-ergodic hidden Markov models.

WAIC Compute the Widely Applicable Information Criterion (Watanabe 2010).
marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, and Chib95 in which case
the method of Chib (1995) is used.

... further arguments to be passed

Details

MCMCregressChange simulates from the posterior distribution of the linear regression model with
multiple changepoints.

The model takes the following form:
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yt = x′
tβi + I(st = i)εt, i = 1, . . . , k

Where k is the number of states and I(st = i) is an indicator function that becomes 1 when a state
at t is i and otherwise 0.

The errors are assumed to be Gaussian in each regime:

I(st = i)εt ∼ N (0, σ2
i )

We assume standard, semi-conjugate priors:

βi ∼ N (b0, B
−1
0 ), i = 1, . . . , k

And:

σ−2
i ∼ Gamma(c0/2, d0/2), i = 1, . . . , k

Where βi and σ−2
i are assumed a priori independent.

The simulation proper is done in compiled C++ code to maximize efficiency.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, the log-likelihood of the model (loglike), and
the log-marginal likelihood of the model (logmarglike).

References
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ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Sumio Watanabe. 2010. "Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory" Journal of Machine Learning Research. 11: 3571-
3594.

Siddhartha Chib. 1995. "Marginal Likelihood from the Gibbs Output." Journal of the American
Statistical Association. 90: 1313-1321. <doi: 10.1016/S0304-4076(97)00115-2>

Siddhartha Chib. 1998. "Estimation and comparison of multiple change-point models." Journal of
Econometrics. 86: 221-241. <doi: 10.1080/01621459.1995.10476635>

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

See Also

plotState, plotChangepoint

https://doi.org/10.18637/jss.v042.i09
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Examples

## Not run:
set.seed(1119)
n <- 100
x1 <- runif(n)
true.beta1 <- c(2, -2)
true.beta2 <- c(0, 2)
true.Sigma <- c(1, 2)
true.s <- rep(1:2, each=n/2)

mu1 <- cbind(1, x1[true.s==1])%*%true.beta1
mu2 <- cbind(1, x1[true.s==2])%*%true.beta2

y <- as.ts(c(rnorm(n/2, mu1, sd=sqrt(true.Sigma[1])), rnorm(n/2, mu2, sd=sqrt(true.Sigma[2]))))
formula=y ~ x1

ols1 <- lm(y[true.s==1] ~x1[true.s==1])
ols2 <- lm(y[true.s==2] ~x1[true.s==2])

## prior
b0 <- 0
B0 <- 0.1
sigma.mu=sd(y)
sigma.var=var(y)

## models
model0 <- MCMCregressChange(formula, m=0, b0=b0, B0=B0, mcmc=100, burnin=100,

sigma.mu=sigma.mu, sigma.var=sigma.var, marginal.likelihood="Chib95")
model1 <- MCMCregressChange(formula, m=1, b0=b0, B0=B0, mcmc=100, burnin=100,

sigma.mu=sigma.mu, sigma.var=sigma.var, marginal.likelihood="Chib95")
model2 <- MCMCregressChange(formula, m=2, b0=b0, B0=B0, mcmc=100, burnin=100,

sigma.mu=sigma.mu, sigma.var=sigma.var, marginal.likelihood="Chib95")
model3 <- MCMCregressChange(formula, m=3, b0=b0, B0=B0, mcmc=100, burnin=100,

sigma.mu=sigma.mu, sigma.var=sigma.var, marginal.likelihood="Chib95")
model4 <- MCMCregressChange(formula, m=4, b0=b0, B0=B0, mcmc=100, burnin=100,

sigma.mu=sigma.mu, sigma.var=sigma.var, marginal.likelihood="Chib95")
model5 <- MCMCregressChange(formula, m=5, b0=b0, B0=B0, mcmc=100, burnin=100,

sigma.mu=sigma.mu, sigma.var=sigma.var, marginal.likelihood="Chib95")

print(BayesFactor(model0, model1, model2, model3, model4, model5))
plotState(model1)
plotChangepoint(model1)

## End(Not run)

MCMCresidualBreakAnalysis

Break Analysis of Univariate Time Series using Markov Chain Monte
Carlo
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Description

This function performs a break analysis for univariate time series data using a linear Gaussian
changepoint model. The code is written mainly for an internal use in testpanelSubjectBreak.

Usage

MCMCresidualBreakAnalysis(
resid,
m = 1,
b0 = 0,
B0 = 0.001,
c0 = 0.1,
d0 = 0.1,
a = NULL,
b = NULL,
mcmc = 1000,
burnin = 1000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
P.start = NA,
random.perturb = FALSE,
WAIC = FALSE,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

resid Univariate time series

m The number of breaks.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, d0 acts like the sum
of squared errors from the c0 pseudo-observations.
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a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

mcmc The number of MCMC iterations after burnin.

burnin The number of burn-in iterations for the sampler.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting values for the β vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of of NA
will use the OLS estimate of β as the starting value. If this is a scalar, that value
will serve as the starting value mean for all of the betas.

P.start The starting values for the transition matrix. A user should provide a square
matrix with dimension equal to the number of states. By default, draws from the
Beta(0.9, 0.1) are used to construct a proper transition matrix for each raw
except the last raw.

random.perturb If TRUE, randomly sample hidden states whenever regularly sampled hidden
states have at least one single observation state. It’s one method to avoid over-
fitting in a non-ergodic hidden Markov models. See Park and Sohn (2017).

WAIC Compute the Widely Applicable Information Criterion (Watanabe 2010).
marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated, and Chib95 in which case
the method of Chib (1995) is used.

... further arguments to be passed

Details

MCMCresidualBreakAnalysis simulates from the posterior distribution using standard Gibbs sam-
pling (a multivariate Normal draw for the betas, and an inverse Gamma draw for the conditional
error variance). The simulation proper is done in compiled C++ code to maximize efficiency. Please
consult the coda documentation for a comprehensive list of functions that can be used to analyze
the posterior sample.
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The model takes the following form:

yi ∼ N (βm, σ2
m) m = 1, . . . ,M

We assume standard, semi-conjugate priors:

β ∼ N (b0, B
−1
0 )

And:

σ−2 ∼ Gamma(c0/2, d0/2)

Where β and σ−2 are assumed a priori independent.

And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Jong Hee Park and Yunkyu Sohn. 2017. "Detecting Structural Changes in Network Data: An
Application to Changes in Military Alliance Networks, 1816-2012". Working Paper.

Jong Hee Park, 2012. “Unified Method for Dynamic and Cross-Sectional Heterogeneity: Introduc-
ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Sumio Watanabe. 2010. "Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory" Journal of Machine Learning Research. 11: 3571-
3594.

Siddhartha Chib. 1995. "Marginal Likelihood from the Gibbs Output." Journal of the American
Statistical Association. 90: 1313-1321. <doi: 10.1016/S0304-4076(97)00115-2>

Siddhartha Chib. 1998. "Estimation and comparison of multiple change-point models." Journal of
Econometrics. 86: 221-241. <doi: 10.1080/01621459.1995.10476635>

See Also

plot.mcmc, summary.mcmc, lm
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Examples

## Not run:
line <- list(X = c(-2,-1,0,1,2), Y = c(1,3,3,3,5))
ols <- lm(Y~X)
residual <- rstandard(ols)
posterior <- MCMCresidualBreakAnalysis(residual, m = 1, data=line, mcmc=1000, verbose=200)
plotState(posterior)
summary(posterior)

## End(Not run)

MCMCSVDreg Markov Chain Monte Carlo for SVD Regression

Description

This function generates a sample from the posterior distribution of a linear regression model with
Gaussian errors in which the design matrix has been decomposed with singular value decomposi-
tion.The sampling is done via the Gibbs sampling algorithm. The user supplies data and priors, and
a sample from the posterior distribution is returned as an mcmc object, which can be subsequently
analyzed with functions provided in the coda package.

Usage

MCMCSVDreg(
formula,
data = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
tau2.start = 1,
g0 = 0,
a0 = 0.001,
b0 = 0.001,
c0 = 2,
d0 = 2,
w0 = 1,
beta.samp = FALSE,
intercept = TRUE,
...

)
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Arguments

formula Model formula. Predictions are returned for elements of y that are coded as NA.

data Data frame.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance are printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

tau2.start The starting values for the τ2 vector. Can be either a scalar or a vector. If a
scalar is passed then that value will be the starting value for all elements of τ2.

g0 The prior mean of γ. This can either be a scalar or a column vector with dimen-
sion equal to the number of gammas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

a0 a0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from a0 pseudo-observations.

b0 b0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, b0 acts like the sum
of squared errors from the a0 pseudo-observations.

c0 c0/2 is the shape parameter for the inverse Gamma prior on τ2i .

d0 d0/2 is the scale parameter for the inverse Gamma prior on τ2i .

w0 The prior probability that γi = 0. Can be either a scalar or an N vector where
N is the number of observations.

beta.samp Logical indicating whether the sampled elements of beta should be stored and
returned.

intercept Logical indicating whether the original design matrix should include a constant
term.

... further arguments to be passed

Details

The model takes the following form:
y = Xβ + ε
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Where the errors are assumed to be iid Gaussian:

εi ∼ N (0, σ2)

Let N denote the number of rows of X and P the number of columns of X . Unlike the standard
regression setup where N >> P here it is the case that P >> N .

To deal with this problem a singular value decomposition of X ′ is performed: X ′ = ADF and the
regression model becomes

y = F ′Dγ + ε

where γ = A′β

We assume the following priors:

σ−2 ∼ Gamma(a0/2, b0/2)

τ−2 ∼ Gamma(c0/2, d0/2)

γi ∼ w0iδ0 + (1− w0i)N (g0i, σ
2τ2i /d

2
i )

where δ0 is a unit point mass at 0 and di is the ith diagonal element of D.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

References

Mike West, Josheph Nevins, Jeffrey Marks, Rainer Spang, and Harry Zuzan. 2000. “DNA Microar-
ray Data Analysis and Regression Modeling for Genetic Expression Profiling." Duke ISDS working
paper.

Gottardo, Raphael, and Adrian Raftery. 2004. “Markov chain Monte Carlo with mixtures of singu-
lar distributions.” Statistics Department, University of Washington, Technical Report 470.

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

plot.mcmc, summary.mcmc, lm
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MCMCtobit Markov Chain Monte Carlo for Gaussian Linear Regression with a
Censored Dependent Variable

Description

This function generates a sample from the posterior distribution of a linear regression model with
Gaussian errors using Gibbs sampling (with a multivariate Gaussian prior on the beta vector, and an
inverse Gamma prior on the conditional error variance). The dependent variable may be censored
from below, from above, or both. The user supplies data and priors, and a sample from the posterior
distribution is returned as an mcmc object, which can be subsequently analyzed with functions
provided in the coda package.

Usage

MCMCtobit(
formula,
data = NULL,
below = 0,
above = Inf,
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = NA,
beta.start = NA,
b0 = 0,
B0 = 0,
c0 = 0.001,
d0 = 0.001,
...

)

Arguments

formula A model formula.

data A dataframe.

below The point at which the dependent variable is censored from below. The default
is zero. To censor from above only, specify that below = -Inf.

above The point at which the dependent variable is censored from above. To censor
from below only, use the default value of Inf.

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.
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verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the β vector,
and the error variance is printed to the screen every verboseth iteration.

seed The seed for the random number generator. If NA, the Mersenne Twister gener-
ator is used with default seed 12345; if an integer is passed it is used to seed the
Mersenne twister. The user can also pass a list of length two to use the L’Ecuyer
random number generator, which is suitable for parallel computation. The first
element of the list is the L’Ecuyer seed, which is a vector of length six or NA
(if NA a default seed of rep(12345,6) is used). The second element of list is a
positive substream number. See the MCMCpack specification for more details.

beta.start The starting values for the β vector. This can either be a scalar or a column
vector with dimension equal to the number of betas. The default value of of NA
will use the OLS estimate of β as the starting value. If this is a scalar, that value
will serve as the starting value mean for all of the betas.

b0 The prior mean of β. This can either be a scalar or a column vector with dimen-
sion equal to the number of betas. If this takes a scalar value, then that value
will serve as the prior mean for all of the betas.

B0 The prior precision of β. This can either be a scalar or a square matrix with
dimensions equal to the number of betas. If this takes a scalar value, then that
value times an identity matrix serves as the prior precision of beta. Default value
of 0 is equivalent to an improper uniform prior for beta.

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2 (the variance
of the disturbances). The amount of information in the inverse Gamma prior is
something like that from c0 pseudo-observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2 (the variance of
the disturbances). In constructing the inverse Gamma prior, d0 acts like the sum
of squared errors from the c0 pseudo-observations.

... further arguments to be passed

Details

MCMCtobit simulates from the posterior distribution using standard Gibbs sampling (a multivari-
ate Normal draw for the betas, and an inverse Gamma draw for the conditional error variance).
MCMCtobit differs from MCMCregress in that the dependent variable may be censored from below,
from above, or both. The simulation proper is done in compiled C++ code to maximize efficiency.
Please consult the coda documentation for a comprehensive list of functions that can be used to
analyze the posterior sample.

The model takes the following form:

yi = x′
iβ + εi,

where the errors are assumed to be Gaussian:

εi ∼ N (0, σ2).

Let c1 and c2 be the two censoring points, and let y∗i be the partially observed dependent variable.
Then,
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yi = y∗i if c1 < y∗i < c2,

yi = c1 if c1 ≥ y∗i ,

yi = c2 if c2 ≤ y∗i .

We assume standard, semi-conjugate priors:

β ∼ N (b0, B
−1
0 ),

and:

σ−2 ∼ Gamma(c0/2, d0/2),

where β and σ−2 are assumed a priori independent. Note that only starting values for β are allowed
because simulation is done using Gibbs sampling with the conditional error variance as the first
block in the sampler.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

Author(s)

Ben Goodrich, <goodrich.ben@gmail.com>

References

Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011. “MCMCpack: Markov Chain
Monte Carlo in R.”, Journal of Statistical Software. 42(9): 1-21. doi:10.18637/jss.v042.i09.
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http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

Siddhartha Chib. 1992. “Bayes inference in the Tobit censored regression model." Journal of
Econometrics. 51:79-99.

James Tobin. 1958. “Estimation of relationships for limited dependent variables." Econometrica.
26:24-36.

See Also

plot.mcmc, summary.mcmc, survreg, MCMCregress
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Examples

## Not run:
library(survival)
example(tobin)
summary(tfit)
tfit.mcmc <- MCMCtobit(durable ~ age + quant, data=tobin, mcmc=30000,

verbose=1000)
plot(tfit.mcmc)
raftery.diag(tfit.mcmc)
summary(tfit.mcmc)

## End(Not run)

MCmultinomdirichlet Monte Carlo Simulation from a Multinomial Likelihood with a Dirich-
let Prior

Description

This function generates a sample from the posterior distribution of a multinomial likelihood with a
Dirichlet prior.

Usage

MCmultinomdirichlet(y, alpha0, mc = 1000, ...)

Arguments

y A vector of data (number of successes for each category).

alpha0 The vector of parameters of the Dirichlet prior.

mc The number of Monte Carlo draws to make.

... further arguments to be passed

Details

MCmultinomdirichlet directly simulates from the posterior distribution. This model is designed
primarily for instructional use. π is the parameter of interest of the multinomial distribution. It is of
dimension (d× 1). We assume a conjugate Dirichlet prior:

π ∼ Dirichlet(α0)

y is a (d× 1) vector of observed data.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.
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See Also

plot.mcmc, summary.mcmc

Examples

## Not run:
## Example from Gelman, et. al. (1995, p. 78)
posterior <- MCmultinomdirichlet(c(727,583,137), c(1,1,1), mc=10000)
bush.dukakis.diff <- posterior[,1] - posterior[,2]
cat("Pr(Bush > Dukakis): ",

sum(bush.dukakis.diff > 0) / length(bush.dukakis.diff), "\n")
hist(bush.dukakis.diff)

## End(Not run)

MCnormalnormal Monte Carlo Simulation from a Normal Likelihood (with known vari-
ance) with a Normal Prior

Description

This function generates a sample from the posterior distribution of a Normal likelihood (with known
variance) with a Normal prior.

Usage

MCnormalnormal(y, sigma2, mu0, tau20, mc = 1000, ...)

Arguments

y The data.

sigma2 The known variance of y.

mu0 The prior mean of mu.

tau20 The prior variance of mu.

mc The number of Monte Carlo draws to make.

... further arguments to be passed

Details

MCnormalnormal directly simulates from the posterior distribution. This model is designed primar-
ily for instructional use. µ is the parameter of interest of the Normal distribution. We assume a
conjugate normal prior:

µ ∼ N (µ0, τ
2
0 )

y is a vector of observed data.
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Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

See Also

plot.mcmc, summary.mcmc

Examples

## Not run:
y <- c(2.65, 1.80, 2.29, 2.11, 2.27, 2.61, 2.49, 0.96, 1.72, 2.40)
posterior <- MCMCpack:::MCnormalnormal(y, 1, 0, 1, 5000)
summary(posterior)
plot(posterior)
grid <- seq(-3,3,0.01)
plot(grid, dnorm(grid, 0, 1), type="l", col="red", lwd=3, ylim=c(0,1.4),

xlab="mu", ylab="density")
lines(density(posterior), col="blue", lwd=3)
legend(-3, 1.4, c("prior", "posterior"), lwd=3, col=c("red", "blue"))

## End(Not run)

MCpoissongamma Monte Carlo Simulation from a Poisson Likelihood with a Gamma
Prior

Description

This function generates a sample from the posterior distribution of a Poisson likelihood with a
Gamma prior.

Usage

MCpoissongamma(y, alpha, beta, mc = 1000, ...)

Arguments

y A vector of counts (must be non-negative).

alpha Gamma prior distribution shape parameter.

beta Gamma prior distribution scale parameter.

mc The number of Monte Carlo draws to make.

... further arguments to be passed
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Details

MCpoissongamma directly simulates from the posterior distribution. This model is designed primar-
ily for instructional use. λ is the parameter of interest of the Poisson distribution. We assume a
conjugate Gamma prior:

λ ∼ Gamma(α, β)

y is a vector of counts.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package.

See Also

plot.mcmc, summary.mcmc

Examples

## Not run:
data(quine)
posterior <- MCpoissongamma(quine$Days, 15, 1, 5000)
summary(posterior)
plot(posterior)
grid <- seq(14,18,0.01)
plot(grid, dgamma(grid, 15, 1), type="l", col="red", lwd=3, ylim=c(0,1.3),

xlab="lambda", ylab="density")
lines(density(posterior), col="blue", lwd=3)
legend(17, 1.3, c("prior", "posterior"), lwd=3, col=c("red", "blue"))

## End(Not run)

mptable Calculate the marginal posterior probabilities of predictors being in-
cluded in a quantile regression model.

Description

This function extracts the marginal probability table produced by summary.qrssvs.

Usage

mptable(qrssvs)



176 Nethvote

Arguments

qrssvs An object of class qrssvs. Typically this will be the gamma component of the
list returned by SSVSquantreg.

Value

A table with the predictors listed together with their posterior marginal posterior probability of
inclusion.

Author(s)

Craig Reed

See Also

SSVSquantreg

Examples

## Not run:
set.seed(1)
epsilon<-rnorm(100)
set.seed(2)
x<-matrix(rnorm(1000),100,10)
y<-x[,1]+x[,10]+epsilon
qrssvs<-SSVSquantreg(y~x)
mptable(qrssvs$gamma)

## End(Not run)

Nethvote Dutch Voting Behavior in 1989

Description

Dutch Voting Behavior in 1989.

Format

A data frame with 1754 observations and 11 variables from the 1989 Dutch Parliamentary Election
Study (Anker and Oppenhuis, 1993). Each observation is a survey respondent. These data are
a subset of one of five multiply imputed datasets used in Quinn and Martin (2002). For more
information see Quinn and Martin (2002).

vote A factor giving the self-reported vote choice of each respondent. The levels are CDA (Chris-
ten Democratisch Appel), D66 (Democraten 66), Pvda (Partij van de Arbeid), and VVD
(Volkspartij voor Vrijheid en Democratie).
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distD66 A numeric variable giving the squared ideological distance between the respondent and the
D66. Larger values indicate ideological dissimilarity between the respondent and the party.

distPvdA A numeric variable giving the squared ideological distance between the respondent and
the PvdA. Larger values indicate ideological dissimilarity between the respondent and the
party.

distVVD A numeric variable giving the squared ideological distance between the respondent and
the VVD. Larger values indicate ideological dissimilarity between the respondent and the
party.

distCDA A numeric variable giving the squared ideological distance between the respondent and
the CDA. Larger values indicate ideological dissimilarity between the respondent and the
party.

relig An indicator variable equal to 0 if the respondent is not religious and 1 if the respondent is
religious.

class Social class of respondent. 0 is the lowest social class, 4 is the highest social class.

income Income of respondent. 0 is lowest and 6 is highest.

educ Education of respondent. 0 is lowest and 4 is highest.

age Age category of respondent. 0 is lowest and 12 is highest.

urban Indicator variable equal to 0 if the respondent is not a resident of an urban area and 1 if the
respondent is a resident of an urban area.

Source

H. Anker and E.V. Oppenhuis. 1993. “Dutch Parliamentary Election Study.” (computer file). Dutch
Electoral Research Foundation and Netherlands Central Bureau of Statistics, Amsterdam.

References

Kevin M. Quinn and Andrew D. Martin. 2002. “An Integrated Computational Model of Multiparty
Electoral Competition.” Statistical Science. 17: 405-419.

NoncenHypergeom The Noncentral Hypergeometric Distribution

Description

Evaluates the density at a single point or all points, and generate random draws from the Noncentral
Hypergeometric distribution.

Usage

dnoncenhypergeom(x = NA, n1, n2, m1, psi)

rnoncenhypergeom(n, n1, n2, m1, psi)
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Arguments

x The location to evaluate the density. If x is NA, then a matrix is returned with
the density evaluated at all possible points.

n1 The size of group one.

n2 The size of group two.

m1 The observed number of positive outcomes (in both groups).

psi Odds ratio.

n The number of draws to make from the distribution.

Details

The Noncentral Hypergeometric is particularly useful for conditional inference for (2 × 2) tables.
We use the parameterization and algorithms of Liao and Rosen (2001). The underlying R code is
based on their published code. See their article for details of the parameterization.

Value

dnoncenhypergeom evaluates the density at point x, or a matrix with the first column containing the
possible values of the random variable, and the second column containing the probabilities.

rnoncenhypergeom returns a list of n random draws from the distribution.

Source

J. G. Liao and Ori Rosen. 2001. “Fast and Stable Algorithms for Computing and Sampling From
the Noncentral Hypergeometric Distribution." The American Statistician. 55: 366-369.

Examples

density <- dnoncenhypergeom(NA, 500, 500, 500, 6.0)
draws <- rnoncenhypergeom(10, 500, 500, 500, 6.0)

PErisk Political Economic Risk Data from 62 Countries in 1987

Description

Political Economic Risk Data from 62 Countries in 1987.

Format

A data frame with 62 observations on the following 9 variables. All data points are from 1987. See
Quinn (2004) for more details.

country a factor with levels Argentina through Zimbabwe

courts an ordered factor with levels 0 < 1.courts is an indicator of whether the country in question
is judged to have an independent judiciary. From Henisz (2002).



plot.qrssvs 179

barb2 a numeric vector giving the natural log of the black market premium in each country. The
black market premium is coded as the black market exchange rate (local currency per dollar)
divided by the official exchange rate minus 1. From Marshall, Gurr, and Harff (2002).

prsexp2 an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5, giving the lack of expropriation risk.
From Marshall, Gurr, and Harff (2002).

prscorr2 an ordered factor with levels 0 < 1 < 2 < 3 < 4 < 5, measuring the lack of corruption.
From Marshall, Gurr, and Harff (2002).

gdpw2 a numeric vector giving the natural log of real GDP per worker in 1985 international prices.
From Alvarez et al. (1999).

Source

Mike Alvarez, Jose Antonio Cheibub, Fernando Limongi, and Adam Przeworski. 1999. “ACLP
Political and Economic Database.”

Witold J. Henisz. 2002. “The Political Constraint Index (POLCON) Dataset.”

Monty G. Marshall, Ted Robert Gurr, and Barbara Harff. 2002. “State Failure Task Force Problem
Set.”

References

Kevin M. Quinn. 2004. “Bayesian Factor Analysis for Mixed Ordinal and Continuous Response.”
Political Analyis. 12: 338-353.

plot.qrssvs Plot output from quantile regression stochastic search variable selec-
tion (QR-SSVS).

Description

This function produces a Trellis plot of the predictors on the y-axis versus the marginal posterior
probability of inclusion on the x-axis.

Usage

## S3 method for class 'qrssvs'
plot(x, ...)

Arguments

x An object of class qrssvs. Typically this will be the gamma component of the
list returned by SSVSquantreg.

... Further arguments

Value

An object with class "trellis". The associated update and print methods are documented in the
"Lattice" package.
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Author(s)

Craig Reed

References

Deepayan Sarkar. 2008. lattice: Lattice Graphics. R package version 0.17-17

See Also

SSVSquantreg, mptable, Lattice for a brief introduction to lattice displays and links to further
documentation.

Examples

## Not run:
set.seed(1)
epsilon<-rnorm(100)
set.seed(2)
x<-matrix(rnorm(1000),100,10)
y<-x[,1]+x[,10]+epsilon
qrssvs<-SSVSquantreg(y~x)
plot(qrssvs$gamma)
## Modify the graph by increasing the fontsize on the axes
qrssvsplot<-plot(qrssvs$gamma)
update(qrssvsplot, scales=list(cex=3))

## End(Not run)

plotChangepoint Posterior Density of Regime Change Plot

Description

Plot the posterior density of regime change.

Usage

plotChangepoint(
mcmcout,
main = "Posterior Density of Regime Change Probabilities",
xlab = "Time",
ylab = "",
verbose = FALSE,
start = 1,
overlay = FALSE

)
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Arguments

mcmcout The mcmc object containing the posterior density sample from a changepoint
model. Note that this must have a
prob.state attribute.

main Title of the plot

xlab Label for the x-axis.

ylab Label for the y-axis.

verbose If verbose=TRUE, expected changepoints are printed.

start The time of the first observation to be shown in the time series plot.

overlay If overlay=TRUE, the probability of each regime change is drawn separately,
which will be useful to draw multiple plots in one screen. See the example in
MCMCpoissonChange. Otherwise, multiple plots of regime change probabilities
will be drawn.

See Also

MCMCpoissonChange, MCMCbinaryChange

plotHDPChangepoint Posterior Changepoint Probabilities from HDP-HMM

Description

Plot the posterior density of regime change.

Usage

plotHDPChangepoint(
mcmcout,
main = "Posterior Changepoint Probabilities",
xlab = "Time",
ylab = "",
start = 1

)

Arguments

mcmcout The mcmc object containing the posterior density sample from a changepoint
model. Note that this must be from a HDP-HMM sampler.

main Title of the plot

xlab Label for the x-axis.

ylab Label for the y-axis.

start The time of the first observation to be shown in the time series plot.
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See Also

HDPHMMpoisson, HDPHMMnegbin, HDPHSMMnegbin

plotState Changepoint State Plot

Description

Plot the posterior probability that each time point is in each state.

Usage

plotState(
mcmcout,
main = "Posterior Regime Probability",
ylab = expression(paste("Pr(", S[t], "= k |", Y[t], ")")),
legend.control = NULL,
cex = 0.8,
lwd = 1.2,
start = 1

)

Arguments

mcmcout The mcmc object containing the posterior density sample from a changepoint
model. Note that this must have a prob.state attribute.

main Title of the plot.

ylab Label for the y-axis.

legend.control Control the location of the legend. It is necessary to pass both the x and y
locations; i.e., c(x,y).

cex Control point size.

lwd Line width parameter.

start The time of the first observation to be shown in the time series plot.

See Also

MCMCpoissonChange, MCMCbinaryChange
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PostProbMod Calculate Posterior Probability of Model

Description

This function takes an object of class BayesFactor and calculates the posterior probability that
each model under study is correct given that one of the models under study is correct.

Usage

PostProbMod(BF, prior.probs = 1)

Arguments

BF An object of class BayesFactor.

prior.probs The prior probabilities that each model is correct. Can be either a scalar or array.
Must be positive. If the sum of the prior probabilities is not equal to 1 prior.probs
will be normalized so that it does sum to unity.

Value

An array holding the posterior probabilities that each model under study is correct given that one of
the models under study is correct.

See Also

MCMCregress

Examples

## Not run:
data(birthwt)

post1 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke + ht,
data=birthwt, b0=c(2700, 0, 0, -500, -500,

-500, -500),
B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5,

1.6e-5), c0=10, d0=4500000,
marginal.likelihood="Chib95", mcmc=10000)

post2 <- MCMCregress(bwt~age+lwt+as.factor(race) + smoke,
data=birthwt, b0=c(2700, 0, 0, -500, -500,

-500),
B0=c(1e-6, .01, .01, 1.6e-5, 1.6e-5, 1.6e-5),
c0=10, d0=4500000,
marginal.likelihood="Chib95", mcmc=10000)

post3 <- MCMCregress(bwt~as.factor(race) + smoke + ht,
data=birthwt, b0=c(2700, -500, -500,
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-500, -500),
B0=c(1e-6, 1.6e-5, 1.6e-5, 1.6e-5,

1.6e-5), c0=10, d0=4500000,
marginal.likelihood="Chib95", mcmc=10000)

BF <- BayesFactor(post1, post2, post3)
mod.probs <- PostProbMod(BF)
print(mod.probs)

## End(Not run)

procrustes Procrustes Transformation

Description

This function performs a Procrustes transformation on a matrix X to minimize the squared distance
between X and another matrix Xstar.

Usage

procrustes(X, Xstar, translation = FALSE, dilation = FALSE)

Arguments

X The matrix to be transformed.

Xstar The target matrix.

translation logical value indicating whether X should be translated.

dilation logical value indicating whether X should be dilated.

Details

R, tt, and s are chosen so that:

sXR+ 1tt′ ≈ X∗

X.new is given by:

Xnew = sXR+ 1tt′

Value

A list containing: X.new the matrix that is the Procrustes transformed version of X, R the rotation
matrix, tt the translation vector, and s the scale factor.
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References

Borg and Groenen. 1997. Modern Multidimensional Scaling. New York: Springer. pp. 340-342.

See Also

MCMCirtKd

read.Scythe Read a Matrix from a File written by Scythe

Description

This function reads a matrix from an ASCII file in the form produced by the Scythe Statistical
Library. Scythe output files contain the number of rows and columns in the first row, followed by
the data.

Usage

read.Scythe(infile = NA)

Arguments

infile The file to be read. This can include path information.

Value

A matrix containing the data stored in the read file.

References

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

See Also

write.Scythe

Examples

## Not run:
mymatrix <- read.Scythe("myfile.txt")

## End(Not run)

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
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Rehnquist U.S. Supreme Court Vote Matrix, Rehnquist Court (1994-2004)

Description

This dataframe contains a matrix of votes cast by U.S. Supreme Court justices by all cases in the
1994-2004 terms.

Format

The dataframe has contains data for justices Rehnquist, Stevens, O’Connor, Scalia, Kennedy, Souter,
Thomas, Ginsburg, and Breyer for the 1994-2004 terms of the U.S. Supreme Court. The dataframe
also contains the term of the case, and a time variable that counts from term 1 to 11. The votes are
coded liberal (1) and conservative (0) using the protocol of Spaeth (2003). The unit of analysis is the
case citation (ANALU=0). We are concerned with formally decided cases issued with written opin-
ions, after full oral argument and cases decided by an equally divided vote (DECTYPE=1,5,6,7).

Source

Harold J. Spaeth. 2005. Original United States Supreme Court Database: 1953-2004 Terms.

Senate 106th U.S. Senate Roll Call Vote Matrix

Description

This dataframe contains a matrix of votes cast by U.S. Senators in the 106th Congress.

Format

The dataframe contains roll call data for all Senators in the 106th Senate. The first column (id) is
the ICPSR member ID number, the second column (statecode) is the ICPSR state code, the third
column (party) is the member’s state name, and the fourth column (member) is the member’s name.
This is followed by all roll call votes (including unanimous ones) in the 106th. Nay votes are coded
0, yea votes are coded 1, and NAs are missing votes.

Source

Keith Poole. 2005. 106th Roll Call Vote Data.
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SSVSquantreg Stochastic search variable selection for quantile regression

Description

This function uses stochastic search to select promising regression models at a fixed quantile τ .
Indicator variables γ are used to represent whether a predictor is included in the model or not. The
user supplies the data and the prior distribution on the model size. A list is returned containing the
posterior sample of γ and the associated regression parameters β.

Usage

SSVSquantreg(
formula,
data = NULL,
tau = 0.5,
include = NULL,
burnin = 1000,
mcmc = 10000,
thin = 1,
verbose = 0,
seed = sample(1:1e+06, 1),
pi0a0 = 1,
pi0b0 = 1,
...

)

Arguments

formula Model formula.

data Data frame.

tau The quantile of interest. Must be between 0 and 1. The default value of 0.5
corresponds to median regression model selection.

include The predictor(s) that should definitely appear in the model. Can be specified by
name, or their position in the formula (taking into account the intercept).

burnin The number of burn-in iterations for the sampler.

mcmc The number of MCMC iterations after burnin.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0 the iteration number, the most recently
sampled values of γ and the associated values of β are printed to the screen every
verboseth iteration.
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seed The seed for the random number generator. If NA, the Mersenne Twister gen-
erator is used with default seed 12345; if an integer is passed it is used to seed
the Mersenne twister. The default value for this argument is a random integer
between 1 and 1,000,000. This default value ensures that if the function is used
again with a different value of τ , it is extremely unlikely that the seed will be
identical. The user can also pass a list of length two to use the L’Ecuyer random
number generator, which is suitable for parallel computation. The first element
of the list is the L’Ecuyer seed, which is a vector of length six or NA (if NA a
default seed of rep(12345,6) is used). The second element of list is a positive
substream number. See the MCMCpack specification for more details.

pi0a0, pi0b0 Hyperparameters of the beta prior on π0, the prior probability of including a
predictor. Default values of (1,1) are equivalent to a uniform distribution.

... Further arguments

Details

SSVSquantreg implements stochastic search variable selection over a set of potential predictors to
obtain promising models. The models considered take the following form:

Qτ (yi|xiγ) = x′
iγβγ ,

where Qτ (yi|xiγ) denotes the conditional τ th quantile of yi given xiγ , xiγ denotes xi with those
predictors xij for which γj = 0 removed and βγ denotes the model specific regression parameters.

The likelihood is formed based on the assumption of independent asymmetric Laplace distributions
on the yi with skewness parameter τ and location parameters x′

iγβγ . This assumption ensures that
the likelihood function is maximised by the τ th conditional quantile of the response variable.

The prior on each βj is

(1− γj)δ0 + γjCauchy(0, 1),

where δ0 denotes a degenerate distribution with all mass at 0. A standard Cauchy distribution is
chosen conditional on γj = 1. This allows for a wider range of nonzero values of βj than a standard
Normal distribution, improving the robustness of the method. Each of the indicator variables γj is
independently assigned a Bernoulli prior, with prior probability of inclusion π0. This in turn is
assigned a beta distribution, resulting in a beta-binomial prior on the model size. The user can
supply the hyperparameters for the beta distribution. Starting values are randomly generated from
the prior distribution.

It is recommended to standardise any non-binary predictors in order to compare these predictors on
the same scale. This can be achieved using the scale function.

If it is certain that a predictor should be included, all predictors specified are brought to the first po-
sitions for computational convenience. The regression parameters associated with these predictors
are given independent improper priors. Users may notice a small speed advantage if they specify
the predictors that they feel certain should appear in the model, particularly for large models with a
large number of observations.
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Value

A list containing:

gamma The posterior sample of γ. This has associated summary and plot methods.

beta The posterior sample of the associated regression parameters β. This can be
analysed with functions from the coda package.

Author(s)

Craig Reed

References

Craig Reed, David B. Dunson and Keming Yu. 2010. "Bayesian Variable Selection for Quantile
Regression" Technical Report.

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.2.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

Keming Yu and Jin Zhang. 2005. "A Three Parameter Asymmetric Laplace Distribution and it’s
extensions." Communications in Statistics - Theory and Methods, 34, 1867-1879.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006. “Output Analysis and Diag-
nostics for MCMC (CODA)”, R News. 6(1): 7-11. https://CRAN.R-project.org/doc/Rnews/
Rnews_2006-1.pdf.

See Also

MCMCquantreg, summary.qrssvs, plot.qrssvs, mptable, topmodels, scale, rq

Examples

## Not run:

set.seed(1)
epsilon<-rnorm(100)
set.seed(2)
x<-matrix(rnorm(1000),100,10)
y<-x[,1]+x[,10]+epsilon
qrssvs<-SSVSquantreg(y~x)
model.50pc<-SSVSquantreg(y~x)
model.90pc<-SSVSquantreg(y~x,tau=0.9)
summary(model.50pc) ## Intercept not in median probability model
summary(model.90pc) ## Intercept appears in median probability model

## End(Not run)

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf
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summaryqrssvs Summarising the results of quantile regression stochastic search vari-
able selection (QR-SSVS).

Description

This function produces a table of predictors and their associated marginal posterior probability of
inclusion. It also returns the median probability model (see the details section).

Usage

## S3 method for class 'qrssvs'
summary(object, ...)

Arguments

object An object of class qrssvs. Typically this will be the gamma component of the
list returned by SSVSquantreg.

... Further arguments.

Details

The median probability model is defined to be the model that contains any predictor with marginal
posterior probability greater than or equal to 0.5. If the goal is to select a single model e.g. for
prediction, Barbieri and Berger (2004) recommend the median probability model. In some cases,
this will coincide with the maximum probability model.

Author(s)

Craig Reed

References

Maria M. Barbieri, and James O. Berger (2004). "Optimal predictive model selection". Annals of
Statistics, 32, 870-897.

See Also

SSVSquantreg, mptable, topmodels

Examples

## Not run:
set.seed(1)
epsilon<-rnorm(100)
set.seed(2)
x<-matrix(rnorm(1000),100,10)
y<-x[,1]+x[,10]+epsilon
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qrssvs<-SSVSquantreg(y~x)
summary(qrssvs$gamma)

## End(Not run)

SupremeCourt U.S. Supreme Court Vote Matrix

Description

This dataframe contains a matrix votes cast by U.S. Supreme Court justices in all cases in the 2000
term.

Format

The dataframe has contains data for justices Rehnquist, Stevens, O’Connor, Scalia, Kennedy, Souter,
Thomas, Ginsburg, and Breyer for the 2000 term of the U.S. Supreme Court. It contains data from
43 non-unanimous cases. The votes are coded liberal (1) and conservative (0) using the protocol
of Spaeth (2003). The unit of analysis is the case citation (ANALU=0). We are concerned with
formally decided cases issued with written opinions, after full oral argument and cases decided by
an equally divided vote (DECTYPE=1,5,6,7).

Source

Harold J. Spaeth. 2005. Original United States Supreme Court Database: 1953-2004 Terms. http:
//supremecourtdatabase.org.

testpanelGroupBreak A Test for the Group-level Break using a Multivariate Linear Regres-
sion Model with Breaks

Description

testpanelGroupBreak fits a multivariate linear regression model with parametric breaks using panel
residuals to test the existence of group-level breaks in panel residuals. The details are discussed in
Park (2011).

Usage

testpanelGroupBreak(
subject.id,
time.id,
resid,
m = 1,
mcmc = 1000,

http://supremecourtdatabase.org
http://supremecourtdatabase.org
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burnin = 1000,
thin = 1,
verbose = 0,
b0,
B0,
c0,
d0,
a = NULL,
b = NULL,
seed = NA,
marginal.likelihood = c("none", "Chib95"),
...

)

Arguments

subject.id A numeric vector indicating the group number. It should start from 1.
time.id A numeric vector indicating the time unit. It should start from 1.
resid A vector of panel residuals
m The number of changepoints.
mcmc The number of MCMC iterations after burn-in.
burnin The number of burn-in iterations for the sampler.
thin The thinning interval used in the simulation. The number of MCMC iterations

must be divisible by this value.
verbose A switch which determines whether or not the progress of the sampler is printed

to the screen. If verbose is greater than 0, the iteration number and the posterior
density samples are printed to the screen every verboseth iteration.

b0 The prior mean of the residual mean.
B0 The prior precision of the residual variance
c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2. The amount of

information in the inverse Gamma prior is something like that from c0 pseudo-
observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2.
a a is the shape1 beta prior for transition probabilities. By default, the expected

duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

seed The seed for the random number generator. If NA, current R system seed is
used.

marginal.likelihood

How should the marginal likelihood be calculated? Options are: none in which
case the marginal likelihood will not be calculated and Chib95 in which case the
method of Chib (1995) is used.

... further arguments to be passed
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Details

testpanelGroupBreak fits a multivariate linear regression model with parametric breaks using
panel residuals to detect the existence of system-level breaks in unobserved factors as discussed in
Park (2011).

The model takes the following form:

ei ∼ N (βm, σ2
mI) m = 1, . . . ,M

We assume standard, semi-conjugate priors:

β ∼ N (b0, B0)

And:

σ−2 ∼ Gamma(c0/2, d0/2)

Where β and σ−2 are assumed a priori independent.

And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

Value

An mcmc object that contains the posterior sample. This object can be summarized by functions
provided by the coda package. The object contains an attribute prob.state storage matrix that
contains the probability of statei for each period, and the log-marginal likelihood of the model
(logmarglike).

References

Jong Hee Park, 2012. “Unified Method for Dynamic and Cross-Sectional Heterogeneity: Introduc-
ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241. <doi: 10.1080/01621459.1995.10476635>

Examples

## Not run:
## data generating
set.seed(1977)
Q <- 3
true.beta1 <- c(1, 1, 1) ; true.beta2 <- c(1, -1, -1)
true.sigma2 <- c(1, 3); true.D1 <- diag(.5, Q); true.D2 <- diag(2.5, Q)
N=20; T=100;
NT <- N*T
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x1 <- rnorm(NT)
x2 <- runif(NT, 5, 10)
X <- cbind(1, x1, x2); W <- X; y <- rep(NA, NT)

## true break numbers are one and at the center
break.point = rep(T/2, N); break.sigma=c(rep(1, N));
break.list <- rep(1, N)
id <- rep(1:N, each=NT/N)
K <- ncol(X);
ruler <- c(1:T)

## compute the weight for the break
W.mat <- matrix(NA, T, N)
for (i in 1:N){

W.mat[, i] <- pnorm((ruler-break.point[i])/break.sigma[i])
}
Weight <- as.vector(W.mat)

## data generating by weighting two means and variances
j = 1
for (i in 1:N){

Xi <- X[j:(j+T-1), ]
Wi <- W[j:(j+T-1), ]
true.V1 <- true.sigma2[1]*diag(T) + Wi%*%true.D1%*%t(Wi)
true.V2 <- true.sigma2[2]*diag(T) + Wi%*%true.D2%*%t(Wi)
true.mean1 <- Xi%*%true.beta1
true.mean2 <- Xi%*%true.beta2
weight <- Weight[j:(j+T-1)]
y[j:(j+T-1)] <- (1-weight)*true.mean1 + (1-weight)*chol(true.V1)%*%rnorm(T) +

weight*true.mean2 + weight*chol(true.V2)%*%rnorm(T)
j <- j + T

}
## model fitting
subject.id <- c(rep(1:N, each=T))
time.id <- c(rep(1:T, N))

resid <- rstandard(lm(y ~X-1 + as.factor(subject.id)))
G <- 100
out0 <- testpanelGroupBreak(subject.id, time.id, resid, m=0,

mcmc=G, burnin=G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, marginal.likelihood = "Chib95")

out1 <- testpanelGroupBreak(subject.id, time.id, resid, m=1,
mcmc=G, burnin=G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, marginal.likelihood = "Chib95")

out2 <- testpanelGroupBreak(subject.id, time.id, resid, m=2,
mcmc=G, burnin=G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, marginal.likelihood = "Chib95")

out3 <- testpanelGroupBreak(subject.id, time.id, resid, m=3,
mcmc=G, burnin=G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, marginal.likelihood = "Chib95")

## Note that the code is for a hypothesis test of no break in panel residuals.
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## When breaks exist, the estimated number of break in the mean and variance of panel residuals
## tends to be larger than the number of break in the data generating process.
## This is due to the difference in parameter space, not an error of the code.
BayesFactor(out0, out1, out2, out3)

## In order to identify the number of breaks in panel parameters,
## use HMMpanelRE() instead.

## End(Not run)

testpanelSubjectBreak A Test for the Subject-level Break using a Unitivariate Linear Regres-
sion Model with Breaks

Description

testpanelSubjectBreak fits a unitivariate linear regression model with parametric breaks using panel
residuals to test the existence of subject-level breaks in panel residuals. The details are discussed in
Park (2011).

Usage

testpanelSubjectBreak(
subject.id,
time.id,
resid,
max.break = 2,
minimum = 10,
mcmc = 1000,
burnin = 1000,
thin = 1,
verbose = 0,
b0,
B0,
c0,
d0,
a = NULL,
b = NULL,
seed = NA,
Time = NULL,
ps.out = FALSE,
...

)
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Arguments

subject.id A numeric vector indicating the group number. It should start from 1.

time.id A numeric vector indicating the time unit. It should start from 1.

resid A vector of panel residuals.

max.break An upper bound of break numbers for the test.

minimum A minimum length of time series for the test. The test will skip a subject with a
time series shorter than this.

mcmc The number of MCMC iterations after burn-in.

burnin The number of burn-in iterations for the sampler.

thin The thinning interval used in the simulation. The number of MCMC iterations
must be divisible by this value.

verbose A switch which determines whether or not the progress of the sampler is printed
to the screen. If verbose is greater than 0, the iteration number and the posterior
density samples are printed to the screen every verboseth iteration.

b0 The prior mean of the residual mean.

B0 The prior precision of the residual variance

c0 c0/2 is the shape parameter for the inverse Gamma prior on σ2. The amount of
information in the inverse Gamma prior is something like that from c0 pseudo-
observations.

d0 d0/2 is the scale parameter for the inverse Gamma prior on σ2.

a a is the shape1 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

b b is the shape2 beta prior for transition probabilities. By default, the expected
duration is computed and corresponding a and b values are assigned. The ex-
pected duration is the sample period divided by the number of states.

seed The seed for the random number generator. If NA, current R system seed is
used.

Time Times of the observations. This will be used to find the time of the first obser-
vations in panel residuals.

ps.out If ps.out == TRUE, state probabilities are exported. If the number of panel
subjects is huge, users can turn it off to save memory.

... further arguments to be passed

Details

testpanelSubjectBreak fits a univariate linear regression model for subject-level residuals from
a panel model. The details are discussed in Park (2011).

The model takes the following form:

eit = αim + εit m = 1, . . . ,M
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The errors are assumed to be time-varying at the subject level:

εit ∼ N (0, σ2
im)

We assume standard, semi-conjugate priors:

β ∼ N (b0, B
−1
0 )

And:

σ−2 ∼ Gamma(c0/2, d0/2)

Where β and σ−2 are assumed a priori independent.

And:

pmm ∼ Beta(a, b), m = 1, . . . ,M

Where M is the number of states.

OLS estimates are used for starting values.

Value

The returned object is a matrix containing log marginal likelihoods for all HMMs. The dimension
of the returned object is the number of panel subjects by max.break + 1. If psout == TRUE, the
returned object has an array attribute psout containing state probabilities for all HMMs.

References

Jong Hee Park, 2012. “Unified Method for Dynamic and Cross-Sectional Heterogeneity: Introduc-
ing Hidden Markov Panel Models.” American Journal of Political Science.56: 1040-1054. <doi:
10.1111/j.1540-5907.2012.00590.x>

Siddhartha Chib. 1998. “Estimation and comparison of multiple change-point models.” Journal of
Econometrics. 86: 221-241. <doi: 10.1080/01621459.1995.10476635>

Examples

## Not run:
set.seed(1974)
N <- 30
T <- 80
NT <- N*T

## true parameter values
true.beta <- c(1, 1)
true.sigma <- 3
x1 <- rnorm(NT)
x2 <- runif(NT, 2, 4)

## group-specific breaks
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break.point = rep(T/2, N); break.sigma=c(rep(1, N));
break.list <- rep(1, N)

X <- as.matrix(cbind(x1, x2), NT, );
y <- rep(NA, NT)
id <- rep(1:N, each=NT/N)
K <- ncol(X);
true.beta <- as.matrix(true.beta, K, 1)

## compute the break probability
ruler <- c(1:T)
W.mat <- matrix(NA, T, N)
for (i in 1:N){

W.mat[, i] <- pnorm((ruler-break.point[i])/break.sigma[i])
}
Weight <- as.vector(W.mat)

## draw time-varying individual effects and sample y
j = 1
true.sigma.alpha <- 30
true.alpha1 <- true.alpha2 <- rep(NA, N)
for (i in 1:N){

Xi <- X[j:(j+T-1), ]
true.mean <- Xi %*% true.beta
weight <- Weight[j:(j+T-1)]
true.alpha1[i] <- rnorm(1, 0, true.sigma.alpha)
true.alpha2[i] <- -1*true.alpha1[i]
y[j:(j+T-1)] <- ((1-weight)*true.mean + (1-weight)*rnorm(T, 0, true.sigma) +

(1-weight)*true.alpha1[i]) +
(weight*true.mean + weight*rnorm(T, 0, true.sigma) + weight*true.alpha2[i])

j <- j + T
}

## extract the standardized residuals from the OLS with fixed-effects
FEols <- lm(y ~ X + as.factor(id) -1 )
resid.all <- rstandard(FEols)
time.id <- rep(1:80, N)

## model fitting
G <- 1000
BF <- testpanelSubjectBreak(subject.id=id, time.id=time.id,

resid= resid.all, max.break=3, minimum = 10,
mcmc=G, burnin = G, thin=1, verbose=G,
b0=0, B0=1/100, c0=2, d0=2, Time = time.id)

## estimated break numbers
## thresho
estimated.breaks <- make.breaklist(BF, threshold=3)

## print all posterior model probabilities
print(attr(BF, "model.prob"))

## End(Not run)
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tomogplot Tomography Plot

Description

tomogplot is used to produce a tomography plot (see King, 1997) for a series of partially observed
2 x 2 contingency tables.

Usage

tomogplot(
r0,
r1,
c0,
c1,
xlab = "fraction of r0 in c0 (p0)",
ylab = "fraction of r1 in c0 (p1)",
bgcol = "white",
...

)

Arguments

r0 An (ntables× 1) vector of row sums from row 0.

r1 An (ntables× 1) vector of row sums from row 1.

c0 An (ntables× 1) vector of column sums from column 0.

c1 An (ntables× 1) vector of column sums from column 1.

xlab The x axis label for the plot.

ylab The y axis label for the plot.

bgcol The background color for the plot.

... further arguments to be passed

Details

Consider the following partially observed 2 by 2 contingency table:

| Y = 0 | Y = 1 |
——— ——— ——— ———
X = 0 | Y0 | | r0
——— ——— ——— ———
X = 1 | Y1 | | r1
——— ——— ——— ———

| c0 | c1 | N
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where r0, r1, c0, c1, and N are non-negative integers that are observed. The interior cell entries are
not observed. It is assumed that Y0|r0 ∼ Binomial(r0, p0) and Y1|r1 ∼ Binomial(r1, p1).

This function plots the bounds on the maximum likelihood estimatess for (p0, p1).

References

Gary King, 1997. A Solution to the Ecological Inference Problem. Princeton: Princeton University
Press.

Jonathan C. Wakefield. 2004. “Ecological Inference for 2 x 2 Tables.” Journal of the Royal Statis-
tical Society, Series A. 167(3): 385445.

See Also

MCMChierEI, MCMCdynamicEI, dtomogplot

Examples

r0 <- rpois(100, 500)
r1 <- rpois(100, 200)
c0 <- rpois(100, 100)
c1 <- (r0 + r1) - c0
tomogplot(r0, r1, c0, c1)

topmodels Shows an ordered list of the most frequently visited models sampled
during quantile regression stochastic search variable selection (QR-
SSVS).

Description

Given output from quantile regression stochastic search variable selection, this function returns a
table of the ’best’ models together with their associated empirical posterior probability.

Usage

topmodels(qrssvs, nmodels = 5, abbreviate = FALSE, minlength = 3)

Arguments

qrssvs An object of class qrssvs. Typically this will be the gamma component of the
list returned by SSVSquantreg.

nmodels The number of models to tabulate.

abbreviate Logical: should the names of the predictors be abbreviated?

minlength If abbreviate is set to TRUE, the minimum length of the abbreviations.
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Value

A table with the models and their associated posterior probability. The models are arranged in
descending order of probability.

Author(s)

Craig Reed

See Also

SSVSquantreg

Examples

## Not run:
set.seed(1)
epsilon<-rnorm(100)
set.seed(2)
x<-matrix(rnorm(1000),100,10)
y<-x[,1]+x[,10]+epsilon
qrssvs<-SSVSquantreg(y~x)
topmodels(qrssvs$gamma)

## End(Not run)

vech Extract Lower Triangular Elements from a Symmetric Matrix

Description

This function takes a symmetric matrix and extracts a list of all lower triangular elements.

Usage

vech(x)

Arguments

x A symmetric matrix.

Details

This function checks to make sure the matrix is square, but it does not check for symmetry (it just
pulls the lower triangular elements). The elements are stored in column major order. The original
matrix can be restored using the xpnd command.
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Value

A list of the lower triangular elements.

See Also

xpnd

Examples

symmat <- matrix(c(1,2,3,4,2,4,5,6,3,5,7,8,4,6,8,9),4,4)
vech(symmat)

Wishart The Wishart Distribution

Description

Density function and random generation from the Wishart distribution.

Usage

rwish(v, S)

dwish(W, v, S)

Arguments

v Degrees of freedom (scalar).

S Inverse scale matrix (p× p).

W Positive definite matrix W (p× p).

Details

The mean of a Wishart random variable with v degrees of freedom and inverse scale matrix S is vS.

Value

dwish evaluates the density at positive definite matrix W. rwish generates one random draw from
the distribution.

Examples

density <- dwish(matrix(c(2,-.3,-.3,4),2,2), 3, matrix(c(1,.3,.3,1),2,2))
draw <- rwish(3, matrix(c(1,.3,.3,1),2,2))
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write.Scythe Write a Matrix to a File to be Read by Scythe

Description

This function writes a matrix to an ASCII file that can be read by the Sycthe Statistical Library.
Scythe requires that input files contain the number of rows and columns in the first row, followed
by the data.

Usage

write.Scythe(outmatrix, outfile = NA, overwrite = FALSE)

Arguments

outmatrix The matrix to be written to a file.

outfile The file to be written. This can include path information.

overwrite A logical that determines whether an existing file should be over-written. By
default, it protects the user from over-writing existing files.

Value

A zero if the file is properly written.

References

Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. Scythe Statistical Library 1.0.
http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/.

See Also

write.Scythe

Examples

## Not run:
write.Scythe(mymatrix, file.path(tempdir(), "myfile.txt"))

## End(Not run)

http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/
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xpnd Expand a Vector into a Symmetric Matrix

Description

This function takes a vector of appropriate length (typically created using vech) and creates a sym-
metric matrix.

Usage

xpnd(x, nrow = NULL)

Arguments

x A list of elements to expand into symmetric matrix.

nrow The number of rows (and columns) in the returned matrix. Look into the details.

Details

This function is particularly useful when dealing with variance covariance matrices. Note that R
stores matrices in column major order, and that the items in x will be recycled to fill the matrix if
need be.

The number of rows can be specified or automatically computed from the number of elements in a
given object via (−1 +

√
(1 + 8 ∗ length(x)))/2.

Value

An (nrows× nrows) symmetric matrix.

See Also

vech

Examples

xpnd(c(1,2,3,4,4,5,6,7,8,9),4)
xpnd(c(1,2,3,4,4,5,6,7,8,9))
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