
Package ‘LoTTA’
July 22, 2025

Type Package

Title Bayesian Inference in Regression Discontinuity Designs

Version 0.1.1

Description Implementation of the LoTTA (Local Trimmed Taylor Approximation) model
described in ``Bayesian Regression Discontinuity Design with Unknown Cutoff''
by Kowalska, van de Wiel, van der Pas (2024) <doi:10.48550/arXiv.2406.11585>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

Imports stats, bayestestR, utils

Depends R (>= 4.4.0), runjags, ggplot2, ggpubr

NeedsCompilation no

Author Julia Kowalska [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-6559-4354>)

Maintainer Julia Kowalska <j.m.kowalska@vu.nl>

Repository CRAN

Date/Publication 2025-07-22 11:20:48 UTC

Contents
LoTTA_fuzzy_BIN . 2
LoTTA_fuzzy_CONT . 5
LoTTA_plot_effect . 10
LoTTA_plot_effect_DIS . 12
LoTTA_plot_outcome . 14
LoTTA_plot_treatment . 17
LoTTA_sharp_BIN . 20
LoTTA_sharp_CONT . 23
LoTTA_treatment . 26

Index 31

1

https://doi.org/10.48550/arXiv.2406.11585
https://orcid.org/0000-0001-6559-4354

2 LoTTA_fuzzy_BIN

LoTTA_fuzzy_BIN LoTTA_fuzzy_BIN

Description

Function that fits LoTTA model to the fuzzy RD data with binary outcomes with an either known
or unknown/suspected cutoff. It supports two types of priors on the cutoff location: a scaled beta
distribution of the form beta(alpha,beta)(cub-clb)+clb and a discrete distribution with the support
of the form cstart+grid i for i=0,...,(cend-cstart)/grid. The score does NOT have to be normalized
beforehand. We recommend NOT to transform the data before imputing it into the function, except
for initial trimming of the score which should be done beforehand. The further trimming for the
sensitivity analysis can be done through the function, which ensures that the data is normalized
before the trimming.

Usage

LoTTA_fuzzy_BIN(
x,
t,
y,
c_prior,
jlb = 0.2,
ci = 0.95,
trimmed = NULL,
outcome_prior = list(pr = 1e-04),
n_min = 25,
param = c("c", "j", "kl", "kr", "eff", "a0l", "a1l", "a2l", "a3l", "a0r", "a1r", "a2r",
"a3r", "b1lt", "a1lt", "a2lt", "b2lt", "b1rt", "a1rt", "a2rt", "b2rt", "k1t", "k2t"),
normalize = TRUE,
n.chains = 4,
burnin = 10000,
sample = 1000,
adapt = 500,
inits = NULL,
method = "parallel",
seed = NULL,
...

)

Arguments

x • is the score data

t • is the treatment allocation data

y • is the binary outcome data

c_prior • specifies the cutoff prior in case of the unknown cutoff or the cutoff point
if the cutoff is known. Takes as value a number if the cutoff is known or a

LoTTA_fuzzy_BIN 3

list of values otherwise. For a continuous prior the list requires the follow-
ing elements: clb - left end of the interval cub - right end of the interval in
which the scaled and translated beta distribution is defined, alpha (optional)
- shape parameter, default value = 1, beta (optional) - shape parameter, de-
fault value = 1. For a discrete prior the list requires the following elements:
cstart - first point with positive prior mass, cend - last point with positive
prior mass, grid - distance between the consecutive points in the support
weights (optional) - vector of weights assigned to each point in the support,
default is vector of 1’s (uniform distribution)

jlb • minimum jump size

ci • specifies the probability level 1-alpha for the highest posterior density in-
tervals; default is ci = 0.95

trimmed • takes as a value NULL or a vector of two values. It specifies potential
trimming of the data. If set to NULL no trimming is applied to the data. If
a list of two values is provided the data is trimmed to include data points
with the score x in between those values; default is trimmed=NULL

outcome_prior • takes as a value a list with elements ’pr’. ’pr’ specifies precision in the nor-
mal priors on the coefficients in the outcome function; default is list(’pr’=0.0001)

n_min • specifies the minimum number of data points to which a cubic part of the
outcome function is fit to ensure stability of the sampling procedure; default
is n_min=25

param • takes as a value a vector with names of the parameters that are to be sam-
pled; default is the list of all parameters

normalize • specifies if the data is to be normalized. The data is normalized as follows.
If the prior is continuous: x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5
and s=max(x)-min(x). If the prior is discrete: x_normalized=x/s, where
s=10^m, where m is chosen so that |max(abs(x))-1| is minimal. The pri-
ors inside the model are specified for the normalized data, in extreme cases
not normalizing the data may lead to unreliable results; default is normal-
ize=TRUE

n.chains • specifies the number of chains in the MCMC sampler; default is n.chains=4

burnin • specifies the number of burnin iterations without the adaptive iterations;
default is burnin=5000

sample • specifies the number of samples per chain; default is samples=5000

adapt • specifies the number of adaptive iterations in the MCMC sampler; default
is adapt=1000

inits • initial values for the sampler. By default the initial values are sampled
inside the function. To run LoTTA with a method other than "parallel" inits
must be set to NA or to a user defined value. If the user wants to provide its
own values please refer to run.jags manual; default inits=NULL

method • set to default as ’parallel’, which allows to sample the chains in parallel
reducing computation time. To read more about possible method values
type ?run.jags; default method=’parallel’

seed • specifies the seed for replicability purposes; default is seed=NULL

... • other arguments of run.jags function. For more details type ?run.jags

4 LoTTA_fuzzy_BIN

Value

The function returns the list with the elements:

• Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect, the cutoff
location (if unknown) and the discontinuity size in the treatment probability function (compli-
ance rate at c) on the original, unnormalized scale;

• JAGS_output: contains output of the run.jags function for the normalized data if normal-
ize=TRUE, based on this output mixing of the chains can be assessed;

• Samples: contains posterior samples of the treatment effect (eff), cutoff location (c) if un-
known, and compliance rate (j);

• Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the pa-
rameters used to normalize the data (see arg normalize);

• Priors: contains a list of the priors’ parameters ;

• Inits contains the list of initial values and .RNG.seed value

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

fun_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
return(P)

}

sample_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
t = rep(0, length(x))
for (j in 1:length(x)) {
t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

}
return(t)

}

funB <- function(x) {
y = x
x2 = x[x >= 0]
x1 = x[x < 0]
y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
return(y)

}

LoTTA_fuzzy_CONT 5

funB_sample_binary <- function(x) {
y = x
P = funB(x)
for (j in 1:length(x)) {
y[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

}
return(y)

}

Toy example - for the function check only!
N=100
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample_binary(x)
c_prior=0 # known cutoff c=0

running LoTTA model on fuzzy RDD with binary outcomes;
out = LoTTA_fuzzy_BIN(x,t,y,c_prior,burnin = 50,sample = 50,adapt=10,n.chains=1
,method = 'simple',inits = NA)

Use case example

N=500
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample_binary(x)
comment out to try different priors:
c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
on -0.25, -0.2, ..., 0.25
c_prior=0 # known cutoff c=0

running LoTTA model on fuzzy RDD with binary outcomes and unknown cutoff;
cutoff = 0, compliance rate = 0.55, treatment effect = -0.3636364
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_fuzzy_BIN(x,t,y,c_prior,burnin = 10000,sample = 5000,adapt=1000)

print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit of the outcome function
LoTTA_plot_outcome(out,nbins = 60)
plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
plot dependence of the treatment effect on the cutoff location
LoTTA_plot_effect(out)

6 LoTTA_fuzzy_CONT

LoTTA_fuzzy_CONT LoTTA_fuzzy_CONT

Description

Function that fits LoTTA model to the fuzzy RD data with continuous outcomes with an either
known or unknown/suspected cutoff. It supports two types of priors on the cutoff location: a scaled
beta distribution of the form beta(alpha,beta)(cub-clb)+clb and a discrete distribution with the sup-
port of the form cstart+grid i for i=0,...,(cend-cstart)/grid. The score does NOT have to be normal-
ized beforehand. We recommend NOT to transform the data before imputing it into the function,
except for initial trimming of the score which should be done beforehand. The further trimming for
the sensitivity analysis can be done through the function, which ensures that the data is normalized
before the trimming.

Usage

LoTTA_fuzzy_CONT(
x,
t,
y,
c_prior,
jlb = 0.2,
ci = 0.95,
trimmed = NULL,
outcome_prior = list(pr = 1e-04, shape = 0.01, scale = 0.01),
n_min = 25,
param = c("c", "j", "kl", "kr", "eff", "a0l", "a1l", "a2l", "a3l", "a0r", "a1r", "a2r",
"a3r", "b1lt", "a1lt", "a2lt", "b2lt", "b1rt", "a1rt", "a2rt", "b2rt", "k1t", "k2t",
"tau1r", "tau2r", "tau1l", "tau2l"),

normalize = TRUE,
n.chains = 4,
burnin = 10000,
sample = 1000,
adapt = 500,
inits = NULL,
method = "parallel",
seed = NULL,
...

)

Arguments

x • is the score data

t • is the treatment allocation data

y • is the binary outcome data

c_prior • specifies the cutoff prior in case of the unknown cutoff or the cutoff point
if the cutoff is known. Takes as value a number if the cutoff is known or a

LoTTA_fuzzy_CONT 7

list of values otherwise. For a continuous prior the list requires the follow-
ing elements: clb - left end of the interval cub - right end of the interval in
which the scaled and translated beta distribution is defined, alpha (optional)
- shape parameter, default value = 1, beta (optional) - shape parameter, de-
fault value = 1. For a discrete prior the list requires the following elements:
cstart - first point with positive prior mass, cend - last point with positive
prior mass, grid - distance between the consecutive points in the support
weights (optional) - vector of weights assigned to each point in the support,
default is vector of 1’s (uniform distribution)

jlb • minimum jump size

ci • specifies the probability level 1-alpha for the highest posterior density in-
tervals; default is ci = 0.95

trimmed • takes as a value NULL or a vector of two values. It specifies potential
trimming of the data. If set to NULL no trimming is applied to the data. If
a list of two values is provided the data is trimmed to include data points
with the score x in between those values; default is trimmed=NULL

outcome_prior • takes as a value a list with elements ’pr’ and ’shape’, ’scale’. ’pr’ specifies
precision in the normal priors on the coefficients in the outcome function.
’shape’ and ’scale’ specify the shape and scale parameters in the gamma
prior on the precision of the error terms; default is list(’pr’= 0.0001,’shape’=
0.01,’scale’= 0.01)

n_min • specifies the minimum number of data points to which a cubic part of the
outcome function is fit to ensure stability of the sampling procedure; default
is n_min=25

param • takes as a value a vector with names of the parameters that are to be sam-
pled; default is the list of all parameters

normalize • specifies if the data is to be normalized. The data is normalized as follows.
If the prior is continuous: x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5
and s=max(x)-min(x), If the prior is discrete: x_normalized=x/s, where
s=10^m, where m is chosen so that |max(abs(x))-1| is minimal. The out-
come data is normalized as follows: y_normalized=(y-mu)/sd, where mu=mean(y)
and sd=sd(y). The priors inside the model are specified for the normalized
data, in extreme cases not normalizing the data may lead to unreliable re-
sults; default is normalize=TRUE

n.chains • specifies the number of chains in the MCMC sampler; default is n.chains=4

burnin • specifies the number of burnin iterations without the adaptive iterations;
default is burnin=5000

sample • specifies the number of samples per chain; default is samples=5000

adapt • specifies the number of adaptive iterations in the MCMC sampler; default
is adapt=1000

inits • initial values for the sampler. By default the initial values are sampled
inside the function. To run LoTTA with a method other than "parallel" inits
must be set to NA or to a user defined value. If the user wants to provide its
own values please refer to run.jags manual; default inits=NULL

8 LoTTA_fuzzy_CONT

method • set to default as ’parallel’, which allows to sample the chains in parallel
reducing computation time. To read more about possible method values
type ?run.jags; default method=’parallel’

seed • specifies the seed for replicability purposes; default is seed=NULL

... • other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

• Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect, the cutoff
location (if unknown) and the discontinuity size in the treatment probability function (compli-
ance rate at c) on the original, unnormalized scale;

• JAGS_output: contains output of the run.jags function for the normalized data if normal-
ize=TRUE, based on this output mixing of the chains can be assessed;

• Samples: contains posterior samples of the treatment effect (eff), cutoff location (c) if un-
known, and compliance rate (j);

• Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the pa-
rameters used to normalize the data (see arg normalize);

• Priors: contains a list of the priors’ parameters ;

• Inits contains the list of initial values and .RNG.seed value

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

fun_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
return(P)

}

sample_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
t = rep(0, length(x))
for (j in 1:length(x)) {
t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

}
return(t)

}

funB <- function(x) {

LoTTA_fuzzy_CONT 9

y = x
x2 = x[x >= 0]
x1 = x[x < 0]
y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
return(y)

}

funB_sample <- function(x) {
y = funB(x)+ rnorm(length(x), 0, 0.1)
return(y)

}

Toy example - for the function check only!
N=100
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample(x)
c_prior=0 # known cutoff c=0

running LoTTA model on fuzzy RDD with continuous outcomes;
out = LoTTA_fuzzy_CONT(x,t,y,c_prior,burnin = 50,sample = 50,adapt=10,n.chains=1
,method = 'simple',inits = NA)

Use case example

N=500
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample(x)
comment out to try different priors:
c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
on -0.25, -0.2, ..., 0.25
c_prior=0 # known cutoff c=0

running LoTTA model on fuzzy RDD with continuous outcomes and unknown cutoff;
cutoff = 0, compliance rate = 0.55, treatment effect = -0.3636364
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_fuzzy_CONT(x,t,y,c_prior,burnin = 10000,sample = 5000,adapt=1000)

print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit of the outcome function
LoTTA_plot_outcome(out)
plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
plot dependence of the treatment effect on the cutoff location
LoTTA_plot_effect(out,nbins = 5)

10 LoTTA_plot_effect

LoTTA_plot_effect LoTTA_plot_effect

Description

Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots
too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure
depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location
was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box
correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

Usage

LoTTA_plot_effect(
LoTTA_posterior,
nbins = 10,
probs = c(0.025, 0.975),
x_lab = "Cutoff location",
y_lab1 = "Treatment effect",
y_lab2 = "Density of cutoff location",
title = "Cutoff location vs. Treatment effect",
axis.text = element_text(family = "sans", size = 10),
text = element_text(family = "serif"),
plot.theme = theme_classic(base_size = 14),
plot.title = element_text(hjust = 0.5),
...

)

Arguments

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN)
with all parameters sampled (the default option in those functions)

nbins • number of bins to aggregate the values of the posterior cutoff location

probs • list of two quantiles that limit the range of cutoff values displayed on the
plots

x_lab • label of the x-axis

y_lab1 • label of the y-axis of the bottom plot

y_lab2 • label of the y-axis of the top plot

title • title of the plot

axis.text • can be any value that is accepted in the argument axis.text in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default is changes font to a serif one axis.text=element_text(family =
"sans",size = 10)

LoTTA_plot_effect 11

text • can be any value that is accepted in the argument text in the theme func-
tion of ggplot2 package,refer to ggplot2 manual for the possible values; by
default is changes font to a serif one text=element_text(family=’serif’)

plot.theme • ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html)
possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size
= 14),

plot.title • can be any value that is accepted in the argument plot.title in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default it centers the plot title plot.title = element_text(hjust = 0.5)

... • other arguments of the theme function, refer to ggplot2 manual

Value

ggplot2 object

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

fun_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
return(P)

}

sample_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
t = rep(0, length(x))
for (j in 1:length(x)) {
t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

}
return(t)

}

funB <- function(x) {
y = x
x2 = x[x >= 0]
x1 = x[x < 0]
y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
return(y)

}

funB_sample <- function(x) {

12 LoTTA_plot_effect_DIS

y = funB(x)+ rnorm(length(x), 0, 0.1)
return(y)

}

Use case example

N=500
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample(x)
comment out to try different priors:
c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
on -0.25, -0.2, ..., 0.25
c_prior=0 # known cutoff c=0

running LoTTA model on fuzzy RDD with continuous outcomes and unknown cutoff;
cutoff = 0, compliance rate = 0.55, treatment effect = -0.3636364
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_fuzzy_CONT(x,t,y,c_prior,burnin = 10000,sample = 5000,adapt=1000)

print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit of the outcome function
LoTTA_plot_outcome(out,nbins = 60)
plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
plot dependence of the treatment effect on the cutoff location
LoTTA_plot_effect(out)

LoTTA_plot_effect_DIS Function that visualizes the impact of the cutoff location on the treat-
ment effect estimate. It plots too figures. The bottom figure depicts the
posterior density of the cutoff location. The top figure depicts the box
plot of the treatment effect given the cutoff point. If the prior on the
cutoff location was discrete each box corresponds to a distinct cutoff
point. If the prior was continuous each box correspond to an inter-
val of cutoff values (the number of intervals can be changed through
nbins).

Description

Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots
too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure
depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location
was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box
correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

LoTTA_plot_effect_DIS 13

Usage

LoTTA_plot_effect_DIS(
LoTTA_posterior,
probs = c(0.025, 0.975),
x_lab = "Cutoff location",
y_lab1 = "Treatment effect",
y_lab2 = "Density of cutoff location",
title = "Cutoff location vs. Treatment effect",
axis.text = element_text(family = "sans", size = 10),
text = element_text(family = "serif"),
plot.theme = theme_classic(base_size = 14),
plot.title = element_text(hjust = 0.5),
...

)

Arguments

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN)
with all parameters sampled (the default option in those functions)

probs • list of two quantiles that limit the range of cutoff values displayed on the
plots

x_lab • label of the x-axis

y_lab1 • label of the y-axis of the bottom plot

y_lab2 • label of the y-axis of the top plot

title • title of the plot

axis.text • can be any value that is accepted in the argument axis.text in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default is changes font to a serif one axis.text=element_text(family =
"sans",size = 10)

text • can be any value that is accepted in the argument text in the theme func-
tion of ggplot2 package,refer to ggplot2 manual for the possible values; by
default is changes font to a serif one text=element_text(family=’serif’)

plot.theme • ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html)
possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size
= 14),

plot.title • can be any value that is accepted in the argument plot.title in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default it centers the plot title plot.title = element_text(hjust = 0.5)

... • other arguments of the theme function, refer to ggplot2 manual

Value

ggplot2 object

14 LoTTA_plot_outcome

LoTTA_plot_outcome LoTTA_plot_outcome

Description

Function that plots the median (or another quantile) of the LoTTA posterior outcome function along
with the quanatile-based credible interval. The function is plotted on top of the binned input data.
To bin the data, the score data is divided into bins of fixed length, then the average outcome in each
bin is calculated. The average outcomes are plotted against the average values of the score in the
corresponding bins. The data is binned separately on each side of the cutoff, the cutoff is marked
on the plot with a dotted line. In case of an unknown cutoff, the MAP estimate is used.

Usage

LoTTA_plot_outcome(
LoTTA_posterior,
nbins = 100,
probs = c(0.025, 0.5, 0.975),
n_eval = 200,
col_line = "#E69F00",
size_line = 0.1,
alpha_interval = 0.35,
col_dots = "gray",
size_dots = 3,
alpha_dots = 0.6,
col_cutoff = "black",
title = "Outcome function",
subtitle = NULL,
y_lab = "",
x_lab = expression(paste(italic("x"), " - score")),
plot.theme = theme_classic(base_size = 14),
legend.position = "none",
name_legend = "Legend",
labels_legend = "median outcome fun.",
text = element_text(family = "serif"),
legend.text = element_text(size = 14),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
...

)

Arguments

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_sharp_CONT, LoTTA_fuzzy_CONT,
LoTTA_sharp_BIN, LoTTA_fuzzy_BIN) with all the parameters sampled
(the default option in those functions)

LoTTA_plot_outcome 15

nbins • number of bins to aggregate the input data

probs • list of three quantiles, the first and the last one define the quanatile-based
credible interval, the middle value defines the quantile of the posterior func-
tion to plot; by default the quantiles correspond to the median posterior
function and 95% credible interval probs=c(0.025,0.5,0.975)

n_eval • n_eval*range(x) is the number of points at which each posterior function is
evaluated, the higher number means slower computing time and a smoother
plot; default n_eval=200

col_line • the color of the line and the band

size_line • thickness of the line

alpha_interval • alpha value of the band, lower values correspond to a more transparent color

col_dots • color of the dots that correspond to the binned data

size_dots • size of the dots that correspond to the binned data

alpha_dots • transparency of the dots that correspond to the binned data, lower values
correspond to a more transparent color

col_cutoff • color of the dotted line at the cutoff

title • title of the plot

subtitle • subtitle of the plot

y_lab • label of the y-axis

x_lab • label of the x-axis

plot.theme • ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html)
possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size
= 14),

legend.position

• position of the legend, refer to ggplot2 manual for the possible values; by
default legend is not printed legend.position=’none’

name_legend • title of the legend

labels_legend • the label of the plotted function in the legend

text • can be any value that is accepted in the argument text in the theme func-
tion of ggplot2 package,refer to ggplot2 manual for the possible values; by
default is changes font to a serif one text=element_text(family=’serif’)

legend.text • can be any value that is accepted in the argument legend.text in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default is changes font size to the legend to 14 legend.text=element_text(size
= 14)

plot.title • can be any value that is accepted in the argument plot.title in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default it centers the plot title plot.title = element_text(hjust = 0.5)

plot.subtitle • can be any value that is accepted in the argument plot.subtitle in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default it centers the plot subtitle plot.title = element_text(hjust = 0.5)

... • other arguments of the theme function, refer to ggplot2 manual

16 LoTTA_plot_outcome

Value

ggplot2 object

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

funB <- function(x) {
y = x
x2 = x[x >= 0]
x1 = x[x < 0]
y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
return(y)

}

funB_sample <- function(x) {
y = funB(x)+ rnorm(length(x), 0, 0.1)
return(y)

}
Toy example - for the function check only!
data generation
N=100
set.seed(1234)
x = sort(runif(N, -1, 1))
y = funB_sample(x)
c = 0

running LoTTA function on sharp RDD with continuous outcomes;
out = LoTTA_sharp_CONT(x, y, c,normalize=FALSE, burnin = 100, sample = 100, adapt = 100,
n.chains=1, seed = NULL,method = 'simple',inits = NA)
plot the outcome
LoTTA_plot_outcome(out,n_eval = 100)

Use case example
data generation

N=500 # try different dataset size
x = sort(runif(N, -1, 1))
y = funB_sample(x)
c = 0
plot the data
plot(x,y)
running LoTTA function on sharp RDD with continuous outcomes;
cutoff = 0, treatment effect = -0.2
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_sharp_CONT(x, y, c, burnin = 10000, sample = 5000, adapt = 1000,n.chains=4)
print effect estimate:
out$Effect_estimate

LoTTA_plot_treatment 17

print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit
LoTTA_plot_outcome(out)

LoTTA_plot_treatment Function that plots the median (or another quantile) of the LoTTA pos-
terior treatment probability function along with the quanatile-based
credible interval. The function is plotted on top of the binned input
data. To bin the data, the score data is divided into bins of fixed
length, then the proportion of treated is calculated in each bin. The
proportions are plotted against the average values of the score in the
corresponding bins. The data is binned separately on each side of the
cutoff, the cutoff is marked on the plot with a dotted line. In case of an
unknown cutoff, the MAP estimate is used.

Description

Function that plots the median (or another quantile) of the LoTTA posterior treatment probability
function along with the quanatile-based credible interval. The function is plotted on top of the
binned input data. To bin the data, the score data is divided into bins of fixed length, then the
proportion of treated is calculated in each bin. The proportions are plotted against the average
values of the score in the corresponding bins. The data is binned separately on each side of the
cutoff, the cutoff is marked on the plot with a dotted line. In case of an unknown cutoff, the MAP
estimate is used.

Usage

LoTTA_plot_treatment(
LoTTA_posterior,
nbins = 100,
probs = c(0.025, 0.5, 0.975),
n_eval = 200,
col_line = "#E69F00",
size_line = 0.1,
alpha_interval = 0.35,
col_dots = "gray",
size_dots = 3,
alpha_dots = 0.6,
col_cutoff = "black",
title = "Treatment probability function",
subtitle = NULL,
y_lab = "",
x_lab = expression(paste(italic("x"), " - score")),
plot.theme = theme_classic(base_size = 14),
legend.position = "none",
name_legend = "Legend",

18 LoTTA_plot_treatment

labels_legend = "median treatment prob. fun.",
text = element_text(family = "serif"),
legend.text = element_text(size = 14),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
...

)

Arguments

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN,
LoTTA_treatment) with all the parameters sampled (the default option in
those functions)

nbins • number of bins to aggregate the input data

probs • list of three quantiles, the first and the last one define the quanatile-based
credible interval, the middle value defines the quantile of the posterior func-
tion to plot; by default the quantiles correspond to the median posterior
function and 95% credible interval probs=c(0.025,0.5,0.975)

n_eval • n_eval*range(x) is the number of points at which each posterior function is
evaluated, the higher number means slower computing time and a smoother
plot; default n_eval=200

col_line • the color of the line and the band

size_line • thickness of the line

alpha_interval • alpha value of the band, lower values correspond to a more transparent color

col_dots • color of the dots that correspond to the binned data

size_dots • size of the dots that correspond to the binned data

alpha_dots • transparency of the dots that correspond to the binned data, lower values
correspond to a more transparent color

col_cutoff • color of the dotted line at the cutoff

title • title of the plot

subtitle • subtitle of the plot

y_lab • label of the y-axis

x_lab • label of the x-axis

plot.theme • ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html)
possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size
= 14),

legend.position

• position of the legend, refer to ggplot2 manual for the possible values; by
default legend is not printed legend.position=’none’

name_legend • title of the legend

labels_legend • the label of the plotted function in the legend

LoTTA_plot_treatment 19

text • can be any value that is accepted in the argument text in the theme func-
tion of ggplot2 package,refer to ggplot2 manual for the possible values; by
default is changes font to a serif one text=element_text(family=’serif’)

legend.text • can be any value that is accepted in the argument legend.text in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default is changes font size to the legend to 14 legend.text=element_text(size
= 14)

plot.title • can be any value that is accepted in the argument plot.title in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default it centers the plot title plot.title = element_text(hjust = 0.5)

plot.subtitle • can be any value that is accepted in the argument plot.subtitle in the theme
function of ggplot2 package,refer to ggplot2 manual for the possible values;
by default it centers the plot subtitle plot.title = element_text(hjust = 0.5)

... • other arguments of the theme function, refer to ggplot2 manual

Value

ggplot2 object

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

fun_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
return(P)

}

sample_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
t = rep(0, length(x))
for (j in 1:length(x)) {
t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

}
return(t)

}

Toy example - for the function check only!
N=100
x = sort(runif(N, -1, 1))

20 LoTTA_sharp_BIN

t = sample_prob55(x)
c_prior=0 # known cutoff

running LoTTA treatment-only model;
out = LoTTA_treatment(x,t,c_prior,burnin = 50, sample = 50, adapt = 10,n.chains=1

,method = 'simple',inits = NA)
plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)

Use case example

N=500
x = sort(runif(N, -1, 1))
t = sample_prob55(x)

comment out to try different priors:
c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
on -0.25, -0.2, ..., 0.25
c_prior=0 # known cutoff c=0

running LoTTA treatment-only model;
cutoff = 0, compliance rate = 0.55
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_treatment(x,t,c_prior,burnin = 10000,sample = 5000,adapt=1000)

print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)

LoTTA_sharp_BIN LoTTA_sharp_BIN

Description

Function that fits LoTTA model to the sharp RD data with binary outcomes. The score does NOT
have to be normalized beforehand. We recommend NOT to transform the data before imputing it
into the function, except for initial trimming of the score which should be done beforehand. The
further trimming for the sensitivity analysis can be done through the function, which ensures that
the data is normalized before the trimming.

Usage

LoTTA_sharp_BIN(
x,

LoTTA_sharp_BIN 21

y,
c,
ci = 0.95,
trimmed = NULL,
outcome_prior = list(pr = 1e-04),
n_min = 25,
param = c("eff", "a0l", "a1l", "a2l", "a3l", "a0r", "a1r", "a2r", "a3r", "kl", "kr"),
normalize = TRUE,
n.chains = 4,
burnin = 5000,
sample = 5000,
adapt = 1000,
inits = NULL,
method = "parallel",
seed = NULL,
...

)

Arguments

x • is the score data

y • is the binary outcome data

c • specifies the cutoff point

ci • specifies the probability level 1-alpha for the highest posterior density in-
tervals; default is ci = 0.95

trimmed • takes as a value NULL or a vector of two values. It specifies potential
trimming of the data. If set to NULL no trimming is applied to the data. If
a list of two values is provided the data is trimmed to include data points
with the score x in between those values; deafult is trimmed=NULL

outcome_prior • takes as a value a list with elements ’pr’. ’pr’ specifies precision in the nor-
mal priors on the coefficients in the outcome function; default is list(’pr’=0.0001)

n_min • specifies the minimum number of data points to which a cubic part of the
outcome function is fit to ensure stability of the sampling procedure; default
is n_min=25

param • takes as a value a vector with names of the parameters that are to be sam-
pled; default is the list of all parameters

normalize • specifies if the data is to be normalized. The data is normalized as fol-
lows. x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5 and s=max(x)-
min(x). The priors inside the model are specified for the normalized data,
in extreme cases not normalizing the data may lead to unreliable results;
default is normalize=TRUE

n.chains • specifies the number of chains in the MCMC sampler; default is n.chains=4

burnin • specifies the number of burnin iterations without the adaptive iterations;
default is burnin=5000

sample • specifies the number of samples per chain; default is samples=5000

22 LoTTA_sharp_BIN

adapt • specifies the number of adaptive iterations in the MCMC sampler; default
is adapt=1000

inits • initial values for the sampler. By default the initial values are sampled
inside the function. To run LoTTA with a method other than "parallel" inits
must be set to NA or to a user defined value. If the user wants to provide its
own values please refer to run.jags manual; default inits=NULL

method • set to default as ’parallel’, which allows to sample the chains in parallel
reducing computation time. To read more about possible method values
type ?run.jags; default method=’parallel’

seed • specifies the seed for replicability purposes; default is seed=NULL

... • other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

• Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect on the
original, unnormalized scale;

• JAGS_output: contains output of the run.jags function for the normalized data if normal-
ize=TRUE, based on this output mixing of the chains can be assessed;

• Samples: contains posterior samples of the treatment effect (eff);

• Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the pa-
rameters used to normalize the data (see arg normalize);

• Priors: contains a list of the outcome prior parameters ;

• Inits contains the list of initial values and .RNG.seed value

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

fun_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
return(P)

}

sample_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
t = rep(0, length(x))
for (j in 1:length(x)) {
t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

LoTTA_sharp_CONT 23

}
return(t)

}

Toy example - for the function check only!
data generation
N=100
x = sort(runif(N, -1, 1))
y = sample_prob55(x)
c = 0

running LoTTA model on a sharp RDD with a binary outcome
out = LoTTA_sharp_BIN(x, y, c, burnin = 50, sample = 50, adapt = 10,n.chains=1

,method = 'simple',inits = NA)

Use case example

data generation
N=1000 # try different dataset size
x = sort(runif(N, -1, 1))
y = sample_prob55(x)
c = 0

running LoTTA function on sharp RDD with binary outcomes;
cutoff = 0, treatment effect = 0.55
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_sharp_BIN(x, y, c, burnin = 10000, sample = 5000, adapt = 1000,n.chains=4)
print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit
LoTTA_plot_outcome(out,nbins = 60)

LoTTA_sharp_CONT LoTTA_sharp_CONT

Description

Function that fits LoTTA model to the sharp RD data with continuous outcomes. The data does NOT
have to be normalized beforehand. We recommend NOT to transform the data before imputing
it into the function, except for initial trimming which should be done beforehand. The further
trimming for the sensitivity analysis can be done through the function, which ensures that the data
is normalized before the trimming.

Usage

LoTTA_sharp_CONT(
x,

24 LoTTA_sharp_CONT

y,
c,
ci = 0.95,
trimmed = NULL,
outcome_prior = list(pr = 1e-04, shape = 0.01, scale = 0.01),
n_min = 25,
param = c("eff", "a0l", "a1l", "a2l", "a3l", "a0r", "a1r", "a2r", "a3r", "tau1r",

"tau2r", "tau1l", "tau2l", "kl", "kr"),
normalize = TRUE,
n.chains = 4,
burnin = 10000,
sample = 5000,
adapt = 1000,
inits = NULL,
method = "parallel",
seed = NULL,
...

)

Arguments

x • is the score data

y • is the continuous outcome data

c • specifies the cutoff point

ci • specifies the probability level 1-alpha for the highest posterior density in-
tervals; default is ci = 0.95

trimmed • takes as a value NULL or a vector of two values. It specifies potential
trimming of the data. If set to NULL no trimming is applied to the data. If
a list of two values is provided the data is trimmed to include data points
with the score x in between those values; deafult is trimmed=NULL

outcome_prior • takes as a value a list with elements ’pr’ and ’shape’, ’scale’. ’pr’ specifies
precision in the normal priors on the coefficients in the outcome function.
’shape’ and ’scale’ specify the shape and scale parameters in the gamma
prior on the precision of the error terms; default is list(’pr’= 0.0001,’shape’=
0.01,’scale’= 0.01)

n_min • specifies the minimum number of data points to which a cubic part of the
outcome function is fit to ensure stability of the sampling procedure; default
is n_min=25

param • takes as a value a vector with names of the parameters that are to be sam-
pled; default is the list of all parameters

normalize • specifies if the data is to be normalized. The data is normalized as fol-
lows. x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5 and s=max(x)-
min(x). y_normalized=(y-mu)/sd, where mu=mean(y) and sd=sd(y). The
priors inside the model are specified for the normalized data, in extreme
cases not normalizing the data may lead to unreliable results; default is
normalize=TRUE

LoTTA_sharp_CONT 25

n.chains • specifies the number of chains in the MCMC sampler; default is n.chains=4

burnin • specifies the number of burnin iterations without the adaptive iterations;
default is burnin=5000

sample • specifies the number of samples per chain; default is samples=5000

adapt • specifies the number of adaptive iterations in the MCMC sampler; default
is adapt=1000

inits • initial values for the sampler. By default the initial values are sampled
inside the function. To run LoTTA with a method other than "parallel" inits
must be set to NA or to a user defined value. If the user wants to provide its
own values please refer to run.jags manual; default inits=NULL

method • set to default as ’parallel’, which allows to sample the chains in parallel
reducing computation time. To read more about possible method values
type ?run.jags; default method=’parallel’

seed • specifies the seed for replicability purposes; default is seed=NULL

... • other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

• Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect on the
original, unnormalized scale;

• JAGS_output: contains output of the run.jags function for the normalized data if normal-
ize=TRUE, based on this output mixing of the chains can be assessed;

• Samples: contains posterior samples of the treatment effect (eff);

• Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the pa-
rameters used to normalize the data (see arg normalize);

• Priors: contains a list of the outcome prior parameters ;

• Inits contains the list of initial values and .RNG.seed value

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

funB <- function(x) {
y = x
x2 = x[x >= 0]
x1 = x[x < 0]
y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
return(y)

}

26 LoTTA_treatment

funB_sample <- function(x) {
y = funB(x)+ rnorm(length(x), 0, 0.1)
return(y)

}

Toy example - for the function check only!
data generation
N=100
set.seed(1234)
x = sort(runif(N, -1, 1))
y = funB_sample(x)
c = 0

running LoTTA function on sharp RDD with continuous outcomes;
out = LoTTA_sharp_CONT(x, y, c,normalize=FALSE, burnin = 50, sample = 50, adapt = 10,
n.chains=1, seed = NULL,method = 'simple',inits = NA)

Use case example
data generation

N=500 # try different dataset size
x = sort(runif(N, -1, 1))
y = funB_sample(x)
c = 0
plot the data
plot(x,y)
running LoTTA function on sharp RDD with continuous outcomes;
cutoff = 0, treatment effect = -0.2
remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_sharp_CONT(x, y, c, burnin = 10000, sample = 5000, adapt = 1000,n.chains=4)
print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit
LoTTA_plot_outcome(out)

LoTTA_treatment LoTTA_treatment

Description

Function that fits LoTTA treatment model to the fuzzy RD treatment data with an either known
or unknown/suspected cutoff. It supports two types of priors on the cutoff location: a scaled beta
distribution of the form beta(alpha,beta)(cub-clb)+clb and a discrete distribution with the support
of the form cstart+grid i for i=0,...,(cend-cstart)/grid. The score does NOT have to be normalized
beforehand. We recommend NOT to transform the data before imputing it into the function, except
for initial trimming of the score which should be done beforehand. The further trimming for the
sensitivity analysis can be done through the function, which ensures that the data is normalized
before the trimming.

LoTTA_treatment 27

Usage

LoTTA_treatment(
x,
t,
c_prior,
jlb = 0.2,
ci = 0.95,
trimmed = NULL,
n_min = 25,
param = c("c", "j", "b1lt", "a1lt", "a2lt", "b2lt", "b1rt", "a1rt", "a2rt", "b2rt",

"k1t", "k2t"),
normalize = TRUE,
n.chains = 4,
burnin = 5000,
sample = 1000,
adapt = 500,
inits = NULL,
method = "parallel",
seed = NULL,
...

)

Arguments

x • is the score data

t • is the treatment allocation data

c_prior • specifies the cutoff prior in case of the unknown cutoff or the cutoff point
if the cutoff is known. Takes as value a number if the cutoff is known or a
list of values otherwise. For a continuous prior the list requires the follow-
ing elements: clb - left end of the interval cub - right end of the interval in
which the scaled and translated beta distribution is defined, alpha (optional)
- shape parameter, default value = 1, beta (optional) - shape parameter, de-
fault value = 1. For a discrete prior the list requires the following elements:
cstart - first point with positive prior mass, cend - last point with positive
prior mass, grid - distance between the consecutive points in the support
weights (optional) - vector of weights assigned to each point in the support,
default is vector of 1’s (uniform distribution)

jlb • minimum jump size

ci • specifies the probability level 1-alpha for the highest posterior density in-
tervals; default is ci = 0.95

trimmed • takes as a value NULL or a vector of two values. It specifies potential
trimming of the data. If set to NULL no trimming is applied to the data. If
a list of two values is provided the data is trimmed to include data points
with the score x in between those values; default is trimmed=NULL

n_min • specifies the minimum number of data points to which a cubic part of the
outcome function is fit to ensure stability of the sampling procedure; default
is n_min=25

28 LoTTA_treatment

param • takes as a value a vector with names of the parameters that are to be sam-
pled; default is the list of all parameters

normalize • specifies if the data is to be normalized. The data is normalized as follows.
If the prior is continuous: x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5
and s=max(x)-min(x), If the prior is discrete: x_normalized=x/s, where
s=10^m, where m is chosen so that |max(abs(x))-1| is minimal. The out-
come data is normalized as follows: y_normalized=(y-mu)/sd, where mu=mean(y)
and sd=sd(y). The priors inside the model are specified for the normalized
data, in extreme cases not normalizing the data may lead to unreliable re-
sults; default is normalize=TRUE

n.chains • specifies the number of chains in the MCMC sampler; default is n.chains=4

burnin • specifies the number of burnin iterations without the adaptive iterations;
default is burnin=5000

sample • specifies the number of samples per chain; default is samples=5000

adapt • specifies the number of adaptive iterations in the MCMC sampler; default
is adapt=1000

inits • initial values for the sampler. By default the initial values are sampled
inside the function. To run LoTTA with a method other than "parallel" inits
must be set to NA or to a user defined value. If the user wants to provide its
own values please refer to run.jags manual; default inits=NULL

method • set to default as ’parallel’, which allows to sample the chains in parallel
reducing computation time. To read more about possible method values
type ?run.jags; default method=’parallel’

seed • specifies the seed for replicability purposes; default is seed=NULL

... • other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

• Effect_estimate: contains a list with MAP estimate and HDI of the cutoff location (if un-
known) and the discontinuity size in the treatment probability function (compliance rate at c)
on the original, unnormalized scale;

• JAGS_output: contains output of the run.jags function for the normalized data if normal-
ize=TRUE, based on this output mixing of the chains can be assessed;

• Samples: contains posterior samples of the cutoff location (c) if unknown, and compliance
rate (j);

• Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the pa-
rameters used to normalize the data (see arg normalize);

• Priors: contains a list of the priors’ parameters ;

• Inits contains the list of initial values and .RNG.seed value

LoTTA_treatment 29

Examples

functions to generate the data

ilogit <- function(x) {
return(1 / (1 + exp(-x)))

}

fun_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
return(P)

}

sample_prob55 <- function(x) {
P = rep(0, length(x))
P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
t = rep(0, length(x))
for (j in 1:length(x)) {
t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))

}
return(t)

}

Toy example - for the function check only!
N=100
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
c_prior=0 # known cutoff

running LoTTA treatment-only model;
out = LoTTA_treatment(x,t,c_prior,burnin = 50, sample = 50, adapt = 10,n.chains=1

,method = 'simple',inits = NA)

Use case example

N=500
x = sort(runif(N, -1, 1))
t = sample_prob55(x)

comment out to try different priors:
c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
on -0.25, -0.2, ..., 0.25
c_prior=0 # known cutoff c=0

running LoTTA treatment-only model;
cutoff = 0, compliance rate = 0.55
remember to check convergence and adjust burnin, sample and adapt if needed

30 LoTTA_treatment

out = LoTTA_treatment(x,t,c_prior,burnin = 10000,sample = 5000,adapt=1000)

print effect estimate:
out$Effect_estimate
print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)

Index

LoTTA_fuzzy_BIN, 2
LoTTA_fuzzy_CONT, 5
LoTTA_plot_effect, 10
LoTTA_plot_effect_DIS, 12
LoTTA_plot_outcome, 14
LoTTA_plot_treatment, 17
LoTTA_sharp_BIN, 20
LoTTA_sharp_CONT, 23
LoTTA_treatment, 26

31

	LoTTA_fuzzy_BIN
	LoTTA_fuzzy_CONT
	LoTTA_plot_effect
	LoTTA_plot_effect_DIS
	LoTTA_plot_outcome
	LoTTA_plot_treatment
	LoTTA_sharp_BIN
	LoTTA_sharp_CONT
	LoTTA_treatment
	Index

