
Package ‘Anthropometry’
July 23, 2025

Type Package

Title Statistical Methods for Anthropometric Data

Version 1.20

Date 2025-07-23

Maintainer Guillermo Vinue <guillermo.vinue@uv.es>

Description Statistical methodologies especially developed to analyze anthropomet-
ric data. These methods are aimed at providing effective solutions to some commons prob-
lems related to Ergonomics and Anthropometry. They are based on clustering, the statisti-
cal concept of data depth, statistical shape analysis and archetypal analy-
sis. Please see Vinue (2017) <doi:10.18637/jss.v077.i06>.

License GPL (>= 2)

URL https://www.R-project.org, https://www.uv.es/vivigui/

Depends R (>= 3.5.0)

Imports shapes, rgl, archetypes, nnls, ddalpha, FNN, ICGE, cluster,
biclust

Suggests knitr, calibrate, mvtnorm, RColorBrewer, plotrix, abind

VignetteBuilder knitr

LazyData yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-07-23 16:20:02 UTC

Author Guillermo Vinue [aut, cre],
Irene Epifanio [aut],
Amelia Simo [aut],
M. Victoria Ibanez [aut],
Juan Domingo [aut],
Guillermo Ayala [aut]

1

https://doi.org/10.18637/jss.v077.i06
https://www.R-project.org
https://www.uv.es/vivigui/

2 Contents

Contents
Anthropometry-package . 3
anthrCases . 5
archetypesBoundary . 6
archetypoids . 9
array3Dlandm . 12
bustSizesStandard . 13
CCbiclustAnthropo . 14
cdfDissWomenPrototypes . 17
checkBranchLocalIMO . 19
checkBranchLocalMO . 21
computSizesHipamAnthropom . 23
computSizesTrimowa . 24
cube34landm . 25
cube8landm . 26
descrDissTrunks . 27
figures8landm . 28
getBestPamsamIMO . 29
getBestPamsamMO . 30
getDistMatrix . 32
HartiganShapes . 34
hipamAnthropom . 37
landmarksSampleSpaSurv . 40
LloydShapes . 41
nearestToArchetypes . 43
optraShapes . 44
overlapBiclustersByRows . 46
parallelep34landm . 48
parallelep8landm . 49
percentilsArchetypoid . 49
plotPrototypes . 51
plotTreeHipamAnthropom . 53
plotTrimmOutl . 55
preprocessing . 57
projShapes . 58
qtranShapes . 59
sampleSpanishSurvey . 61
screeArchetypal . 62
shapes3dShapes . 66
skeletonsArchetypal . 67
stepArchetypesRawData . 68
stepArchetypoids . 70
TDDclust . 72
trimmedLloydShapes . 74
trimmedoid . 76
trimmOutl . 78
trimowa . 80

Anthropometry-package 3

USAFSurvey . 82
weightsMixtureUB . 83
xyplotPCArchetypes . 84

Index 86

Anthropometry-package Statistical Methods for Anthropometric Data

Description

Statistical methodologies especially developed to analyze anthropometric data. These methods are
aimed at providing effective solutions to some commons problems related to Ergonomics and An-
thropometry. They are based on clustering, the statistical concept of data depth, statistical shape
analysis and archetypal analysis. Please see Vinue (2017) <doi:10.18637/jss.v077.i06>.

Details

Package: Anthropometry
Type: Package
Version: 1.20
Date: 2025-07-23
License: GPL (>=2)
LazyLoad: yes
LazyData: yes

anthrCases: Helper generic function for obtaining the anthropometric cases.
Anthropometry-internalArchetypoids: Several internal functions to compute and represent archetypes
and archetypoids.
Anthropometry-internalHipamAnthropom: Several internal functions used by both HIPAM-MO
and HIPAM-IMO algorithms.
Anthropometry-internalPlotTree: Several internal functions used to build the HIPAM plot tree.
Anthropometry-internalTDDclust: Several internal functions to clustering based on the L1 data
depth.
archetypesBoundary: Archetypal analysis in multivariate accommodation problem.
archetypoids: Finding archetypoids.
array3Dlandm: Helper function for the 3D landmarks.
bustSizesStandard: Helper function for defining the bust sizes.
CCbiclustAnthropo: Cheng and Church biclustering algorithm applied to anthropometric data.
cdfDissWomenPrototypes: CDF for the dissimilarities between women and computed medoids and
standard prototypes.
checkBranchLocalIMO: Evaluation of the candidate clustering partition in HIPAM-IMO.
checkBranchLocalMO: Evaluation of the candidate clustering partition in HIPAM-MO.
computSizesTrimowa: Computation of the trimowa elements for a given number of sizes defined
by the EN.
computSizesHipamAnthropom: Computation of the hipamAnthropom elements for a given number

4 Anthropometry-package

of sizes defined by the EN.
cube8landm: Cube of 8 landmarks.
cube34landm: Cube of 34 landmarks.
descrDissTrunks: Description of the dissimilarities between women’s trunks.
figures8landm: Figures of 8 landmarks with labelled landmarks.
getBestPamsamIMO: Generation of the candidate clustering partition in HIPAM-IMO.
getBestPamsamMO: Generation of the candidate clustering partition in HIPAM-MO.
getDistMatrix: Dissimilarity matrix between individuals and prototypes.
HartiganShapes: Hartigan-Wong k-means for 3D shapes.
hipamAnthropom: HIPAM algorithm for anthropometric data.
landmarksSampleSpaSurv: Landmarks of the sampled women of the Spanish Survey.
LloydShapes: Lloyd k-means for 3D shapes.
nearestToArchetypes: Nearest individuals to archetypes.
optraShapes: Auxiliary optra subroutine of the Hartigan-Wong k-means for 3D shapes.
overlapBiclustersByRows: Overlapped biclusters by rows.
parallelep8landm: Parallelepiped of 8 landmarks.
parallelep34landm: Parallelepiped of 34 landmarks.
percentilsArchetypoid: Helper function for computing percentiles of a certain archetypoid.
plotPrototypes: Prototypes representation.
plotTreeHipamAnthropom: HIPAM dendogram.
plotTrimmOutl: Trimmed or outlier observations representation.
preprocessing: Data preprocessing before computing archetypal observations.
projShapes: Helper function for plotting the shapes.
qtranShapes: Auxiliary qtran subroutine of the Hartigan-Wong k-means for 3D shapes.
sampleSpanishSurvey: Sample database of the Spanish anthropometric survey.
screeArchetypal: Screeplot of archetypal individuals.
shapes3dShapes: 3D shapes plot.
skeletonsArchetypal: Skeleton plot of archetypal individuals.
stepArchetypesRawData: Archetype algorithm to raw data.
stepArchetypoids: Run the archetypoid algorithm several times.
TDDclust: Trimmed clustering based on L1 data depth.
trimmedLloydShapes: Trimmed Lloyd k-means for 3D shapes.
trimmedoid: Trimmed k-medoids algorithm.
trimmOutl: Helper generic function for obtaining the trimmed and outlier observations.
trimowa: Trimmed PAM with OWA operators.
USAFSurvey: USAF 1967 survey.
weightsMixtureUB: Calculation of the weights for the OWA operators.
xyplotPCArchetypes: PC scores for archetypes.

Author(s)

Guillermo Vinue <Guillermo.Vinue@uv.es>, Irene Epifanio, Amelia Simo, M. Victoria Ibanez,
Juan Domingo, Guillermo Ayala

References

Vinue, G., (2017). Anthropometry: An R Package for Analysis of Anthropometric Data, Journal of
Statistical Software 77(6), 1–39, doi:10.18637/jss.v077.i06.

https://doi.org/10.18637/jss.v077.i06

anthrCases 5

anthrCases Helper generic function for obtaining the anthropometric cases

Description

Because the goal of the methodologies included in this package is always to estimate a number of
anthropometric cases given a data set (both central (prototypes) and boundaries (archetypoids)), this
auxiliary generic function allows the user to identify the cases computed by each method in an easy
way.

Usage

anthrCases(resMethod, nsizes)
S3 method for class 'trimowa'
anthrCases(resMethod, nsizes)

S3 method for class 'hipamAnthropom'
anthrCases(resMethod, nsizes)

Arguments

resMethod This is the object which saves the results obtained by the methodologies and
which contains the anthropometric cases to return.

nsizes Number of bust sizes. This argument is needed for the "trimowa" and "hipa-
mAnthropom" methodologies because they can compute the prototypes for any
given number of bust sizes.

Value

A vector of class anthrCases with the anthropometric cases.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., and Ibanez, M. V., (2014). Data depth and Biclustering applied to anthropometric data.
Exploring their utility in apparel design. Technical report.

6 archetypesBoundary

See Also

trimowa, TDDclust, hipamAnthropom, LloydShapes, HartiganShapes, trimmedLloydShapes,
archetypoids, stepArchetypoids

Examples

#kmeansProcrustes:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)

prototypes <- anthrCases(resLL)

archetypesBoundary Archetypal analysis in multivariate accommodation problem

Description

This function allows us to reproduce the results shown in section 2.2.2 and section 3.1 of Epifanio
et al. (2013). In addition, from the results provided by this function, the other results shown in
section 3.2 and section 3.3 of the same paper can be also reproduced (see section examples below).

Usage

archetypesBoundary(data,numArch,verbose,numRep)

Arguments

data USAF 1967 database (see USAFSurvey). Each row corresponds to an observa-
tion, and each column corresponds to a variable. All variables are numeric.

numArch Number of archetypes (archetypal observations).

verbose Logical value. If TRUE, some details of the execution progress are shown (this
is the same argument as that of the stepArchetypes function (Eugster (2009))).

numRep For each archetype run archetypes numRep times (this is the same argument as
the nrep argument of stepArchetypes.

archetypesBoundary 7

Details

Before using this function, the more extreme (100 - percAcomm*100)% observations must be re-
moved by means of the preprocessing function. To that end, it is recommended that you use the
Mahalanobis distance. In this case, the depth procedure has the disadvantage that the desired per-
centage of accommodation is not under control of the analyst and it may not exactly coincide with
that one indicated.

Value

A list with numArch elements. Each element is a list of class attribute stepArchetypes with numRep
elements.

Note

We would like to note that, some time after publishing the paper Epifanio et al. (2013), we found out
that the stepArchetypes function standardizes the data by default (even when the data are already
standardized) and this option is not always desired. In order to avoid this way of proceeding, we
have created the stepArchetypesRawData function, which is used within archetypesBoundary
instead of using stepArchetypes. Therefore, the results provided by archetypesBoundary allows
us to reproduce the results of Epifanio et al. (2013) but they are now slightly different.

Author(s)

Irene Epifanio and Guillermo Vinue

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R,
Journal of Statistical Software 30, 1–23, doi:10.18637/jss.v030.i08.

Zehner, G. F., Meindl, R. S., and Hudson, J. A., (1993). A multivariate anthropometric method
for crew station design: abridged. Tech. rep. Ohio: Human Engineering Division, Armstrong
Laboratory, Wright-Patterson Air Force Base.

See Also

archetypes, stepArchetypes, stepArchetypesRawData, USAFSurvey, nearestToArchetypes, preprocessing

Examples

#The following R code allows us to reproduce the results of the paper Epifanio et al. (2013).
#As a toy example, only the first 25 individuals are used.
#First,the USAF 1967 database is read and preprocessed (Zehner et al. (1993)).
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)

https://doi.org/10.18637/jss.v030.i08

8 archetypesBoundary

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)

#Procedure and results shown in section 2.2.2 and section 3.1:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
res <- archetypesBoundary(USAFSurvey_preproc$data, 15, FALSE, 3)
#To understand the warning messages, see the vignette of the
#archetypes package.

#Results shown in section 3.2 (figure 3):
screeplot(res)

#3 archetypes:
a3 <- archetypes::bestModel(res[[3]])
archetypes::parameters(a3)
#7 archetypes:
a7 <- archetypes::bestModel(res[[7]])
archetypes::parameters(a7)
#Plotting the percentiles of each archetype:
#Figure 2 (b):
barplot(a3,USAFSurvey_preproc$data, percentiles = TRUE, which = "beside")
#Figure 2 (f):
barplot(a7,USAFSurvey_preproc$data, percentiles = TRUE, which = "beside")

#Results shown in section 3.3 related with PCA.
pznueva <- prcomp(USAFSurvey_preproc$data, scale = TRUE, retx = TRUE)
#Table 3:
summary(pznueva)
pznueva
#PCA scores for 3 archetypes:
p3 <- predict(pznueva,archetypes::parameters(a3))
#PCA scores for 7 archetypes:
p7 <- predict(pznueva,archetypes::parameters(a7))
#Representing the scores:
#Figure 4 (a):
xyplotPCArchetypes(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col = 1,

atypes.pch = 15)
#Figure 4 (b):
xyplotPCArchetypes(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7), atypes.col = 1,

atypes.pch = 15)

#Percentiles for 7 archetypes (table 5):
Fn <- ecdf(USAFSurvey_preproc$data)
round(Fn(archetypes::parameters(a7)) * 100)

#Which are the nearest individuals to archetypes?:
#Example for three archetypes:
ras <- rbind(archetypes::parameters(a3),USAFSurvey_preproc$data)
dras <- dist(ras,method = "euclidean", diag = FALSE, upper = TRUE, p = 2)
mdras <- as.matrix(dras)

archetypoids 9

diag(mdras) = 1e+11
numArch <- 3
sapply(seq(length=numArch),nearestToArchetypes,numArch,mdras)

#In addition, we can turn the standardized values to the original variables.
p <- archetypes::parameters(a7)
m <- sapply(USAFSurvey_inch,mean)
s <- sapply(USAFSurvey_inch,sd)
d <- p
for(i in 1 : 6){
d[,i] = p[,i] * s[i] + m[i]

}
#Table 7:
t(d)

archetypoids Finding archetypoids

Description

Archetypoid algorithm. It is based on the PAM clustering algorithm. It is made up of two phases
(a BUILD phase and a SWAP phase). In the BUILD phase, an initial set of archetypoids is deter-
mined. Unlike PAM, this collection is not derived in a stepwise format. Instead, it is suggested you
choose the set made up of the nearest individuals returned by the archetypes function (Eugster et
al. (2009)). This set can be defined in three different ways, see next section arguments. The goal
of the SWAP step is the same as that of the SWAP step of PAM, but changing the objective func-
tion. The initial vector of archetypoids is attempted to be improved. This is done by exchanging
selected individuals for unselected individuals and by checking whether these replacements reduce
the objective function of the archetypoid analysis problem.

All details are given in Vinue et al. (2015).

Usage

archetypoids(numArchoid,data,huge=200,step,init,ArchObj,nearest="cand_ns",sequ,aux)

Arguments

numArchoid Number of archetypoids (archetypal observations).

data Data matrix. Each row corresponds to an observation and each column corre-
sponds to an anthropometric variable. All variables are numeric.

huge This is a penalization added to solve the convex least squares problems regarding
the minimization problem to estimate archetypoids, see Eugster et al. (2009).
Default value is 200.

step Logical value. If TRUE, the archetypoid algorithm is executed repeatedly within
stepArchetypoids. Therefore, this function requires the next argument init
(but neither the ArchObj nor the nearest arguments) that specifies the initial
vector of archetypoids, which has already been computed within stepArchetypoids.

10 archetypoids

If FALSE, the archetypoid algorithm is executed once. In this case, the ArchObj
and nearest arguments are required to compute the initial vector of archety-
poids.

init Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.
It is computed within stepArchetypoids. See nearest argument below for an
explanation of how this vector is calculated.

ArchObj The list object returned by the stepArchetypesRawData function. This function
is a slight modification of the original stepArchetypes to apply the archetype
algorithm to raw data. The stepArchetypes function standardizes the data by
default and this option is not always desired. This list is needed to compute the
nearest individuals to archetypes. Required when step=FALSE.

nearest Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.
Required when step=FALSE. This initial vector contain the nearest individuals to
the archetypes returned by the archetypes (In Vinue et al. (2015), archetypes are
computed after running the archetype algorithm twenty times). This argument
is a string vector with three different possibilities. The first and default option
is "cand_ns" and allows us to calculate the nearest individuals by computing the
Euclidean distance between the archetypes and the individuals and choosing the
nearest. It is used in Epifanio et al. (2013). The second option is "cand_alpha"
and allows us to calculate the nearest individuals by consecutively identifying
the individual with the maximum value of alpha for each archetype, until the
defined number of archetypes is reached. It is used in Eugster (2012). The third
and final option is "cand_beta" and allows us to calculate the nearest individuals
by identifying the individuals with the maximum beta value for each archetype,
i.e. the major contributors in the generation of the archetypes.

sequ Logical value. It indicates whether a sequence of archetypoids (TRUE) or only
a single number of them (FALSE) is computed. It is determined by the number
of archetypes computed by means of stepArchetypesRawData.

aux If sequ=FALSE, this value is equal to numArchoid-1 since for a single num-
ber of archetypoids, the list associated with the archetype object only has one
element.

Details

As mentioned, this algorithm is based on PAM. These types of algorithms aim to find good solutions
in a short period of time, although not necessarily the best solution. Otherwise, the global minimum
solution may always be obtained using as much time as it would be necessary, but this would be
very inefficient computationally.

Value

A list with the following elements:

cases: Anthropometric cases (final vector of numArchoid archetypoids).

rss: Residual sum of squares corresponding to the final vector of numArchoid archetypoids.

archet_ini: Vector of initial archetypoids (cand_ns, cand_alpha or cand_beta).

alphas: Alpha coefficients for the optimal vector of archetypoids.

archetypoids 11

Note

It may be happen that archetypes does not find results for numArchoid archetypes. In this case, it is
not possible to calculate the vector of nearest individuals and consequently, the vector of archety-
poids. Therefore, this function will return an error message.

Author(s)

Irene Epifanio and Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Cutler, A., and Breiman, L., (1994). Archetypal Analysis, Technometrics 36, 338–347.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R,
Journal of Statistical Software 30, 1–23, doi:10.18637/jss.v030.i08.

Eugster, M. J. A., (2012). Performance profiles based on archetypal athletes, International Journal
of Performance Analysis in Sport 12, 166–187.

See Also

stepArchetypesRawData, archetypes, stepArchetypoids

Examples

#Note: For a sportive example, see www.uv.es/vivigui/softw/more_examples.R

#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,

numRep = numRep, verbose = FALSE)

https://doi.org/10.18637/jss.v030.i08

12 array3Dlandm

#To understand the warning messages, see the vignette of the
#archetypes package.

#screeplot(lass)

numArchoid <- 3 #number of archetypoids.
res_ns <- archetypoids(numArchoid, USAFSurvey_preproc$data, huge = 200, step = FALSE,

ArchObj = lass, nearest = "cand_ns",sequ = TRUE)

array3Dlandm Helper function for the 3D landmarks

Description

This is a helper function for obtaining the array with the 3D landmarks of the sample objects

Usage

array3Dlandm(numLandm,numIndiv,matLandm)

Arguments

numLandm Number of landmarks that represent the 3D body of the individuals.

numIndiv Number of individuals to analyze.

matLandm Matrix with the numLandm landmarks for the numIndiv individuals.

Value

Array with the 3D landmarks of the sample objects.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

See Also

LloydShapes, HartiganShapes, trimmedLloydShapes

bustSizesStandard 13

Examples

landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
landmarksNoNa_First50 <- landmarksNoNa[1:50,]
numIndiv <- dim(landmarksNoNa_First50)[1]

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First50)

bustSizesStandard Helper function for defining the bust sizes

Description

This is a helper function for defining the twelve bust sizes (from 74 cm to 131 cm) according to
the sizes proposed in the European standard on sizing systems. Size designation of clothes. Part 3:
Measurements and intervals.

Usage

bustSizesStandard(bustCirc_4, bustCirc_6)

Arguments

bustCirc_4 Sequence of measurements from 74 to 102 in groups of four.

bustCirc_6 Sequence of measurements from 107 to 131 in groups of six.

Value

A list with the following elements:

bustCirc: Vector of the twelve bust sizes.

nsizes: Number of bust sizes (twelve).

Author(s)

Guillermo Vinue

References

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

14 CCbiclustAnthropo

See Also

trimowa, hipamAnthropom

Examples

bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

CCbiclustAnthropo Cheng and Church biclustering algorithm applied to anthropometric
data

Description

This function is the implementation in R of the algorithm that uses the Cheng and Church bicluster-
ing method (from now on, CC) to find size groups (biclusters) and disaccommodated individuals.
Designing lower body garments depends not only on the waist circumference (the principal dimen-
sion in this case), but also on other secondary control dimensions (for upper body garments the
bust circumference is usually required only). Biclustering identifies groups of observations with a
similar pattern in a subset of attributes instead of in the whole of them. Therefore, it seems to be
more interesting to use a biclustering algorithm with a set of lower body variables.
In Vinue et al. (2014), the way of proceeding was as follows: first, all the body variables related
to the lower body part included in the Spanish anthropometric survey were chosen (there were 36).
Second, the data set was divided into twelve segments (classes) using waist circumference values
according to the European standard. Part 3: Measurements and intervals. Finally, the CC algorithm
was applied to each waist class.

Usage

CCbiclustAnthropo(data,waistVariable,waistCirc,lowerVar,
nsizes,nBic,diffRanges,percDisac,dir)

Arguments

data Data matrix. Each row corresponds to an observation, and each column corre-
sponds to a variable. All variables are numeric.

waistVariable Vector containing the waist values of the individuals.
waistCirc data is segmented into twelve waist classes. This vector contains the waist

values to define each one of the twelve classes.
lowerVar Lower body dimensions.
nsizes Number of waist sizes.
nBic Maximum number of biclusters to be found in each waist size.
diffRanges List with nsizes elements. Each element is a vector whose extremes indicate

the acceptable boundaries for selecting variables with a similar scale. This is
needed because CC may be very influenced in case of variables involved in the
study are on very different scales.

percDisac Proportion of no accommodated sample.
dir Working directory where to save the results.

CCbiclustAnthropo 15

Details

Interesting results in terms of apparel design were found: an efficient partition into different bi-
clusters was obtained. All individuals in the same bicluster can wear a garment designed for the
particular body dimensions (waist and other variables) which were the most relevant for defining
the group. Each group is represented by the median woman. Because the CC algorithm is nonex-
haustive, i.e, some rows (and columns) do not belong to any bicluster, this property can be used to
fix a proportion of no accommodated sample.

This approach was descriptive and exploratory. It is emphasized that this function cannot be used
with sampleSpanishSurvey, because this data file does not contain variables related to the lower
body part in addition to waist and hip. However, this function is included in the package in the hope
that it could be helpful or useful for other researchers.

Value

A list with the following elements:

res: List with nsizes elements. Each element contains the biclustering results for each waist
segment.

dims: List with nsizes elements. Each element contains the number of variables with a similar
scale in each waist segment.

delta: List with nsizes elements. Each element contains the delta parameter of the CC algorithm
for each waist segment.

disac: List with nsizes elements. Each element contains the number of women who not belong to
any bicluster for each waist segment.

mat: List with nsizes elements. Each element contains the matrix showing which rows belong to
each bicluster for each waist segment. This matrix allow us to know whether there are rows that
belong to more than one bicluster, that is to say, whether there are overlapping biclusters. This is
very important in our application because each individual must be assigned to a single size. See the
Note section.

tab_acc: List with nsizes elements. Each element is a list with four elements. The first component
indicates how many individuals belong to a single bicluster and how many do not belong to any
bicluster. The second component refers to the number of biclusters found in each segment. The third
one indicates the number of women that belong to each waist segment. The fourth one coincides
with the disac element.

ColBics: List with nsizes elements. Each element contains the variables that belong to each bi-
cluster for each waist segment.

Note

In order to know whether a row belongs to more than one bicluster, we count the number of 0s in
each row of the mat matrix returned by this function (see the Value section).

In case of there are res@Number - 1 0s in each row of mat, then each row belongs to only one
bicluster. The mat matrix indicates with an 1 the rows that make up of the bicluster 1, with a 2 those
rows that make up of the bicluster 2 and so on. In addition, it indicates with a 0 the rows that do not
belong to any bicluster. Therefore, in order to check overlapping, every row must have a number of
0s equal to the total number of biclusters minus one. This one will indicate that that row belongs

16 CCbiclustAnthropo

to a single bicluster. Otherwise, every row must have a number of 0s equal to the total number of
biclusters. In this case, that row does not belong to any bicluster.

For instance, if we find two biclusters, there should be one or two 0s in each row in case of no
overlapping.

Author(s)

Guillermo Vinue

References

Vinue, G., and Ibanez, M. V., (2014), Data depth and Biclustering applied to anthropometric data.
Exploring their utility in apparel design. Technical report.

Cheng, Y., and Church, G., (2000). Biclustering of expression data. Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular Biology 8, 93–103.

Kaiser, S., and Leisch, F., (2008). A Toolbox for Bicluster Analysis in R. Tech.rep., Department of
Statistics (University of Munich).

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthro-
pometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the
2010 Intl. Conference on 3D Body scanning Technologies, 307–315.

European Committee for Standardization. Size designation of clothes. Part 2: Primary and sec-
ondary dimensions. (2002).

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

See Also

overlapBiclustersByRows

Examples

Not run:
#Note: package biclust needed.
#This is an example of using this function with a certain database
#made up of body dimensions related to the lower body part.
data <- dataUser[(waist >= 58) & (waist < 115),] #dataUser is the user database.
rownames(data) <- 1:dim(data)[1]

waist <- data[,"WaistCircumference"]

waist_4 <- seq(58, 86, 4)
waist_6 <- seq(91, 115, 6)
waistCirc <- c(waist_4,waist_6)
nsizes <- length(waistCirc)

#Position of the body variables in the database:
lowerVars <- c(14, 17:25, 27, 28, 65:73, 75, 77:81, seq(100, 116, 2))

nBic <- c(2, 2, 4, rep(5, 7), 3, 3)

cdfDissWomenPrototypes 17

diffRanges <- list(c(14,20), c(24,30), c(24,30), c(33,39), c(29,35), c(29,35),
c(28,35), c(31,38), c(31,38), c(30,37), c(26,33), c(25,32))

percDisac <- 0.01
dir <- "/home/guillermo/"

res_bicl_antropom <- CCbiclustAnthropo(data,waist,waistCirc,lowerVars,
nsizes,nBic,diffRanges,percDisac,dir)

End(Not run)

cdfDissWomenPrototypes

CDF for the dissimilarities between women and computed medoids
and standard prototypes

Description

This function allows us to calculate the Cumulative Distribution Functions for the dissimilarities
between all the women and the medoids obtained with the trimowa algorithm and for the dissimi-
larities between all the women and the standard prototypes defined by the European standard. Part
3: Measurements and intervals. In both cases, the dissimilarities have been computed by using the
dissimilarity function obtained with getDistMatrix.

These types of plots can also be used to identify the expected range of the dissimilarities, that is to
say, the values between the 10 and 90th percentiles.

This function was used to obtain the Fig. 11 of Ibanez et al. (2012).

Usage

cdfDissWomenPrototypes(min_med,min_med_UNE,main,xlab,ylab,leg,cexLeg,...)

Arguments

min_med Vector with the dissimilarities between all the women and the prototypes (medoids)
obtained with trimowa.

min_med_UNE Vector with the dissimilarities between all the women and the standard proto-
types.

main A title for the plot.

xlab A title for the x axis.

ylab A title for the y axis.

leg A character vector to appear in the legend.

cexLeg Character expansion for the legend.

... Further graphical parameters.

Value

A device with the desired plot.

18 cdfDissWomenPrototypes

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

See Also

sampleSpanishSurvey, weightsMixtureUB, trimowa, getDistMatrix

Examples

#Loading the data to apply the trimowa algorithm:
dataTrimowa <- sampleSpanishSurvey
dim(dataTrimowa)
#[1] 600 5
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
chest <- dataTrimowa$chest
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
#numSizes <- bustSizes$nsizes - 1
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,

weightsTrimowa, numClust, alpha, niter, algSteps,
ah, FALSE)

#Prototypes obtained with the trimowa algorithm:
prototypes <- anthrCases(res_trimowa, numSizes)
#length(unlist(prototypes)) is (numSizes - 1) * numClust
meds <- dataTrimowa[unlist(prototypes),]

regr <- lm(chest ~ bust)

#Prototypes defined by the European standard:
hip_UNE <- c(seq(84,112,4), seq(117,132,5)) ; hip <- rep(hip_UNE,3)
waist_UNE <- c(seq(60,88,4), seq(94,112,6)) ; waist <- rep(waist_UNE,3)

checkBranchLocalIMO 19

bust_UNE <- c(seq(76,104,4), seq(110,128,6)) ; bust <- rep(bust_UNE,3)
chest_UNE <- predict(regr, list(bust=bust_UNE)) ; chest <- rep(chest_UNE,3)
necktoground <- c(rep(130,12), rep(134,12),rep(138,12))

medsUNE <- data.frame(chest, necktoground, waist, hip, bust)
dim(medsUNE)
#[1] 36 5

dataAll <- rbind(dataTrimowa, meds, medsUNE)
dim(dataAll)
#[1] 642 5

bh <- (apply(as.matrix(log(dataAll)),2,range)[2,]
- apply(as.matrix(log(dataAll)),2,range)[1,]) / ((numClust-1) * 8)

bl <- -3 * bh
ah <- c(28,20,30,25,23)
al <- 3 * ah
num.persons <- dim(dataAll)[1]
dataAllm <- as.matrix(dataAll)
dataAllt <- aperm(dataAllm, c(2,1))
dim(dataAllt) <- c(1,num.persons * numVar)
rm(dataAllm)
D <- getDistMatrix(dataAllt, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)

sequen <- (dim(dataTrimowa)[1] + 1) : (dim(dataTrimowa)[1] + length(unlist(prototypes)))
f <- function(i, D){
r <- min(D[i, sequen])

}
min_med <- sapply(1:dim(dataTrimowa)[1], f, D)

sequen1 <- (dim(dataTrimowa)[1] + length(unlist(prototypes)) + 1) : dim(D)[1]
f1 <- function(i, D){
r <- min(D[i, 619:636])

}
min_med_UNE <- sapply(1:dim(dataTrimowa)[1], f1, D)

#CDF plot:
main <- "Comparison between sizing methods"
xlab <- "Dissimilarity"
ylab <- "Cumulative distribution function"
leg <- c("Dissimilarity between women and computed medoids",

"Dissimilarity between women and standard prototypes")
cdfDissWomenPrototypes(min_med, min_med_UNE, main, xlab, ylab, leg,cexLeg = 0.7)

checkBranchLocalIMO Evaluation of the candidate clustering partition in HIPAM-IMO

Description

In the HIPAM algorithm, each (parent) cluster P is investigated to see if it can be divided further
into new (child) clusters, or stop (in this case, P would be a terminal node).

20 checkBranchLocalIMO

In this version of HIPAM, called HIPAM-IMO, there are three different stopping criteria: First, if
$|P| leq 2$, then P is a terminal node. If not, the second stopping refers to the INCA (Index Number
Clusters Atypical) criterion (Irigoien et al. (2008)): if $INCA_k leq 0.2$ for all k, then P is a
terminal node. Finally, the third stopping criteria uses the Mean Split Silhouette. See Vinue et al.
(2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

checkBranchLocalIMO(tree,data,i,maxsplit,asw.tol,local.const,orness,type,ah,
verbose,...)

Arguments

tree The clustering tree being defined.

data Data to be clustered.

i A specific cluster of the clustering partition in a certain level of the tree.

maxsplit The maximum number of clusters that any cluster can be divided when searching
for the best clustering.

asw.tol If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or
asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is
maintained. See page 154 of Wit et al. (2004) for more details.

local.const If this value is given (meaningful values are those between -1 and 1), a proposed
partition is accepted only if the associated asw is greater than this constant. De-
fault option for this argument is maintained, that is to say, this value is ignored.
See page 154 of Wit et al. (2004) for more details.

orness Quantity to measure the degree to which the aggregation is like a min or max
operation. See weightsMixtureUB and getDistMatrix.

type Option ’IMO’ for using HIPAM-IMO.

ah Constants that define the ah slopes of the distance function in getDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector
would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information
on progress.

... Other arguments that may be supplied.

Value

The new resulting classification tree.

Note

This function belongs to the HIPAM-IMO algorithm and it is not solely used. That is why there is
no section of examples in this help page. See hipamAnthropom.

checkBranchLocalMO 21

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.
math.rug.nl/~ernst/book/smida.html. We have adapted it to incorporate the second stopping
criterion related to INCA.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John
Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R
package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene
expression data. Vol. II of SCI2002 Proceedings, 318–325.

Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and
identifying atypical units, Statistics in Medicine 27, 2948–2973.

Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters
and atypical units in gene expression, BMC Bioinformatics 13 1–29.

See Also

hipamAnthropom

checkBranchLocalMO Evaluation of the candidate clustering partition in HIPAM-MO

Description

In the HIPAM algorithm, each (parent) cluster P is investigated to see if it can be divided further
into new (child) clusters, or stop (in this case, P would be a terminal node).

In this version of HIPAM, called HIPAM-MO, there are two different stopping criteria: First, if $|P|
leq 2$, then P is a terminal node. If not, the second stopping criteria uses the Mean Split Silhouette.
See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

checkBranchLocalMO(tree,data,i,maxsplit,asw.tol,local.const,orness,type,ah,
verbose,...)

https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html

22 checkBranchLocalMO

Arguments

tree The clustering tree being defined.
data Data to be clustered.
i A specific cluster of the clustering partition in a certain level of the tree.
maxsplit The maximum number of clusters that any cluster can be divided when searching

for the best clustering.
asw.tol If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or

asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is
maintained. See page 154 of Wit et al. (2004) for more details.

local.const If this value is given (meaningful values are those between -1 and 1), a proposed
partition is accepted only if the associated asw is greater than this constant. De-
fault option for this argument is maintained, that is to say, this value is ignored.
See page 154 of Wit et al. (2004) for more details.

orness Quantity to measure the degree to which the aggregation is like a min or max
operation. See weightsMixtureUB and getDistMatrix.

type Option ’MO’ for using HIPAM-MO.
ah Constants that define the ah slopes of the distance function in getDistMatrix.

Given the five variables considered, this vector is c(23,28,20,25,25). This vector
would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information
on progress.

... Other arguments that may be supplied.

Value

The new resulting classification tree.

Note

This function belongs to the HIPAM-MO algorithm and it is not solely used. That is why there is
no section of examples in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.
math.rug.nl/~ernst/book/smida.html.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.
Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John
Wiley & Sons, Ltd.
Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R
package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html
Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene
expression data. Vol. II of SCI2002 Proceedings, 318–325.

https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html

computSizesHipamAnthropom 23

See Also

hipamAnthropom

computSizesHipamAnthropom

Computation of the hipamAnthropom elements for a given number of
sizes defined by the EN

Description

This is a helper function for computing the hipamAnthropom elements provided by the hipamAnthropom
algorithm for a number of bust sizes defined by the European Normative (EN). Therefore, the
hipamAnthropom is used inside this function.

Usage

computSizesHipamAnthropom(dataHip, bust, bustMeasur, nsizes, maxsplit, orness,
type, ah, verbose = FALSE)

Arguments

dataHip Data frame.

bust Bust column of the data frame.

bustMeasur Sequence vector of bust measurements (bust sizes) provided by the bustSizesStandard
function.

nsizes Number of sizes defined by the European Normative to apply the hipamAnthropom
function.

maxsplit, orness, type, ah, verbose
Same arguments as those of the hipamAnthropom function.

Value

A list with the same elements as the hipamAnthropom function.

Author(s)

Guillermo Vinue

References

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

24 computSizesTrimowa

See Also

hipamAnthropom, bustSizesStandard

Examples

dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes,

maxsplit, orness, type, ah, FALSE)

computSizesTrimowa Computation of the trimowa elements for a given number of sizes de-
fined by the EN

Description

This is a helper function for computing the trimowa elements provided by the trimowa algorithm
for a number of bust sizes defined by the European Normative (EN). Therefore, the trimowa is used
inside this function. The number of sizes must be bigger than one. For a single size use directly
trimowa.

Usage

computSizesTrimowa(dataTrim, bust, bustMeasur, nsizes, w, numClust, alpha,
niter, algSteps, ah, verbose = FALSE)

Arguments

dataTrim Data frame.

bust Bust column of the data frame.

bustMeasur Sequence vector of bust measurements (bust sizes) provided by the bustSizesStandard
function.

nsizes Number of sizes defined by the European Normative to apply the trimowa func-
tion.

w, numClust, alpha, niter, algSteps, ah, verbose
Same arguments as those of the trimowa function.

cube34landm 25

Value

A list with the same elements as the trimowa function.

Author(s)

Guillermo Vinue

References

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

See Also

trimowa, bustSizesStandard

Examples

dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,

weightsTrimowa, numClust, alpha, niter,
algSteps, ah, verbose = FALSE)

cube34landm Cube of 34 landmarks

Description

This is a cube made up of 34 landmarks, used as controlled data in the simulation study carried out
in the paper referred below.

26 cube8landm

Usage

cube34landm

Format

An array with one matrix of 34 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

cube8landm Cube of 8 landmarks

Description

This is a cube made up of 8 landmarks, used as controlled data in the simulation study carried out
in the paper referred below.

Usage

cube8landm

Format

An array with one matrix of 8 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

descrDissTrunks 27

descrDissTrunks Description of the dissimilarities between women’s trunks

Description

Unlike archetypes, archetypoids can be computed when features are unavailable. Given a dissimi-
larity matrix, the classical multidimensional scaling (cMDS) can be applied to obtain a description
of the dissimilarities.

In Vinue et al. (2015), the dissimilarity matrix represents the dissimilarities between women’s
trunks. After applying the cMDS, the database described here is obtained. Then, the archetypoid
algorithm can be applied to this database, see section examples.

Usage

descrDissTrunks

Format

A matrix with 470 rows and 4 columns.

Source

Anthropometric survey of the Spanish female population.

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthro-
pometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the
2010 Intl. Conference on 3D Body scanning Technologies, 307–315.

Examples

#Database:
#As a toy example, only the first 25 individuals are used.
X <- descrDissTrunks[1:25,]
X <- as.matrix(X)

#Computation of archetypes and archetypoids:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; nrep <- 2
lass <- stepArchetypesRawData(data = X, numArch = 1:numArch, numRep = nrep, verbose = FALSE)
#To understand the warning messages, see the vignette of the

28 figures8landm

#archetypes package.

#screeplot(lass)

numArchoid <- 3
res_archoids_ns <- archetypoids(numArchoid, X, huge = 200, step = FALSE, ArchObj = lass,

nearest = "cand_ns", sequ = TRUE)

figures8landm Figures of 8 landmarks with labelled landmarks

Description

This function allows us to represent the two geometric figures (a cube and a parallelepiped) of 8
landmarks, with the landmark labels. Both appear in the paper Vinue et al. (2016), referred below.

Usage

figures8landm(figure,data)

Arguments

figure A character vector, two values are admitted: if figure="cube", the cube is repre-
sented. If figure="paral", the parallelepiped is represented.

data The data with the landmarks of the corresponding figure.

Value

A plot of the cube or the parallelepiped with the landmark labels.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Examples

Not run:
figures8landm("cube", cube8landm)
figures8landm("paral", parallelep8landm)

End(Not run)

getBestPamsamIMO 29

getBestPamsamIMO Generation of the candidate clustering partition in HIPAM-IMO

Description

The HIPAM algorithm starts with one large cluster and, at each level, a given (parent) cluster is
partitioned using PAM.

In this version of HIPAM, called HIPAM-IMO, the number k of (child) clusters is obtained by
using the INCA (Index Number Clusters Atypical) criterion (Irigoien et al. (2008)) in the following
way: at each node P, if there is k such that $INCA_k > 0.2$, then the k prior to the first largest
slope decrease is selected. However, this procedure does not apply either to the top node or to the
generation of the new partitions from which the Mean Split Silhouette is calculated. In these cases,
even when all $INCA_k < 0.2$, k = 3 is fixed as the number of groups to divide and proceed. See
Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

Usage

getBestPamsamIMO(data,maxsplit,orness=0.7,type,ah,verbose,...)

Arguments

data Data to be clustered.

maxsplit The maximum number of clusters that any cluster can be divided when searching
for the best clustering.

orness Quantity to measure the degree to which the aggregation is like a min or max
operation. See weightsMixtureUB and getDistMatrix.

type Option ’IMO’ for using HIPAM-IMO.

ah Constants that define the ah slopes of the distance function in getDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector
would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information
on progress.

... Other arguments that may be supplied.

Value

A list with the following elements:

medoids: The cluster medoids.

clustering: The clustering partition obtained.

asw: The asw of the clustering.

num.of.clusters: Number of clusters in the final clustering.

info: List that informs about the progress of the clustering algorithm.

30 getBestPamsamMO

profiles: List that contains the asw and sesw (stardard error of the silhouette widths) profiles at each
stage of the search.

metric: Dissimilarity used (called ’McCulloch’ because the dissimilarity function used is that ex-
plained in McCulloch et al. (1998)).

Note

This function belongs to the HIPAM-IMO algorithm and it is not solely used. That is why there is
no section of examples in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.
math.rug.nl/~ernst/book/smida.html. We have adapted it to incorporate the INCA criterion.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John
Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R
package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene
expression data. Vol. II of SCI2002 Proceedings, 318–325.

Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and
identifying atypical units, Statistics in Medicine 27, 2948–2973.

Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters
and atypical units in gene expression, BMC Bioinformatics 13 1–29.

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing,
Journal of the Operational Research Society 49, 492–499.

See Also

hipamAnthropom

getBestPamsamMO Generation of the candidate clustering partition in HIPAM-MO

Description

The HIPAM algorithm starts with one large cluster and, at each level, a given (parent) cluster is
partitioned using PAM.

In this version of HIPAM, called HIPAM-MO, the number k of (child) clusters is obtained by
maximizing the silhouette width (asw). See Vinue et al. (2014) for more details.

The foundation and performance of the HIPAM algorithm is explained in hipamAnthropom.

https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html

getBestPamsamMO 31

Usage

getBestPamsamMO(data,maxsplit,orness=0.7,type,ah,verbose,...)

Arguments

data Data to be clustered.

maxsplit The maximum number of clusters that any cluster can be divided when searching
for the best clustering.

orness Quantity to measure the degree to which the aggregation is like a min or max
operation. See weightsMixtureUB and getDistMatrix.

type Option ’MO’ for using HIPAM-MO.

ah Constants that define the ah slopes of the distance function in getDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector
would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information
on progress.

... Other arguments that may be supplied.

Value

A list with the following elements:

medoids: The cluster medoids.

clustering: The clustering partition obtained.

asw: The asw of the clustering.

num.of.clusters: Number of clusters in the final clustering.

info: List that informs about the progress of the clustering algorithm.

profiles: List that contains the asw and sesw (stardard error of the silhouette widths) profiles at each
stage of the search.

metric: Dissimilarity used (called ’McCulloch’ because the dissimilarity function used is that ex-
plained in McCulloch et al. (1998)).

Note

This function belongs to the HIPAM-MO algorithm and it is not solely used. That is why there is
no section of examples in this help page. See hipamAnthropom.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.
math.rug.nl/~ernst/book/smida.html.

https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html

32 getDistMatrix

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John
Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R
package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene
expression data. Vol. II of SCI2002 Proceedings, 318–325.

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing,
Journal of the Operational Research Society 49, 492–499.

See Also

hipamAnthropom

getDistMatrix Dissimilarity matrix between individuals and prototypes

Description

In the definition of a sizing system, a distance function allows us to represent mathematically the
idea of garment fit and it is a key element to quantify the misfit between an individual and the
prototype.

This function computes the dissimilarity defined in McCulloch et al. (1998), which is used in
trimowa and hipamAnthropom. For more details, see also Ibanez et al. (2012) and Vinue et al.
(2014).

Usage

getDistMatrix(data,np,nv,w,bl,bh,al,ah,verbose)

Arguments

data Data vector.

np Number of observations in the database.

nv Number of variables in the database.

w Weights for the OWA operator computed by means of weightsMixtureUB.

bl, bh, al, ah Constants required to specify the distance function.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information
on progress.

https://www.math.rug.nl/~ernst/book/smida.html

getDistMatrix 33

Details

At the computational level, it is asummed that all the bh values are negative, all the bl values are
positive and all the al and ah slopes are positive (the sign of al is changed within the function when
computing the dissimilarities).

Value

A symmetric np x np matrix of dissimilarities.

Note

This function requires a C code called cast.c. In order to use getDistMatrix outside the package,
the dynamic-link library is called by means of the sentence dyn.load("cast.so") (In Windows,
it would be dyn.load("cast.dll")).

Author(s)

Juan Domingo

References

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing,
Journal of the Operational Research Society 49, 492–499.

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Leon, T., Zuccarello, P., Ayala, G., de Ves, E., and Domingo, J., (2007), Applying logistic regression
to relevance feedback in image retrieval systems, Pattern Recognition 40, 2621–2632.

See Also

trimowa, hipamAnthropom

Examples

#Data loading:
dataTrimowa <- sampleSpanishSurvey
bust <- dataTrimowa$bust
#First bust class:
data <- dataTrimowa[(bust >= 74) & (bust < 78),]
numVar <- dim(dataTrimowa)[2]

#Weights calculation:
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)

#Constants required to specify the distance function:

34 HartiganShapes

numClust <- 3
bh <- (apply(as.matrix(log(data)),2,range)[2,]

- apply(as.matrix(log(data)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(23,28,20,25,25)
al <- 3 * ah

#Data processing.
num.persons <- dim(data)[1]
num.variables <- dim(data)[2]
datam <- as.matrix(data)
datat <- aperm(datam, c(2,1))
dim(datat) <- c(1,num.persons * num.variables)

#Dissimilarity matrix:
D <- getDistMatrix(datat, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)

HartiganShapes Hartigan-Wong k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean
distance from each point, to the centroid of the cluster to which it belongs. Two fundamental con-
cepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. There-
fore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the
shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer sci-
ence and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd
(1982)). However, in many texts, the term k-means algorithm is used for certain similar sequen-
tial clustering algorithms. Hartigan and Wong (1979) use the term k-means for an algorithm that
searches for the locally optimal k-partition by moving points from one cluster to another.

This function allows us to use the Hartigan-Wong version of k-means adapted to deal with 3D
shapes. Note that in the generic name of the k-means algorithm, k refers to the number of clusters
to search for. To be more specific in the R code, k is referred to as numClust, see next section
arguments.

Usage

HartiganShapes(array3D,numClust,algSteps=10,niter=10,
stopCr=0.0001,simul,initLl,initials,verbose)

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

numClust Number of clusters.

HartiganShapes 35

algSteps Number of steps per initialization. Default value is 10.

niter Number of random initializations (iterations). Default value is 10.

stopCr Relative stopping criteria. Default value is 0.0001.

simul Logical value. If TRUE, this function is used for a simulation study.

initLl Logical value. If TRUE, see next argument initials. If FALSE, they are new
random initial values.

initials If initLl=TRUE, they are the same random initial values used in each iteration
of LloydShapes. If initLl=FALSE this argument must be passed simply as an
empty vector.

verbose A logical specifying whether to provide descriptive output about the running
process.

Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical
shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010),
Georgescu (2009)). In Vinue, G. et al. (2014), it is demonstrated that the Lloyd k-means represents
a noticeable reduction in the computation involved when the sample size increases, compared with
the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis
context only for very small samples.

Value

A list with the following elements:

ic1: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

If a simulation study is carried out, the following elements are returned:

ic1: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

compTime: Computational time.

AllRate: Allocation rate.

Note

This function is based on the kmns.m file available from https://github.com/johannesgerer/
jburkardt-m/tree/master/asa136

Author(s)

Guillermo Vinue

https://github.com/johannesgerer/jburkardt-m/tree/master/asa136
https://github.com/johannesgerer/jburkardt-m/tree/master/asa136

36 HartiganShapes

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Hartigan, J. A., and Wong, M. A., (1979). A K-Means Clustering Algorithm, Applied Statistics,
100–108.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, IEEE Transactions on Information Theory
28, 129–137.

Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B., (2010). k-Means Algorithm in Statistical
Shape Analysis, Communications in Statistics - Simulation and Computation 39(5), 1016–1026.

Georgescu, V., (2009). Clustering of Fuzzy Shapes by Integrating Procrustean Metrics and Full
Mean Shape Estimation into K-Means Algorithm. In IFSA-EUSFLAT Conference.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

LloydShapes, trimmedLloydShapes, landmarksSampleSpaSurv, cube8landm, parallelep8landm,
cube34landm, parallelep34landm, optraShapes, qtranShapes

Examples

#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 20 individuals are used.
landmarksNoNa_First20 <- landmarksNoNa[1:20,]
(numIndiv <- dim(landmarksNoNa_First20)[1])
#[1] 20

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First20)
#array3D <- array3D[1:10,,] #to reduce computational times.
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 3 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
#resHA <- HartiganShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE, c(), FALSE)
initials <- list(c(15,10,1))
resHA <- HartiganShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, TRUE, initials, TRUE)

if (!is.null(resHA)) {
asig <- resHA$ic1 #table(asig) shows the clustering results.
prototypes <- anthrCases(resHA)

}
#Note: For a simulation study, see www.uv.es/vivigui/softw/more_examples.R

hipamAnthropom 37

hipamAnthropom HIPAM algorithm for anthropometric data

Description

The HIerarchical Partitioning Around Medoids clustering method (HIPAM) was originally created
to gene clustering (Wit et al. (2004)). The HIPAM algorithm is a divisive hierarchical clustering
method based on the PAM algorithm.

This function is a HIPAM algorithm adapted to deal with anthropometric data. To that end, a
different dissimilarity function is incorporated. This function is that explained in McCulloch et al.
(1998) and it is implemented in getDistMatrix. We call it d-MO. In addition, a different method
to obtain a classification tree is also incorporated.

Two HIPAM algorithms are proposed. The first one, called HIPAM-MO, is a HIPAM that uses
d-MO. The second one, HIPAM-IMO, is a HIPAM algorithm that uses d-MO and the INCA (Index
Number Clusters Atypical) statistic criterion (Irigoien et al. (2008)) to decide the number of child
clusters and as a stopping rule.

See Vinue et al. (2014) for more details.

Usage

hipamAnthropom(data,asw.tol=0,maxsplit=5,local.const=NULL,
orness=0.7,type,ah=c(23,28,20,25,25),verbose,...)

Arguments

data Data frame. In our approach, this is each of the subframes originated after seg-
menting the whole anthropometric Spanish survey into twelve bust segments,
according to the European standard on sizing systems. Size designation of
clothes. Part 3: Measurements and intervals. Each row corresponds to an obser-
vation, and each column corresponds to a variable. All variables are numeric.

asw.tol If this value is given, a tolerance or penalty can be introduced (asw.tol > 0 or
asw.tol < 0, respectively) in the branch splitting procedure. Default value (0) is
maintained. See page 154 of Wit et al. (2004) for more details.

maxsplit The maximum number of clusters that any cluster can be divided into when
searching for the best clustering.

local.const If this value is given (meaningful values are those between -1 and 1), a proposed
partition is accepted only if the associated asw is greater than this constant. De-
fault option for this argument is maintained, that is to say, this value is ignored.
See page 154 of Wit et al. (2004) for more details.

orness Quantity to measure the degree to which the aggregation is like a min or max
operation. See weightsMixtureUB and getDistMatrix.

type Type of HIPAM algorithm to be used. The possible options are ’MO’ (for
HIPAM-MO) and ’IMO’ (for HIPAM-IMO).

38 hipamAnthropom

ah Constants that define the ah slopes of the distance function in getDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector
would be different according to the variables considered.

verbose Boolean variable (TRUE or FALSE) to indicate whether to report information
on progress.

... Other arguments that may be supplied to the internal functions of the HIPAM
algorithms.

Details

The HIPAM-MO algorithm uses the getBestPamsamMO and checkBranchLocalMO functions, while
the HIPAM-IMO algorithm uses the getBestPamsamIMO and checkBranchLocalIMO functions.

For more details of HIPAM, see van der Laan et al. (2003), Wit et al. (2004) and the manual of the
smida R package.

Value

A list with the following elements:

clustering: Final clustering that corresponds to the last level of the tree.

asw: The asw of the final clustering.

n.levels: Number of levels in the tree.

cases: Anthropometric cases (medoids of all of the clusters in the tree).

active: Activity status of each cluster (FALSE for every cluster of the final partition).

development: Matrix that indicates the ancestors of the final clusters.

num.of.clusters: Number of clusters in the final clustering.

metric: Dissimilarity used (called ’McCulloch’ because the dissimilarity function used is that ex-
plained in McCulloch et al. (1998)).

Note

All the functions related to the HIPAM algorithm were originally created by E. Wit et al., and
they are available freely on https://www.math.rug.nl/~ernst/book/smida.html. In order to
develop the HIPAM-MO and HIPAM-IMO algorithms, we have used and adapted them.

Author(s)

Guillermo Vinue

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John
Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R
package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html

hipamAnthropom 39

van der Laan, M. J., and Pollard, K. S., (2003). A new algorithm for hybrid hierarchical clustering
with visualization and the bootstrap, Journal of Statistical Planning and Inference 117, 275–303.

Pollard, K. S., and van der Laan, M. J., (2002). A method to identify significant clusters in gene
expression data. Vol. II of SCI2002 Proceedings, 318–325.

Irigoien, I., and Arenas, C., (2008). INCA: New statistic for estimating the number of clusters and
identifying atypical units, Statistics in Medicine 27, 2948–2973.

Irigoien, I., Sierra, B., and Arenas, C., (2012). ICGE: an R package for detecting relevant clusters
and atypical units in gene expression, BMC Bioinformatics 13, 1–29.

McCulloch, C., Paal, B., and Ashdown, S., (1998). An optimization approach to apparel sizing,
Journal of the Operational Research Society 49, 492–499.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthro-
pometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the
2010 Intl. Conference on 3D Body scanning Technologies, 307–315.

See Also

getBestPamsamMO, getBestPamsamIMO, checkBranchLocalMO, checkBranchLocalIMO, plotTreeHipamAnthropom,

Examples

#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes,

maxsplit, orness, type, ah, FALSE)

fitmodels <- anthrCases(res_hipam, numSizes)
outliers <- trimmOutl(res_hipam, numSizes)

#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]
numVar <- dim(dataComp)[2]

40 landmarksSampleSpaSurv

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(28, 25, 25)

dataMat <- as.matrix(dataComp)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res_hipam_One <- list() ; class(res_hipam_One) <- "hipamAnthropom"
res_hipam_One[[1]] <- hipamAnthropom(dataMat, maxsplit = maxsplit, orness = orness,

type = type, ah = ah, verbose = FALSE)

#plotTreeHipamAnthropom(res_hipam_One, main="Proposed Hierarchical PAM Clustering \n")

fitmodels_One <- anthrCases(res_hipam_One,1)
outliers_One <- trimmOutl(res_hipam_One,1)

landmarksSampleSpaSurv

Landmarks of the sampled women of the Spanish Survey

Description

The body shape of the women who belong to sampleSpanishSurvey is represented by a set of
anatomical correspondence points, called landmarks.

This database collects the set of landmarks of each woman.

The landmarks considered were placed in three different ways:

• Automatic landmarks: automatically calculated with scanner program algorithms, based on
geometrical features of the body.

• Manual landmarks: points which are not reflected on the external body geometry; they were
located through palpation by expert personnel and identified by a physical marker.

• Digital landmarks: detected on the computer screen in the 3D scanned image. They are not
robust on the automatic calculation but are easy to detect on the screen.

Usage

landmarksSampleSpaSurv

Format

A data frame with 600 observations and 198 variables (66 landmarks times 3 dimensions).

Source

Anthropometric survey of the Spanish female population.

LloydShapes 41

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthro-
pometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the
2010 Intl. Conference on 3D Body scanning Technologies, 307–315.

LloydShapes Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean
distance from each point, to the centroid of the cluster to which it belongs. Two fundamental con-
cepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. There-
fore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the
shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer sci-
ence and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd
(1982)).

This function allows us to use the Lloyd version of k-means adapted to deal with 3D shapes. Note
that in the generic name of the k-means algorithm, k refers to the number of clusters to search for.
To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

LloydShapes(array3D,numClust,algSteps=10,niter=10,stopCr=0.0001,simul,verbose)

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

numClust Number of clusters.

algSteps Number of steps of the algorithm per initialization. Default value is 10.

niter Number of random initializations (iterations). Default value is 10.

stopCr Relative stopping criteria. Default value is 0.0001.

simul Logical value. If TRUE, this function is used for a simulation study.

verbose A logical specifying whether to provide descriptive output about the running
process.

42 LloydShapes

Details

There have been several attempts to adapt the k-means algorithm in the context of the statistical
shape analysis, each one adapting a different version of the k-means algorithm (Amaral et al. (2010),
Georgescu (2009)). In Vinue et al. (2014), it is demonstrated that the Lloyd k-means represents a
noticeable reduction in the computation involved when the sample size increases, compared with
the Hartigan-Wong k-means. We state that Hartigan-Wong should be used in the shape analysis
context only for very small samples.

Value

A list with the following elements:

asig: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

initials: Random initial values used in each iteration. These values are then used by HartiganShapes.

If a simulation study is carried out, the following elements are returned:

asig: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

compTime: Computational time.

AllRate: Allocation rate.

initials: Random initial values used in each iteration. These values are then used by HartiganShapes.

Author(s)

Amelia Simo

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, IEEE Transactions on Information Theory
28, 129–137.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes, trimmedLloydShapes, landmarksSampleSpaSurv, cube8landm, parallelep8landm,
cube34landm, parallelep34landm, optraShapes, qtranShapes

nearestToArchetypes 43

Examples

#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)

asig <- resLL$asig
table(resLL$asig)
prototypes <- anthrCases(resLL)

#Note: For a simulation study, see www.uv.es/vivigui/softw/more_examples.R

nearestToArchetypes Nearest individuals to archetypes

Description

The nearest individual to each archetype can be obtained by simply computing the distance be-
tween the archetypes and the individuals and choosing the nearest. This is the procedure to obtain
what is called the cand_ns vector, see Vinue et al. (2015). It is used within archetypoids and
stepArchetypoids.

Usage

nearestToArchetypes(indivs,numArch,mdras)

Arguments

indivs Vector from 1 to numArch of individuals nearest to archetypes.

numArch Number of archetypes computed.

mdras Distance matrix between the archetypes and the individuals.

Value

A vector with the nearest individuals to archetypes.

44 optraShapes

Author(s)

Irene Epifanio

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

See Also

archetypoids, stepArchetypoids, archetypesBoundary

Examples

#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

res <- archetypesBoundary(USAFSurvey_preproc$data, 5, FALSE, 3)
#To understand the warning messages, see the vignette of the
#archetypes package.

numArch <- 3
a3 <- archetypes::bestModel(res[[numArch]])
ras <- rbind(archetypes::parameters(a3), USAFSurvey_preproc$data)
dras <- dist(ras, method = "euclidean", diag = FALSE, upper = TRUE, p = 2)
mdras <- as.matrix(dras)
diag(mdras) <- 1e+11
sapply(seq(length=numArch), nearestToArchetypes, numArch, mdras)

optraShapes Auxiliary optra subroutine of the Hartigan-Wong k-means for 3D
shapes

optraShapes 45

Description

The Hartigan-Wong version of the k-means algorithm uses two auxiliary algorithms: the optimal
transfer stage (optra) and the quick transfer stage (qtran).

This function is the optra subroutine adapted to the shape analysis context. It is used within
HartiganShapes. See Hartigan and Wong (1979) for details of the original k-means algorithm
and Amaral et al. (2010) for details about its adaptation to shape analysis.

Usage

optraShapes(array3D,n,c,numClust,ic1,ic2,nc,an1,an2,ncp,d,itran,live,indx)

Arguments

array3D Array with the 3D landmarks of the sample objects.

n Number of sample objects.

c Array of centroids.

numClust Number of clusters.

ic1 The cluster to each object belongs.

ic2 This vector is used to remember the cluster which each object is most likely to
be transferred to at each step.

nc Number of objects in each cluster.

an1 $an1(l) = nc(l) / (nc(l) - 1), l=1,. . . ,numClust$.

an2 $an2(l) = nc(l) / (nc(l) + 1), l=1,. . . ,numClust$.

ncp In the optimal transfer stage, ncp(l) stores the step at which cluster l is last
updated, $l=1,. . . ,numClust$.
In the quick transfer stage, ncp(l) stores the step at which cluster l is last updated
plus n, $l=1,. . . ,numClust$.

d Vector of distances from each object to every centroid.

itran itran(l) = 1 if cluster l is updated in the quick-transfer stage (0 otherwise),
$l=1,. . . ,numClust$.

live Vector that indicates whether a cluster is included in the live set or not.

indx Number of steps since a transfer took place.

Value

A list with the following elements: c,ic1,ic2,nc,an1,an2,ncp,d,itran,live,indx, updated after the op-
timal transfer stage.

Note

This function belongs to HartiganShapes and it is not solely used. That is why there is no section
of examples in this help page.

46 overlapBiclustersByRows

Note

This function is based on the optra.m file available from https://github.com/johannesgerer/
jburkardt-m/tree/master/asa136.

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Hartigan, J. A., and Wong, M. A., (1979). A K-Means Clustering Algorithm, Applied Statistics,
100–108.

Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B., (2010). k-Means Algorithm in Statistical
Shape Analysis, Communications in Statistics - Simulation and Computation 39(5), 1016–1026.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes

overlapBiclustersByRows

Overlapped biclusters by rows

Description

This function allows us to check which rows belong to more than one bicluster. It is used within the
CCbiclustAnthropo function.

Usage

overlapBiclustersByRows(Bic,resBicluster)

Arguments

Bic Bicluster number.

resBicluster An object of class Biclust.

https://github.com/johannesgerer/jburkardt-m/tree/master/asa136
https://github.com/johannesgerer/jburkardt-m/tree/master/asa136

overlapBiclustersByRows 47

Details

In order to know how this function works, it is necessary to understand the following commands:

res.bicl@RowxNumber[,1] indicates the rows that belong to the bicluster 1, by assigning a TRUE
value to the position of those rows inside the original matrix. By using table(res.bicl@RowxNumber[,1]),
we obtain the number of rows belonging to bicluster 1.

1 * res.bicl@RowxNumber[,1] makes TRUES into 1s.

Bic * res.bicl@RowxNumber[,Bic] makes TRUES into the corresponding value of Bic.

In short, this function puts a 1 in those rows belonging to bicluster 1, a 2 in those ones of bicluster
2, and so on.

The fact that certain columns of the matrix returned by this function have a value different from 0
at the same row, will indicate that that row belong to both biclusters.

This function cannot be used with the data of the package. This function is included in the package
in the hope that it could be helpful or useful for other researchers.

Value

A matrix with as many rows as rows of the original matrix, and as many columns as obtained
biclusters.

Author(s)

Guillermo Vinue

References

Vinue, G., and Ibanez, M. V., (2014), Data depth and Biclustering applied to anthropometric data.
Exploring their utility in apparel design. Technical report.

Kaiser, S., and Leisch, F., (2008). A Toolbox for Bicluster Analysis in R. Tech.rep., Department of
Statistics (University of Munich).

See Also

CCbiclustAnthropo

Examples

Not run:
#Note: package biclust needed.
#This is an example of using this function with a certain database
#made up of body dimensions related to the lower body part.
data <- dataUser[(waist >= 58) & (waist < 115),] #dataUser is the user database.
rownames(data) <- 1:dim(data)[1]

waist <- data[,"WaistCircumference"]

waist_4 <- seq(58, 86, 4)
waist_6 <- seq(91, 115, 6)
waistCirc <- c(waist_4,waist_6)

48 parallelep34landm

nsizes <- length(waistCirc)

#Position of the body variables in the database:
lowerVars <- c(14, 17:25, 27, 28, 65:73, 75, 77:81, seq(100, 116, 2))

nBic <- c(2, 2, 4, rep(5, 7), 3, 3)
diffRanges <- list(c(14,20), c(24,30), c(24,30), c(33,39), c(29,35), c(29,35),

c(28,35), c(31,38), c(31,38), c(30,37), c(26,33), c(25,32))
percDisac <- 0.01
dir <- "/home/guillermo/"

res_bicl_antropom <- CCbiclustAnthropo(data,waist,waistCirc,lowerVars,
nsizes,nBic,diffRanges,percDisac,dir)

#For a single size:
size <- 5
res <- res_bicl_antropom[[1]][[size]]

sapply(1 : res@Number, overlapBiclustersByRows, res)

End(Not run)

parallelep34landm Parallelepiped of 34 landmarks

Description

This is a parallelepiped made up of 34 landmarks, used as controlled data in the simulation study
carried out in the paper referred below.

Usage

parallelep34landm

Format

An array with one matrix of 34 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

parallelep8landm 49

parallelep8landm Parallelepiped of 8 landmarks

Description

This is a parallelepiped made up of 8 landmarks, used as controlled data in the simulation study
carried out in the paper referred below.

Usage

parallelep8landm

Format

An array with one matrix of 8 rows and 3 columns.

Source

Software Rhinoceros.

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

percentilsArchetypoid Helper function for computing percentiles of a certain archetypoid

Description

This helper function computes the percentiles of an archetypoid for a given variable. Once these
percentile values have been calculated, they can be represented by means of a barplot.

Usage

percentilsArchetypoid(column,indiv,data,digits)

Arguments

column Numeric variable (column of a data frame).

indiv A certain archetypoid.

data Data frame that contains the columns and archetypoids to be analyzed.

digits Argument of the round function (it is a integer indicating the number of decimal
places to be used).

50 percentilsArchetypoid

Value

Numerical vector with the percentile values of an archetypoid.

Author(s)

Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

See Also

archetypoids

Examples

#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,

numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.

#screeplot(lass)

#Three archetypoids:
numArchoid <- 3
res_ns <- archetypoids(numArchoid, USAFSurvey_preproc$data, huge = 200, step = FALSE,

ArchObj = lass, nearest = "cand_ns" , sequ = TRUE)

percentilsArchetypoid(1, res_ns$archet[1], USAFSurvey_preproc$data, 0)

plotPrototypes 51

plotPrototypes Prototypes representation

Description

This function represents the scatter plots of bust circumference against other selected variable
(chest, hip, neck to ground or waist) jointly with the prototypes obtained for each bust class pro-
vided by either trimowa or hipamAnthropom. In addition, the prototypes defined by the European
standard on sizing systems. Size designation of clothes. Part 3: Measurements and intervals can be
also displayed.

Usage

plotPrototypes(data,prototypes,nsizes,bustVariable,variable,col,xlim,ylim,
main,EN)

Arguments

data Data frame. It should contain the chest, neck to ground, waist, hip and bust
measurements of the individuals. In order to be able to represent them, the
name of the columns of the database must be ’chest’, ’necktoground’, ’waist’,
’hip’ and ’bust’ respectively, see sampleSpanishSurvey. Each row corresponds
to an observation, and each column corresponds to a variable. All variables are
numeric.

prototypes Prototypes (medoids) i.e., typical persons within the sample, obtained with trimowa
or hipamAnthropom.

nsizes Number of subsets (classes), into the database is segmented. In our approach,
the whole anthropometric Spanish survey is segmented into twelve bust seg-
ments, according to the European standard on sizing systems. Size designation
of clothes. Part 3: Measurements and intervals.

bustVariable Bust variable.

variable Anthropometric variable to be plotted. It can be ’chest’, ’necktoground’, ’waist’
and ’hip’.

col A specification for the medoids color in each bust class.

xlim Axis lenght of the x axis according to the range of the bust variable.

ylim Axis lenght of the y axis according to the range of the selected variable among
chest, hip, neck to ground and waist.

main Main title of the plot.

EN A logical value. If TRUE, the prototypes defined by the European standard for
each variable are represented. See section Details for more details.

52 plotPrototypes

Details

Ir order to check the goodness of trimowa, the sizes defined by the prototypes can be compared
with those defined by the European standard to sizing system. This standard establishes 12 sizes
according to the combinations of the bust, waist and hip measurements and does not fix neither chest
nor height standard measurements. We can approximate the chest measurements through a linear
regression analysis, taking the bust measurements detailed in the standard as independent variable.
Besides, we take as neck to ground measurements for the standard sizing system, the values 132,
136 and 140 cm because those are the most repeated values and they are those which best cover our
data set. See Ibanez et al. (2012) for a complete explanation.

Value

A device with the desired plot.

Note

As mentioned, this function is especially defined for the sizes established by the European standard
on sizing systems. Part 3: Measurements and intervals. In order to use this function with other
standard, this function must be adapted.

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

See Also

sampleSpanishSurvey, weightsMixtureUB, trimowa, getDistMatrix, trimmedoid, hipamAnthropom

Examples

#TRIMOWA ALGORITHM:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

plotTreeHipamAnthropom 53

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,

weightsTrimowa, numClust, alpha, niter, algSteps,
ah, FALSE)

prototypes <- anthrCases(res_trimowa, numSizes)

bustVariable <- "bust"
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",

"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")

variable <- "chest"
range(dataTrimowa[,variable])
#[1] 76.7755 135.8580
ylim <- c(70,140)
title <- "Prototypes \n bust vs chest"

plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,
variable, color, xlim, ylim, title, FALSE)

plotPrototypes(dataTrimowa, prototypes, numSizes, bustVariable,
variable, color, xlim, ylim, title, TRUE)

#For other plots and an example for the hipam algorithm,
#see www.uv.es/vivigui/softw/more_examples.R

plotTreeHipamAnthropom

HIPAM dendogram

Description

This function represents a dendrogram for the clustering results provided by a HIPAM algorithm. It
is a small modification of the original plot.tree function of the smida R package, available from
https://www.math.rug.nl/~ernst/book/smida.html.

Usage

plotTreeHipamAnthropom(x,main,...)

Arguments

x The HIPAM object to be plotted.
main Title of the plot.
... Other arguments that may be supplied.

https://www.math.rug.nl/~ernst/book/smida.html

54 plotTreeHipamAnthropom

Value

A device with the desired plot.

Note

This function only represents the ’tree’ option of the original plot.tree function of smida, because
we believe that this option displays better the clustering results provided by HIPAM than the option
’2d’.

Author(s)

This function was originally created by E. Wit et al., and it is available freely on https://www.
math.rug.nl/~ernst/book/smida.html. We have slightly modified.

References

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Wit, E., and McClure, J., (2004). Statistics for Microarrays: Design, Analysis and Inference. John
Wiley & Sons, Ltd.

Wit, E., and McClure, J., (2006). Statistics for Microarrays: Inference, Design and Analysis. R
package version 0.1. https://www.math.rug.nl/~ernst/book/smida.html.

See Also

hipamAnthropom

Examples

dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes,

maxsplit, orness, type, ah, FALSE)

plotTreeHipamAnthropom(res_hipam[[1]],
main=paste("Proposed Hierarchical PAM Clustering \n",
"74-78"))

https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html
https://www.math.rug.nl/~ernst/book/smida.html

plotTrimmOutl 55

plotTrimmOutl Trimmed or outlier observations representation

Description

This function represents the scatter plots of bust circumference against other selected variable
(chest,hip,neck to ground or waist) jointly with the trimmed individuals discarded in each bust
class provided by trimowa or with the outlier individuals provided by hipamAnthropom.

Usage

plotTrimmOutl(data,trimmOutl,nsizes,bustVariable,variable,col,xlim,ylim,main)

Arguments

data Data frame. It should contain the chest, neck to ground, waist, hip and bust
measurements of the individuals. In order to be able to represent them, the
name of the columns of the database must be ’chest’, ’necktoground’, ’waist’,
’hip’ and ’bust’ respectively, see sampleSpanishSurvey. Each row corresponds
to an observation, and each column corresponds to a variable. All variables are
numeric.

trimmOutl Trimmed women (if trimowa) or outlier women (if hipamAnthropom).

nsizes Number of subsets (classes), into the database is segmented. In our approach,
the whole anthropometric Spanish survey is segmented into twelve bust seg-
ments, according to the European standard on sizing systems. Size designation
of clothes. Part 3: Measurements and intervals.

bustVariable Bust variable.

variable Anthropometric variable to be plotted. It can be ’chest’, ’necktoground’, ’waist’
and ’hip’.

col A specification for the trimmed or outlier women color in each bust class.

xlim Axis lenght of the x axis according to the range of the bust variable.

ylim Axis lenght of the y axis according to the range of the selected variable among
chest, hip, neck to ground and waist.

main Title of the plot.

Value

A device with the desired plot.

Author(s)

Guillermo Vinue

56 plotTrimmOutl

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

See Also

sampleSpanishSurvey, hipamAnthropom, trimowa

Examples

#TRIMOWA ALGORITHM:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,

weightsTrimowa, numClust, alpha, niter, algSteps,
ah, FALSE)

prototypes <- anthrCases(res_trimowa, numSizes)
trimmed <- trimmOutl(res_trimowa, numSizes)

bustVariable <- "bust"
xlim <- c(72, 132)
color <- c("black", "red", "green", "blue", "cyan", "brown", "gray",

"deeppink3", "orange", "springgreen4", "khaki3", "steelblue1")

variable <- "chest"
range(dataTrimowa[,variable])
#[1] 76.7755 135.8580
ylim <- c(70,140)
main <- "Trimmed women \n bust vs chest"

plotTrimmOutl(dataTrimowa, trimmed, numSizes, bustVariable, variable, color,
xlim, ylim, main)

#For other plots and an example for the hipam algorithm,

preprocessing 57

#see www.uv.es/vivigui/softw/more_examples.R

preprocessing Data preprocessing before computing archetypal observations

Description

This function allows us to fix the accommodated data before computing archetypes and archety-
poids. First, depending on the problem, it is possible to standardize the data or not. Second, it is
possible to use the Mahalanobis distance or a depth procedure to select the accommodated subsam-
ple of data.

Usage

preprocessing(data,stand,percAccomm,mahal=TRUE)

Arguments

data Raw data. It must be a data frame. Each row corresponds to an observation
and each column corresponds to an anthropometric variable. All variables are
numeric.

stand A logical value. If TRUE (FALSE) the data are (not) standardized. This option
will depend on the problem.

percAccomm Percentage of the population to accommodate (value between 0 and 1). When
this percentage is equal to 1 all the individuals will be accommodated.

mahal If percAccom is different from 1, then mahal=TRUE (mahal=FALSE) indicates
that the Mahalanobis distance (a depth procedure) will be used to select the
accommodated subsample of data.

Details

In somes cases, the depth procedure has the disadvantage that the desired percentage of accommo-
dation is not under control of the analyst and it could not coincide exactly with percAccomm.

Value

A list with the following elements if percAccomm is different from 1:

data: Database after preprocessing, with the 1-percAccomm percentage of individuals removed.

indivYes: Individuals who belong to data.

indivNo: Individuals discarded in the accommodation procedure.

A list with the following elements if percAccomm is equals to 1:

data: Initial database with the same number of observations, which has been standarized depending
on the value of stand.

58 projShapes

Author(s)

Irene Epifanio and Guillermo Vinue

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

Genest, M., Masse, J.-C., and Plante, J.-F., (2012). depth: Depth functions tools for multivariate
analysis. R package version 2.0-0.

Examples

#As a toy example, only the first 25 individuals are used.
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)

#Data preprocessing:
preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)
preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, FALSE)

projShapes Helper function for plotting the shapes

Description

Helper function for plotting the projections of the shapes. It displays the projection on the xy plane
of the recorded points and mean shape for a given cluster. To that end, first it is needed to carry out
a generalized Procrustes analysis in the cluster to obtain the full Procrustes rotated data.

Usage

projShapes(clust,array3D,asig,prototypes)

Arguments

clust Cluster for which represent its mean shape together with the recorded points.

array3D Array with the 3D landmarks of the sample points. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

asig Clustering optimal results.

prototypes Vector of optimal prototypes.

Value

Numerical vector with the percentile values of an archetypoid.

qtranShapes 59

Author(s)

Guillermo Vinue

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

See Also

LloydShapes, HartiganShapes, trimmedLloydShapes

Examples

landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 15 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)
clust_kmeansProc <- resLL$asig

prototypes <- anthrCases(resLL)

projShapes(1, array3D, clust_kmeansProc, prototypes)
#legend("topleft", c("Registrated data", "Mean shape"), pch = 1, col = 1:2, text.col = 1:2)
#title("Procrustes registrated data for cluster 1 \n with its mean shape superimposed",
sub = "Plane xy")

qtranShapes Auxiliary qtran subroutine of the Hartigan-Wong k-means for 3D
shapes

Description

The Hartigan-Wong version of the k-means algorithm uses two auxiliary algorithms: the optimal
transfer stage (optra) and the quick transfer stage (qtran).

This function is the qtran subroutine adapted to the shape analysis context. It is used within
HartiganShapes. See Hartigan and Wong (1979) for details of the original k-means algorithm
and Amaral et al. (2010) for details about its adaptation to shape analysis.

60 qtranShapes

Usage

qtranShapes(array3D,n,c,ic1,ic2,nc,an1,an2,ncp,d,itran,indx)

Arguments

array3D Array with the 3D landmarks of the sample objects.

n Number of sample objects.

c Array of centroids.

ic1 The cluster to each object belongs.

ic2 This vector is used to remember the cluster which each object is most likely to
be transferred to at each step.

nc Number of objects in each cluster.

an1 $an1(l) = nc(l) / (nc(l) - 1), l=1,. . . ,numClust$, where numClust is the number
of clusters.

an2 $an2(l) = nc(l) / (nc(l) + 1), l=1,. . . ,numClust$.

ncp In the optimal transfer stage, ncp(l) stores the step at which cluster l is last
updated, $l=1,. . . ,numClust$.
In the quick transfer stage, ncp(l) stores the step at which cluster l is last updated
plus n, $l=1,. . . ,numClust$.

d Vector of distances from each object to every centroid.

itran itran(l) = 1 if cluster l is updated in the quick-transfer stage (0 otherwise),
$l=1,. . . ,k$.

indx Number of steps since a transfer took place.

Value

A list with the following elements:: c,ic1,ic2,nc,an1,an2,ncp,d,itran,indx,icoun, updated after the
optimal transfer stage. Note that icoun counts the steps where a re-allocation took place.

Note

This function belongs to HartiganShapes and it is not solely used. That is why there is no section
of examples in this help page.

Note

This function is based on the qtran.m file available from https://github.com/johannesgerer/
jburkardt-m/tree/master/asa136.

Author(s)

Guillermo Vinue

https://github.com/johannesgerer/jburkardt-m/tree/master/asa136
https://github.com/johannesgerer/jburkardt-m/tree/master/asa136

sampleSpanishSurvey 61

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Hartigan, J. A., and Wong, M. A., (1979). A K-Means Clustering Algorithm, Applied Statistics,
100–108.

Amaral, G. J. A., Dore, L. H., Lessa, R. P., and Stosic, B., (2010). k-Means Algorithm in Statistical
Shape Analysis, Communications in Statistics - Simulation and Computation 39(5), 1016–1026.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

HartiganShapes

sampleSpanishSurvey Sample database of the Spanish anthropometric survey

Description

This a database for academic and training purposes. It is oriented to exemplify the use of trimowa,
hipamAnthropom and TDDclust.

It is made up of 600 women selected randomly from the Spanish anthropometric survey and five
anthropometric variables: chest circumference, neck to ground length, waist circumference, hip
circumference and bust circumference. These variables have been chosen following the recommen-
dations of experts. In addition, they are commonly used in the literature about sizing system design
and they appear in the European standard to sizing system.

Usage

sampleSpanishSurvey

Format

A matrix with 600 rows and 5 columns. Each row corresponds to an observation, and each column
corresponds to a variable.

Source

Anthropometric survey of the Spanish female population.

62 screeArchetypal

References

Alemany, S., Gonzalez, J. C., Nacher, B., Soriano, C., Arnaiz, C., and Heras, H., (2010). Anthro-
pometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the
2010 Intl. Conference on 3D Body scanning Technologies, 307–315.

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Vinue, G., and Ibanez, M. V., (2014). Data depth and Biclustering applied to anthropometric data.
Exploring their utility in apparel design. Technical report.

European Committee for Standardization. Size designation of clothes. Part 2: Primary and sec-
ondary dimensions. (2002).

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

See Also

trimowa, hipamAnthropom, TDDclust

screeArchetypal Screeplot of archetypal individuals

Description

This function allows us to represent in the same plot the screeplot of the archetypes and the both
cand_ns, cand_alpha and cand_beta archetypoids.

Usage

screeArchetypal(numArch,rss_lass_def,rss_step_ns,rss_step_alpha,rss_step_beta,
ylim,main,xlab,ylab,col=c("red","blue","green3"),axis2,seq,leg)

Arguments

numArch Number of archetypal observations (archetypes and archetypoids).

rss_lass_def Vector of the residual sum of squares (rss) associated with each archetype from
1 to numArch.

rss_step_ns Vector of the residual sum of squares (rss) associated with each cand_ns archety-
poid from 1 to numArch.

screeArchetypal 63

rss_step_alpha Vector of the residual sum of squares (rss) associated with each cand_alpha
archetypoid from 1 to numArch.

rss_step_beta Vector of the residual sum of squares (rss) associated with each cand_beta
archetypoid from 1 to numArch.

ylim The y limits of the plot.

main Title of the plot.

xlab A title for the x axis.

ylab A title for the y axis.

col Color vector for the screeplots of the archetypoids. Default is c("red","blue","green3").

axis2 A logical value. If TRUE, the y axis can be customized to have spaced tick-
marks by means of the following argument seq.

seq Vector sequence with the values of the tick-marks to be drawn in the y axis.

leg If TRUE, a legend is shown.

Value

A device with the desired plot.

Author(s)

Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Cutler, A., and Breiman, L., (1994). Archetypal Analysis, Technometrics 36, 338–347.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R,
Journal of Statistical Software 30, 1–23, doi:10.18637/jss.v030.i08.

Eugster, M. J. A., (2012). Performance profiles based on archetypal athletes, International Journal
of Performance Analysis in Sport 12, 166–187.

See Also

archetypoids, stepArchetypoids

Examples

Not run:
#COCKPIT DESIGN PROBLEM:
#The following R code allows us to obtain a similar plot regarding Figure 5
#of the paper Vinue et al. (2015).
USAFSurvey_First25 <- USAFSurvey[1:25,]

https://doi.org/10.18637/jss.v030.i08

64 screeArchetypal

#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 2 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data,

numArch=1:numArch, numRep = numRep,
verbose = FALSE)

#To understand the warning messages, see the vignette of the
#archetypes package.

rss_lass <- matrix(0, nrow = numArch, ncol = numRep)
for(i in 1:numArch){

for(j in 1:numRep){
rss_lass[i,j] <- lass[[i]][[j]]$rss

}
}
(rss_lass_def <- apply(rss_lass, 1, min, na.rm = TRUE))

#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){

temp <- stepArchetypoids(numArchoid, nearest = "cand_ns",
USAFSurvey_preproc$data, lass)

filename <- paste("res_ns", numArchoid, sep = "")
assign(filename,temp)
save(list = c(filename), file = paste(filename, ".RData", sep = ""))

}

#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){

temp <- stepArchetypoids(numArchoid, nearest = "cand_alpha",
USAFSurvey_preproc$data, lass)

filename <- paste("res_alpha", numArchoid, sep = "")
assign(filename,temp)
save(list = c(filename), file = paste(filename, ".RData", sep = ""))

}

#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
for(numArchoid in 1:numArch){

temp <- stepArchetypoids(numArchoid, nearest = "cand_beta",
USAFSurvey_preproc$data, lass)

filename <- paste("res_beta", numArchoid, sep = "")
assign(filename,temp)
save(list = c(filename), file = paste(filename, ".RData", sep = ""))

screeArchetypal 65

}

#Numerical and graphical results:
#Cand_ns:
for(i in 1:numArch){

load(paste("res_ns", i, ".RData", sep = ""))
}
rss_step <- c()
for (i in 1:numArch){

rss_step[i] <- get(paste("res_ns", i, sep = ""))[[2]]
}
(rss_step_ns <- as.numeric(rss_step))

#Cand_alpha:
for(i in 1:numArch){

load(paste("res_alpha", i, ".RData", sep = ""))
}
rss_step_which <- c()
for (i in 1:numArch){

rss_step_which[i] <- get(paste("res_alpha", i, sep = ""))[[2]]
}
(rss_step_alpha <- as.numeric(rss_step_which))

#Cand_beta:
for(i in 1:numArch){

load(paste("res_beta", i, ".RData", sep = ""))
}
rss_step_which <- c()
for (i in 1:numArch){

rss_step_which[i] <- get(paste("res_beta", i, sep = ""))[[2]]
}
(rss_step_beta <- as.numeric(rss_step_which))

forYlim <- c(rss_lass_def, rss_step_ns, rss_step_alpha, rss_step_beta)
range(forYlim)
#[1] 0.06387125 0.27395811

#main <- "Aircraft pilots archetypes and archetypoids"
xlab <- "Archetypes/Archetypoids"
ylab <- "RSS"
screeArchetypal(numArch, rss_lass_def, rss_step_ns, rss_step_alpha, rss_step_beta,

c(0,0.5), main = "", xlab, ylab, col = c("red","blue","green3"),
TRUE, seq(0,0.5,0.1), FALSE)

#rm(res_ns1.RData)
#rm(res_ns2.RData)
#rm(res_alpha1.RData)
#rm(res_alpha2.RData)
#rm(res_beta1.RData)
#rm(res_beta2.RData)

End(Not run)

66 shapes3dShapes

shapes3dShapes 3D shapes plot

Description

This function is a slight modification of the original shapes3d function so that the resulting plot has
customized title and axes. Specifically, the changing lines regarding the original function are those
related to its argument axes3 when it is fixed to TRUE.

Usage

shapes3dShapes(x,loop=0,type="p",color=2,joinline=c(1:1),
axes3=FALSE,rglopen=TRUE,main=main)

Arguments

x See shapes3d.

loop See shapes3d.

type See shapes3d.

color See shapes3d.

joinline See shapes3d.

axes3 See shapes3d.

rglopen See shapes3d.

main Allows us to give the plot a title if axes3=TRUE.

Value

A device with the desired plot.

References

Dryden, I. L., (2012). shapes package. R Foundation for Statistical Computing, Vienna, Austria.
Contributed package.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

See Also

shapes3d

skeletonsArchetypal 67

Examples

Not run:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)
#shapes::plotshapes(array3D[,,1])
#calibrate::textxy(array3D[,1,1], array3D[,2,1], labs = 1:numLandmarks, cex = 0.7)

numClust <- 2 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
resLL <- LloydShapes(array3D, numClust, algSteps, niter, stopCr, FALSE, FALSE)

prototypes <- anthrCases(resLL)

shapes3dShapes(prototypes[,,1], loop = 0, type = "p", color = 2, joinline = c(1:1),
axes3 = TRUE, rglopen = TRUE, main = "Mean shape cluster 1")

End(Not run)

skeletonsArchetypal Skeleton plot of archetypal individuals

Description

This function represents the skeleton plots of the archetypal observations (archetypes and archety-
poids) of USAFSurvey.

Usage

skeletonsArchetypal(measuArch,main)

Arguments

measuArch Vector with the measurements of each archetype.

main The title of the plot.

Value

A device with the desired plot.

68 stepArchetypesRawData

Note

This function allows us to reproduce the archetypes of Figure 5 of Epifanio et al. (2013), see
archetypesBoundary.

Author(s)

Guillermo Vinue

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

See Also

archetypesBoundary, USAFSurvey

Examples

#List with the measurements of each archetype (Table 7 of Epifanio et al (2013)):
lista_arch <- list()
lista_arch[[1]] <- c(34.18, 25.85, 18.65, 39.66, 35.05, 26.73)
lista_arch[[2]] <- c(28.51, 21.23, 15.39, 33.57, 29.24, 21.26)
lista_arch[[3]] <- c(35.34, 24.94, 18.79, 36.7, 32.28, 23.41)
lista_arch[[4]] <- c(31.34, 22.27, 16.89, 38, 33.08, 25.8)
lista_arch[[5]] <- c(32.33, 25.09, 17.84, 34.46, 29.58, 22.82)
lista_arch[[6]] <- c(29.69, 24.18, 18.22, 38.07, 33.04, 24.56)
lista_arch[[7]] <- c(29.24, 22.97, 14.99, 36.88, 32.28, 24.22)

for(i in 1:length(lista_arch)){
titlePlot <- paste("Archetype", i, sep = " ")
skeletonsArchetypal(lista_arch[[i]],titlePlot)

}

#Note: For an example for archetypoids, see www.uv.es/vivigui/softw/more_examples.R

stepArchetypesRawData Archetype algorithm to raw data

Description

This is a slight modification of the original stepArchetypes to apply the archetype algorithm to raw
data. The stepArchetypes function standardizes the data by default and this option is not always
desired.

Usage

stepArchetypesRawData(data,numArch,numRep=3,verbose=TRUE)

stepArchetypesRawData 69

Arguments

data Data to obtain archetypes.

numArch Number of archetypes to compute, from 1 to numArch.

numRep For each numArch, run archetypes numRep times.

verbose If TRUE, the progress during execution is shown.

Value

A list with numArch elements. Each element is a list of class attribute stepArchetypes with numRep
elements.

Author(s)

Guillermo Vinue based on the the original stepArchetypes.

References

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R,
Journal of Statistical Software 30, 1–23, doi:10.18637/jss.v030.i08.

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

See Also

stepArchetypes

Examples

#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 5 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,

numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.

https://doi.org/10.18637/jss.v030.i08

70 stepArchetypoids

stepArchetypoids Run the archetypoid algorithm several times

Description

Execute the archetypoid algorithm repeatedly. It is inspired by stepArchetypes.

Usage

stepArchetypoids(numArchoid,nearest="cand_ns",data,ArchObj)

Arguments

numArchoid Number of archetypoids.

nearest Initial vector of archetypoids for the BUILD phase of the archetypoid algorithm.
This initial vector contain the nearest individuals to the archetypes returned by
the archetypes function of archetypes (In Vinue et al. (2015), archetypes are
computed after running the archetype algorithm twenty times). This argument
is a string vector with three different possibilities. The first and default option
is "cand_ns" and allows us to calculate the nearest individuals by computing the
Euclidean distance between the archetypes and the individuals and choosing the
nearest. It is used in Epifanio et al. (2013). The second option is "cand_alpha"
and allows us to calculate the nearest individuals by consecutively identifying
the individual with the maximum value of alpha for each archetype, until the
defined number of archetypes is reached. It is used in Eugster (2012). The third
and final option is "cand_beta" and allows us to calculate the nearest individuals
by identifying the individuals with the maximum beta value for each archetype,
i.e. the major contributors in the generation of the archetypes.

data Data matrix. Each row corresponds to an observation and each column corre-
sponds to an anthropometric variable. All variables are numeric.

ArchObj The list object returned by the stepArchetypesRawData function. This function
is a slight modification of the original stepArchetypes to apply the archetype
algorithm to raw data. The stepArchetypes function standardizes the data by
default and this option is not always desired. This list is needed to compute the
nearest individuals to archetypes.

Value

A list with the following elements:

cases: Anthropometric cases (final vector of numArchoid archetypoids).

rss: Residual sum of squares corresponding to the final vector of numArchoid archetypoids.

archet_ini: Vector of initial archetypoids (cand_ns, cand_alpha or cand_beta).

alphas: Alpha coefficients for the optimal vector of archetypoids.

stepArchetypoids 71

Note

It may be happen that archetypes does not find results for k archetypes. In this case, it is not
possible to calculate the vector of nearest individuals and consequently, the vector of archetypoids.
Therefore, this function will return an error message.

Author(s)

Irene Epifanio and Guillermo Vinue

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Cutler, A., and Breiman, L., (1994). Archetypal Analysis, Technometrics 36, 338–347.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

Eugster, M. J., and Leisch, F., (2009). From Spider-Man to Hero - Archetypal Analysis in R,
Journal of Statistical Software 30, 1–23, doi:10.18637/jss.v030.i08.

Eugster, M. J. A., (2012). Performance profiles based on archetypal athletes, International Journal
of Performance Analysis in Sport 12, 166–187.

See Also

archetypoids, archetypes, stepArchetypes

Examples

#COCKPIT DESIGN PROBLEM:
#As a toy example, only the first 25 individuals are used.
USAFSurvey_First25 <- USAFSurvey[1:25,]
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_First25_inch <- USAFSurvey_First25[,variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_First25_inch, TRUE, 0.95, TRUE)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
#Run archetype algorithm repeatedly from 1 to numArch archetypes:
#This is a toy example. In other situation, choose numArch=10 and numRep=20.
numArch <- 2 ; numRep <- 2
lass <- stepArchetypesRawData(data = USAFSurvey_preproc$data, numArch = 1:numArch,

numRep = numRep, verbose = FALSE)
#To understand the warning messages, see the vignette of the
#archetypes package.

https://doi.org/10.18637/jss.v030.i08

72 TDDclust

#Run archetypoids algorithm repeatedly from 1 to numArch archetypes:
#for(numArchoid in 1:numArch){
temp <- stepArchetypoids(numArchoid,nearest="cand_ns",USAFSurvey_preproc$data,lass)
filename <- paste("res", numArchoid, sep="")
assign(filename,temp)
save(list=c(filename),file=paste(filename, ".RData", sep=""))
#}
temp <- stepArchetypoids(2,nearest="cand_ns",USAFSurvey_preproc$data,lass)

TDDclust Trimmed clustering based on L1 data depth

Description

This is the trimmed version of the clustering algorithm based on the L1 depth proposed by Rebecka
Jornsten (2004). She segments all the observations in clusters, and assigns to each point z in the
data space, the L1 depth value regarding its cluster. A trimmed procedure is incorporated to remove
the more extreme individuals of each cluster (those one with the lowest depth values), in line with
trimowa.

Usage

TDDclust(data,numClust,lambda,Th,niter,T0,simAnn,alpha,data1,verbose=TRUE)

Arguments

data Data frame. Each row corresponds to an observation, and each column corre-
sponds to a variable. All variables must be numeric.

numClust Number of clusters.

lambda Tuning parameter that controls the influence the data depth has over the cluster-
ing, see Jornsten (2004).

Th Threshold for observations to be relocated, usually set to 0.

niter Number of random initializations (iterations).

T0 Simulated annealing parameter. It is the current temperature in the simulated
annealing procedure.

simAnn Simulated annealing parameter. It is the decay rate, default 0.9.

alpha Proportion of trimmed sample.

data1 The same data frame as data, used to incorporate the trimmed observations into
the rest of them for the next iteration.

verbose A logical specifying whether to provide descriptive output about the running
process. Default TRUE.

TDDclust 73

Value

A list with the following elements:

NN: Cluster assignment, NN[1,] is the final partition.

cases: Anthropometric cases (the multivariate median cluster representatives).

DD: Depth values of the observations (only if there are trimmed observations).

Cost: Final value of the optimal partition.

discarded: Discarded (trimmed) observations.

klBest: Iteration in which the optimal partition was found.

Author(s)

This function has been defined from the original functions developed by Rebecka Jornsten, which
were available freely on http://www.stat.rutgers.edu/home/rebecka/DDcl/. However, the link to this
page doesn’t currently exist as a result of a website redesign.

References

Jornsten R., (2004). Clustering and classification based on the L1 data depth, Journal of Multivari-
ate Analysis 90, 67–89

Vinue, G., and Ibanez, M. V., (2014). Data depth and Biclustering applied to anthropometric data.
Exploring their utility in apparel design. Technical report.

Examples

#In the interests of simplicity of the computation involved, only 15 points are selected:
dataTDDcl <- sampleSpanishSurvey[1 : 15, c(2, 3, 5)]
dataTDDcl_aux <- sampleSpanishSurvey[1 : 15, c(2, 3, 5)]

numClust <- 3 ; alpha <- 0.01 ; lambda <- 0.5 ; niter <- 2
Th <- 0 ; T0 <- 0 ; simAnn <- 0.9

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
res_TDDcl <- TDDclust(dataTDDcl, numClust, lambda, Th, niter, T0, simAnn,

alpha, dataTDDcl_aux,FALSE)

prototypes <- anthrCases(res_TDDcl)

table(res_TDDcl$NN[1,])
res_TDDcl$Cost
res_TDDcl$klBest

trimmed <- trimmOutl(res_TDDcl)

74 trimmedLloydShapes

trimmedLloydShapes Trimmed Lloyd k-means for 3D shapes

Description

The basic foundation of k-means is that the sample mean is the value that minimizes the Euclidean
distance from each point, to the centroid of the cluster to which it belongs. Two fundamental con-
cepts of the statistical shape analysis are the Procrustes mean and the Procrustes distance. There-
fore, by integrating the Procrustes mean and the Procrustes distance we can use k-means in the
shape analysis context.

The k-means method has been proposed by several scientists in different forms. In computer sci-
ence and pattern recognition the k-means algorithm is often termed the Lloyd algorithm (see Lloyd
(1982)).

This function is proposed to incorporate a modification to LloydShapes in order to make the k-
means algorithm robust. Robustness is a property very desirable in a lot of applications. As it is
well known, the results of the k-means algorithm can be influenced by outliers and extreme data, or
bridging points between clusters. Garcia-Escudero et al. (1999) propose a way of making k-means
more robust, which combines the k-means idea with an impartial trimming procedure: a proportion
alpha (between 0 and 1) of observations are trimmed (the trimmed observations are self-determined
by the data). See also trimmedoid.

Note that in the generic name of the k-means algorithm, k refers to the number of clusters to search
for. To be more specific in the R code, k is referred to as numClust, see next section arguments.

Usage

trimmedLloydShapes(array3D,n,alpha,numClust,algSteps=10,niter=10,
stopCr=0.0001,verbose)

Arguments

array3D Array with the 3D landmarks of the sample objects. Each row corresponds to an
observation, and each column corresponds to a dimension (x,y,z).

n Number of individuals.

alpha Proportion of trimmed sample.

numClust Number of clusters.

algSteps Number of steps per initialization. Default value is 10.

niter Number of random initializations (iterations). Default value is 10.

stopCr Relative stopping criteria. Default value is 0.0001.

verbose A logical specifying whether to provide descriptive output about the running
process.

trimmedLloydShapes 75

Value

A list with the following elements:

asig: Optimal clustering.

cases: Anthropometric cases (optimal centers).

vopt: Optimal objective function.

trimmWomen: List to save the trimmed individual of each iteration.

trimmsIter: Vector with the number of iterations where the optimum was reached. The last number
different from NA refers to the last iteration where the final optimum was reached.

bestNstep: Nstep of the iteration where the optimum has reached.

initials: Random initial values used in each iteration. These values can be used by HartiganShapes.

discarded: Discarded (trimmed) observations.

Note

We note that adding a trimmed procedure to the Lloyd algorithm is very direct and easy, while for
the Hartigan-Wong algorithm, more modifications of the algorithm are needed, which makes the
implementation of its trimmed version difficult.

Author(s)

Amelia Simo

References

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Lloyd, S. P., (1982). Least Squares Quantization in PCM, IEEE Transactions on Information Theory
28, 129–137.

Dryden, I. L., and Mardia, K. V., (1998). Statistical Shape Analysis, Wiley, Chichester.

Garcia-Escudero, L. A., Gordaliza, A., and Matran, C., (2003). Trimming tools in exploratory data
analysis, Journal of Computational and Graphical Statistics 12(2), 434–449.

Garcia-Escudero, L. A., and Gordaliza, A., (1999). Robustness properties of k-means and trimmed
k-means, Journal of the American Statistical Association 94(447), 956–969.

See Also

LloydShapes, trimmedoid

Examples

#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66

76 trimmedoid

#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)

numClust <- 2 ; alpha <- 0.01 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust,

algSteps, niter, stopCr, FALSE)

#Optimal partition and prototypes:
clust <- res$asig
table(clust)
prototypes <- anthrCases(res)

#Trimmed individuals:
trimmed <- trimmOutl(res)

trimmedoid Trimmed k-medoids algorithm

Description

This is the trimmed k-medoids algorithm. It is used within trimowa. It is analogous to k-medoids
but a proportion alpha of observations is discarded by the own procedure (the trimmed observations
are self-determined by the data). Furthermore, the trimmed k-medoids is analogous to trimmed
k-means. An algorithm for computing trimmed k-means can be found in Garcia-Escudero et al.
(2003). See Ibanez et al. (2012) for more details. Note that in the generic name of the k-medoids
algorithm, k refers to the number of clusters to search for. To be more specific in the R code, k is
referred to as numClust, see next section arguments.

Usage

trimmedoid(D,numClust,alpha,niter,algSteps=7,verbose)

Arguments

D Dissimilarity matrix.

numClust Number of clusters.

alpha Proportion of trimmed sample.

niter Number of random initializations (iterations).

algSteps Number of steps of the algorithm per initialization. Default value is 7.

verbose A logical specifying whether to provide descriptive output about the running
process.

trimmedoid 77

Value

A list with the following elements:

vopt: The objective value.

copt: The trimmed medoids.

asig: The assignation of each observation (asig=0 indicates trimmed individuals).

ch: The goodness index.

Dmod: Modified data with the non-trimmed women.

qq: Vector with the non-trimmed points.

Author(s)

Irene Epifanio

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Garcia-Escudero, L. A., Gordaliza, A., and Matran, C., (2003). Trimming tools in exploratory data
analysis, Journal of Computational and Graphical Statistics 12(2), 434–449.

Garcia-Escudero, L. A., and Gordaliza, A., (1999). Robustness properties of k-means and trimmed
k-means, Journal of the American Statistical Association 94(447), 956–969.

See Also

sampleSpanishSurvey, weightsMixtureUB, getDistMatrix, trimowa, trimmedLloydShapes

Examples

#Data loading:
dataTrimowa <- sampleSpanishSurvey
bust <- dataTrimowa$bust
#First bust class:
data <- dataTrimowa[(bust >= 74) & (bust < 78),]
numVar <- dim(dataTrimowa)[2]

#Weights calculation:
orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness,numVar)

#Constants required to specify the distance function:
numClust <- 3
bh <- (apply(as.matrix(log(data)),2,range)[2,]

- apply(as.matrix(log(data)),2,range)[1,]) / ((numClust-1) * 8)
bl <- -3 * bh
ah <- c(23,28,20,25,25)
al <- 3 * ah

78 trimmOutl

#Data processing.
num.persons <- dim(data)[1]
num.variables <- dim(data)[2]
datam <- as.matrix(data)
datat <- aperm(datam, c(2,1))
dim(datat) <- c(1,num.persons * num.variables)

#Dissimilarity matrix:
D <- getDistMatrix(datat, num.persons, numVar, weightsTrimowa, bl, bh, al, ah, FALSE)

res_trimm <- trimmedoid(D, numClust, 0.01, 6, 7, FALSE)

trimmOutl Helper generic function for obtaining the trimmed and outlier obser-
vations

Description

The methodologies included in this package which are developed to the clothing design problem
take into account that a clothing sizing system is intended to cover only what we could call standard
population, leaving out those individuals who are extreme respect to a set of measurements. For
"trimowa", "TDDclust and "kmeansProcrustes" (which refers to as trimmedLloydShapes in this
case) these individuals are called trimmed individuals. For the "hipamAnthropom" methodology
these individuals are called outlier individuals.

This auxiliary generic function allows the user to identify the discarded individuals computed by
each method in an easy way.

Usage

trimmOutl(resMethod, nsizes)
S3 method for class 'trimowa'
trimmOutl(resMethod, nsizes)

S3 method for class 'hipamAnthropom'
trimmOutl(resMethod, nsizes)

Arguments

resMethod This is the object which saves the results obtained by the aforementioned method-
ologies and which contains the discarded individuals to return.

nsizes Number of bust sizes. This argument is needed for the "trimowa" and "hipa-
mAnthropom" methodologies because they can compute the prototypes for any
given number of bust sizes.

Value

A vector of class trimmOutl with the discarded observations.

trimmOutl 79

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Vinue, G., Simo, A., and Alemany, S., (2016). The k-means algorithm for 3D shapes with an
application to apparel design, Advances in Data Analysis and Classification 10(1), 103–132.

Vinue, G., and Ibanez, M. V., (2014). Data depth and Biclustering applied to anthropometric data.
Exploring their utility in apparel design. Technical report.

See Also

trimowa, TDDclust, hipamAnthropom, LloydShapes, HartiganShapes, trimmedLloydShapes

Examples

#CLUSTERING INDIVIDUALS ACCORDING TO THEIR SHAPE:
landmarksNoNa <- na.exclude(landmarksSampleSpaSurv)
dim(landmarksNoNa)
#[1] 574 198
numLandmarks <- (dim(landmarksNoNa)[2]) / 3
#[1] 66
#As a toy example, only the first 10 individuals are used.
landmarksNoNa_First10 <- landmarksNoNa[1:10,]
(numIndiv <- dim(landmarksNoNa_First10)[1])
#[1] 10

array3D <- array3Dlandm(numLandmarks, numIndiv, landmarksNoNa_First10)

numClust <- 2 ; alpha <- 0.01 ; algSteps <- 1 ; niter <- 1 ; stopCr <- 0.0001
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res_kmeansProc <- trimmedLloydShapes(array3D, numIndiv, alpha, numClust,

algSteps, niter, stopCr, FALSE)

trimmed <- trimmOutl(res_kmeansProc)

80 trimowa

trimowa Trimmed PAM with OWA operators

Description

This is the methodology developed in Ibanez et al. (2012) to define an efficient apparel sizing system
based on clustering techniques jointly with OWA operators. In our approach, we apply the trimmed
k-medoids algorithm (trimmedoid) to the first twelve bust classes according to the sizes defined in
the European standard on sizing systems. Size designation of clothes. Part 3: Measurements and
intervals.

Usage

trimowa(data,w,numClust,alpha,niter,algSteps,ah=c(23,28,20,25,25),verbose)

Arguments

data Data frame. In our approach, this is each of the subframes originated after seg-
menting the whole anthropometric Spanish survey into twelve bust segments,
according to the European standard on sizing systems. Size designation of
clothes. Part 3: Measurements and intervals. Each row corresponds to an obser-
vation, and each column corresponds to a variable. All variables are numeric.

w The aggregation weights of the OWA operators. They are computed with the
weightsMixtureUB.

numClust Number of clusters.

alpha Proportion of trimmed sample.

niter Number of random initializations (iterations).

algSteps Number of steps of the algorithm per initialization. Default value is 7.

ah Constants that define the ah slopes of the distance function in getDistMatrix.
Given the five variables considered, this vector is c(23,28,20,25,25). This vector
would be different according to the variables considered.

verbose A logical specifying whether to provide descriptive output about the running
process.

Value

A list with the following elements:

cases: Anthropometric cases (medoids of the clusters). They are the prototypes obtained for each
bust class.

numTrim: Number of trimmed individuals in each bust class.

numClass: Number of individuals in each bust class.

noTrim: Number of of non-trimmed individuals.

C1,C2,C3,C4: Required constant values to define the distance getDistMatrix (C1 is bh, C2 is bl,
C3 is ah and C4 is al).

trimowa 81

asig: Vector of the clusters to which each individual belongs.

discarded: Discarded (trimmed) individuals.

Author(s)

Guillermo Vinue

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

European Committee for Standardization. Size designation of clothes. Part 3: Measurements and
intervals. (2005).

See Also

sampleSpanishSurvey, weightsMixtureUB, getDistMatrix, trimmedoid

Examples

#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataTrimowa <- sampleSpanishSurvey
numVar <- dim(dataTrimowa)[2]
bust <- dataTrimowa$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))

orness <- 0.7
weightsTrimowa <- weightsMixtureUB(orness, numVar)

numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(23, 28, 20, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
numSizes <- 2
res_trimowa <- computSizesTrimowa(dataTrimowa, bust, bustSizes$bustCirc, numSizes,

weightsTrimowa, numClust, alpha, niter, algSteps,
ah, FALSE)

prototypes <- anthrCases(res_trimowa, numSizes)

#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]
numVar <- dim(dataComp)[2]

orness <- 0.7

82 USAFSurvey

weightsTrimowa <- weightsMixtureUB(orness, numVar)
numClust <- 3 ; alpha <- 0.01 ; niter <- 10 ; algSteps <- 7
ah <- c(28, 25, 25)

#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2014)
res_trimowa <- trimowa(dataComp, weightsTrimowa, numClust, alpha, niter,

algSteps, ah, verbose = FALSE)
class(res_trimowa) <- "trimowa"
prototypes <- anthrCases(res_trimowa, 1)

USAFSurvey USAF 1967 survey

Description

This data set comes from the 1967 United States Air Force (USAF) survey. The 1967 USAF survey
was conducted during the first three months of 1967 under the direction of the Anthropology Branch
of the Aerospace Medical Research Laboratory, located in Ohio. Subjects were measured at 17
Air Force bases across the United States of America. A total of 202 variables (including body
dimensions and background variables) were taken on 2420 Air Force personnel between 21 and 50
years of age.

Please find in www.uv.es/vivigui/softw/data_information.zip some files that provide a detailed in-
formation about this database. Please note that in this documentation 24 variable names are ex-
cluded (Vars 9-11, 28, 76-95).

In Epifanio et al. (2013), the column numbers selected were c(48,40,39,33,32) and correspond to
’Thumb tip reach’, ’Buttock-Knee length’, ’Popliteal height sitting’, ’Sitting height’, ’Eye height
sitting’ and ’Shoulder height sitting’.

Usage

USAFSurvey

Format

A matrix with 2420 rows and 202 columns. Each row corresponds to an observation, and each
column corresponds to a variable.

Source

1967 United States Air Force (USAF) survey.

weightsMixtureUB 83

References

Vinue, G., Epifanio, I., and Alemany, S., (2015). Archetypoids: a new approach to define represen-
tative archetypal data, Computational Statistics and Data Analysis 87, 102–115.

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

weightsMixtureUB Calculation of the weights for the OWA operators

Description

This function calculates the weights of the OWA operators. They can be used to adjust the compro-
mise between the style of garments and the general comfort sensation of wearers. This function is
used both in trimowa and hipamAnthropom.

Usage

weightsMixtureUB(orness,numVar)

Arguments

orness Quantity to measure the degree to which the aggregation is like a min or max
operation.

numVar Number of variables of the database.

Value

Vector with the weights.

Author(s)

Guillermo Ayala

References

Ibanez, M. V., Vinue, G., Alemany, S., Simo, A., Epifanio, I., Domingo, J., and Ayala, G., (2012).
Apparel sizing using trimmed PAM and OWA operators, Expert Systems with Applications 39,
10512–10520.

Vinue, G., Leon, T., Alemany, S., and Ayala, G., (2014). Looking for representative fit models for
apparel sizing, Decision Support Systems 57, 22–33.

Leon, T., Zuccarello, P., Ayala, G., de Ves, E., and Domingo, J., (2007), Applying logistic regression
to relevance feedback in image retrieval systems, Pattern Recognition 40, 2621–2632.

See Also

dbinom, getDistMatrix, trimowa, hipamAnthropom

84 xyplotPCArchetypes

Examples

numVar <- dim(sampleSpanishSurvey)[2]
orness <- 0.7
w <- weightsMixtureUB(orness,numVar)

xyplotPCArchetypes PC scores for archetypes

Description

This function is a small modification of the generic xyplot function of the archetypes R package.
It shows the scores for the principal components of all individuals jointly with the scores for the
computed archetypes. This function is used to obtain the Figure 4 of the subsection 3.3 of Epifanio
et al. (2013).

Value

A device with the desired plot.

Note

There are no usage and arguments sections in this help file because they are the same than those of
the page 25 of the reference manual of archetypes.

Author(s)

Irene Epifanio

References

Epifanio, I., Vinue, G., and Alemany, S., (2013). Archetypal analysis: contributions for estimating
boundary cases in multivariate accommodation problem, Computers & Industrial Engineering 64,
757–765.

See Also

archetypesBoundary, USAFSurvey

Examples

#First,the USAF 1967 database is read and preprocessed (Zehner et al. (1993)).
#Variable selection:
variabl_sel <- c(48, 40, 39, 33, 34, 36)
#Changing to inches:
USAFSurvey_inch <- USAFSurvey[1:25, variabl_sel] / (10 * 2.54)

#Data preprocessing:
USAFSurvey_preproc <- preprocessing(USAFSurvey_inch, TRUE, 0.95, TRUE)

xyplotPCArchetypes 85

#Procedure and results shown in section 2.2.2 and section 3.1:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2010)
res <- archetypesBoundary(USAFSurvey_preproc$data, 15, FALSE, 3)
#To understand the warning messages, see the vignette of the
#archetypes package.

a3 <- archetypes::bestModel(res[[3]])
a7 <- archetypes::bestModel(res[[7]])

pznueva <- prcomp(USAFSurvey_preproc$data, scale = TRUE, retx = TRUE)
#PCA scores for 3 archetypes:
p3 <- predict(pznueva,archetypes::parameters(a3))
#PCA scores for 7 archetypes:
p7 <- predict(pznueva,archetypes::parameters(a7))
#Representing the scores:
#Figure 4 (a):
xyplotPCArchetypes(p3[,1:2], pznueva$x[,1:2], data.col = gray(0.7),

atypes.col = 1, atypes.pch = 15)
#Figure 4 (b):
xyplotPCArchetypes(p7[,1:2], pznueva$x[,1:2], data.col = gray(0.7),

atypes.col = 1, atypes.pch = 15)

Index

∗ ANTHROP
Anthropometry-package, 3

∗ array
archetypesBoundary, 6
archetypoids, 9
checkBranchLocalIMO, 19
checkBranchLocalMO, 21
figures8landm, 28
getBestPamsamIMO, 29
getBestPamsamMO, 30
getDistMatrix, 32
HartiganShapes, 34
hipamAnthropom, 37
LloydShapes, 41
nearestToArchetypes, 43
optraShapes, 44
plotTreeHipamAnthropom, 53
preprocessing, 57
qtranShapes, 59
skeletonsArchetypal, 67
stepArchetypesRawData, 68
stepArchetypoids, 70
TDDclust, 72
trimmedLloydShapes, 74
trimowa, 80
xyplotPCArchetypes, 84

∗ datasets
cube34landm, 25
cube8landm, 26
descrDissTrunks, 27
landmarksSampleSpaSurv, 40
parallelep34landm, 48
parallelep8landm, 49
sampleSpanishSurvey, 61
USAFSurvey, 82

∗ dplot
cdfDissWomenPrototypes, 17
plotPrototypes, 51
plotTrimmOutl, 55

∗ manip
CCbiclustAnthropo, 14
overlapBiclustersByRows, 46

∗ math
anthrCases, 5
array3Dlandm, 12
bustSizesStandard, 13
computSizesHipamAnthropom, 23
computSizesTrimowa, 24
percentilsArchetypoid, 49
projShapes, 58
screeArchetypal, 62
trimmedoid, 76
trimmOutl, 78
weightsMixtureUB, 83

∗ multivariate
shapes3dShapes, 66

anthrCases, 5
Anthropometry-package, 3
archetypes, 6, 7, 9–11, 69–71
archetypesBoundary, 6, 7, 44, 68, 84
archetypoids, 6, 9, 43, 44, 50, 63, 71
array3Dlandm, 12

bustSizesStandard, 13, 23–25

CCbiclustAnthropo, 14, 46, 47
cdfDissWomenPrototypes, 17
checkBranchLocalIMO, 19, 38, 39
checkBranchLocalMO, 21, 38, 39
computSizesHipamAnthropom, 23
computSizesTrimowa, 24
cube34landm, 25, 36, 42
cube8landm, 26, 36, 42

dbinom, 83
descrDissTrunks, 27

figures8landm, 28

86

INDEX 87

getBestPamsamIMO, 29, 38, 39
getBestPamsamMO, 30, 38, 39
getDistMatrix, 17, 18, 20, 22, 29, 31, 32, 33,

37, 38, 52, 77, 80, 81, 83

HartiganShapes, 6, 12, 34, 42, 45, 46, 59–61,
75, 79

hipamAnthropom, 6, 14, 20–24, 29–33, 37, 51,
52, 54–56, 61, 62, 79, 83

landmarksSampleSpaSurv, 36, 40, 42
LloydShapes, 6, 12, 35, 36, 41, 59, 74, 75, 79

nearestToArchetypes, 7, 43

optraShapes, 36, 42, 44
overlapBiclustersByRows, 16, 46

parallelep34landm, 36, 42, 48
parallelep8landm, 36, 42, 49
percentilsArchetypoid, 49
plotPrototypes, 51
plotTreeHipamAnthropom, 39, 53
plotTrimmOutl, 55
preprocessing, 7, 57
projShapes, 58

qtranShapes, 36, 42, 59

round, 49

sampleSpanishSurvey, 15, 18, 40, 51, 52, 55,
56, 61, 77, 81

screeArchetypal, 62
shapes3d, 66
shapes3dShapes, 66
skeletonsArchetypal, 67
stepArchetypes, 6, 7, 10, 68–71
stepArchetypesRawData, 7, 10, 11, 68, 70
stepArchetypoids, 6, 9–11, 43, 44, 63, 70

TDDclust, 6, 61, 62, 72, 79
trimmedLloydShapes, 6, 12, 36, 42, 59, 74,

77–79
trimmedoid, 52, 74, 75, 76, 80, 81
trimmOutl, 78
trimowa, 6, 14, 17, 18, 24, 25, 32, 33, 51, 52,

55, 56, 61, 62, 72, 76, 77, 79, 80, 83

USAFSurvey, 6, 7, 67, 68, 82, 84

weightsMixtureUB, 18, 20, 22, 29, 31, 32, 37,
52, 77, 80, 81, 83

xyplotPCArchetypes, 84

	Anthropometry-package
	anthrCases
	archetypesBoundary
	archetypoids
	array3Dlandm
	bustSizesStandard
	CCbiclustAnthropo
	cdfDissWomenPrototypes
	checkBranchLocalIMO
	checkBranchLocalMO
	computSizesHipamAnthropom
	computSizesTrimowa
	cube34landm
	cube8landm
	descrDissTrunks
	figures8landm
	getBestPamsamIMO
	getBestPamsamMO
	getDistMatrix
	HartiganShapes
	hipamAnthropom
	landmarksSampleSpaSurv
	LloydShapes
	nearestToArchetypes
	optraShapes
	overlapBiclustersByRows
	parallelep34landm
	parallelep8landm
	percentilsArchetypoid
	plotPrototypes
	plotTreeHipamAnthropom
	plotTrimmOutl
	preprocessing
	projShapes
	qtranShapes
	sampleSpanishSurvey
	screeArchetypal
	shapes3dShapes
	skeletonsArchetypal
	stepArchetypesRawData
	stepArchetypoids
	TDDclust
	trimmedLloydShapes
	trimmedoid
	trimmOutl
	trimowa
	USAFSurvey
	weightsMixtureUB
	xyplotPCArchetypes
	Index

